]> granicus.if.org Git - postgresql/blob - src/backend/executor/execMain.c
Restructure aclcheck error reporting to make permission-failure
[postgresql] / src / backend / executor / execMain.c
1 /*-------------------------------------------------------------------------
2  *
3  * execMain.c
4  *        top level executor interface routines
5  *
6  * INTERFACE ROUTINES
7  *      ExecutorStart()
8  *      ExecutorRun()
9  *      ExecutorEnd()
10  *
11  *      The old ExecutorMain() has been replaced by ExecutorStart(),
12  *      ExecutorRun() and ExecutorEnd()
13  *
14  *      These three procedures are the external interfaces to the executor.
15  *      In each case, the query descriptor and the execution state is required
16  *       as arguments
17  *
18  *      ExecutorStart() must be called at the beginning of any execution of any
19  *      query plan and ExecutorEnd() should always be called at the end of
20  *      execution of a plan.
21  *
22  *      ExecutorRun accepts direction and count arguments that specify whether
23  *      the plan is to be executed forwards, backwards, and for how many tuples.
24  *
25  * Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
26  * Portions Copyright (c) 1994, Regents of the University of California
27  *
28  *
29  * IDENTIFICATION
30  *        $Header: /cvsroot/pgsql/src/backend/executor/execMain.c,v 1.159 2002/04/27 03:45:02 tgl Exp $
31  *
32  *-------------------------------------------------------------------------
33  */
34 #include "postgres.h"
35
36 #include "access/heapam.h"
37 #include "catalog/heap.h"
38 #include "catalog/namespace.h"
39 #include "commands/tablecmds.h"
40 #include "commands/trigger.h"
41 #include "executor/execdebug.h"
42 #include "executor/execdefs.h"
43 #include "miscadmin.h"
44 #include "optimizer/var.h"
45 #include "parser/parsetree.h"
46 #include "utils/acl.h"
47 #include "utils/lsyscache.h"
48
49
50 /* decls for local routines only used within this module */
51 static TupleDesc InitPlan(CmdType operation,
52                  Query *parseTree,
53                  Plan *plan,
54                  EState *estate);
55 static void initResultRelInfo(ResultRelInfo *resultRelInfo,
56                                   Index resultRelationIndex,
57                                   List *rangeTable,
58                                   CmdType operation);
59 static void EndPlan(Plan *plan, EState *estate);
60 static TupleTableSlot *ExecutePlan(EState *estate, Plan *plan,
61                         CmdType operation,
62                         long numberTuples,
63                         ScanDirection direction,
64                         DestReceiver *destfunc);
65 static void ExecRetrieve(TupleTableSlot *slot,
66                          DestReceiver *destfunc,
67                          EState *estate);
68 static void ExecAppend(TupleTableSlot *slot, ItemPointer tupleid,
69                    EState *estate);
70 static void ExecDelete(TupleTableSlot *slot, ItemPointer tupleid,
71                    EState *estate);
72 static void ExecReplace(TupleTableSlot *slot, ItemPointer tupleid,
73                         EState *estate);
74 static TupleTableSlot *EvalPlanQualNext(EState *estate);
75 static void EndEvalPlanQual(EState *estate);
76 static void ExecCheckQueryPerms(CmdType operation, Query *parseTree,
77                                         Plan *plan);
78 static void ExecCheckPlanPerms(Plan *plan, List *rangeTable,
79                                    CmdType operation);
80 static void ExecCheckRTPerms(List *rangeTable, CmdType operation);
81 static void ExecCheckRTEPerms(RangeTblEntry *rte, CmdType operation);
82
83 /* end of local decls */
84
85
86 /* ----------------------------------------------------------------
87  *              ExecutorStart
88  *
89  *              This routine must be called at the beginning of any execution of any
90  *              query plan
91  *
92  *              returns a TupleDesc which describes the attributes of the tuples to
93  *              be returned by the query.  (Same value is saved in queryDesc)
94  *
95  * NB: the CurrentMemoryContext when this is called must be the context
96  * to be used as the per-query context for the query plan.      ExecutorRun()
97  * and ExecutorEnd() must be called in this same memory context.
98  * ----------------------------------------------------------------
99  */
100 TupleDesc
101 ExecutorStart(QueryDesc *queryDesc, EState *estate)
102 {
103         TupleDesc       result;
104
105         /* sanity checks */
106         Assert(queryDesc != NULL);
107
108         if (queryDesc->plantree->nParamExec > 0)
109         {
110                 estate->es_param_exec_vals = (ParamExecData *)
111                         palloc(queryDesc->plantree->nParamExec * sizeof(ParamExecData));
112                 MemSet(estate->es_param_exec_vals, 0,
113                            queryDesc->plantree->nParamExec * sizeof(ParamExecData));
114         }
115
116         /*
117          * Make our own private copy of the current queries snapshot data
118          */
119         if (QuerySnapshot == NULL)
120                 estate->es_snapshot = NULL;
121         else
122         {
123                 estate->es_snapshot = (Snapshot) palloc(sizeof(SnapshotData));
124                 memcpy(estate->es_snapshot, QuerySnapshot, sizeof(SnapshotData));
125                 if (estate->es_snapshot->xcnt > 0)
126                 {
127                         estate->es_snapshot->xip = (TransactionId *)
128                                 palloc(estate->es_snapshot->xcnt * sizeof(TransactionId));
129                         memcpy(estate->es_snapshot->xip, QuerySnapshot->xip,
130                                    estate->es_snapshot->xcnt * sizeof(TransactionId));
131                 }
132         }
133
134         /*
135          * Initialize the plan
136          */
137         result = InitPlan(queryDesc->operation,
138                                           queryDesc->parsetree,
139                                           queryDesc->plantree,
140                                           estate);
141
142         queryDesc->tupDesc = result;
143
144         return result;
145 }
146
147 /* ----------------------------------------------------------------
148  *              ExecutorRun
149  *
150  *              This is the main routine of the executor module. It accepts
151  *              the query descriptor from the traffic cop and executes the
152  *              query plan.
153  *
154  *              ExecutorStart must have been called already.
155  *
156  *              If direction is NoMovementScanDirection then nothing is done
157  *              except to start up/shut down the destination.  Otherwise,
158  *              we retrieve up to 'count' tuples in the specified direction.
159  *
160  *              Note: count = 0 is interpreted as no portal limit, e.g. run to
161  *              completion.
162  *
163  * ----------------------------------------------------------------
164  */
165 TupleTableSlot *
166 ExecutorRun(QueryDesc *queryDesc, EState *estate,
167                         ScanDirection direction, long count)
168 {
169         CmdType         operation;
170         Plan       *plan;
171         CommandDest dest;
172         DestReceiver *destfunc;
173         TupleTableSlot *result;
174
175         /*
176          * sanity checks
177          */
178         Assert(queryDesc != NULL);
179
180         /*
181          * extract information from the query descriptor and the query
182          * feature.
183          */
184         operation = queryDesc->operation;
185         plan = queryDesc->plantree;
186         dest = queryDesc->dest;
187
188         /*
189          * startup tuple receiver
190          */
191         estate->es_processed = 0;
192         estate->es_lastoid = InvalidOid;
193
194         destfunc = DestToFunction(dest);
195         (*destfunc->setup) (destfunc, (int) operation,
196                                                 queryDesc->portalName, queryDesc->tupDesc);
197
198         /*
199          * run plan
200          */
201         if (direction == NoMovementScanDirection)
202                 result = NULL;
203         else
204                 result = ExecutePlan(estate,
205                                                          plan,
206                                                          operation,
207                                                          count,
208                                                          direction,
209                                                          destfunc);
210
211         /*
212          * shutdown receiver
213          */
214         (*destfunc->cleanup) (destfunc);
215
216         return result;
217 }
218
219 /* ----------------------------------------------------------------
220  *              ExecutorEnd
221  *
222  *              This routine must be called at the end of execution of any
223  *              query plan
224  * ----------------------------------------------------------------
225  */
226 void
227 ExecutorEnd(QueryDesc *queryDesc, EState *estate)
228 {
229         /* sanity checks */
230         Assert(queryDesc != NULL);
231
232         EndPlan(queryDesc->plantree, estate);
233
234         if (estate->es_snapshot != NULL)
235         {
236                 if (estate->es_snapshot->xcnt > 0)
237                         pfree(estate->es_snapshot->xip);
238                 pfree(estate->es_snapshot);
239                 estate->es_snapshot = NULL;
240         }
241
242         if (estate->es_param_exec_vals != NULL)
243         {
244                 pfree(estate->es_param_exec_vals);
245                 estate->es_param_exec_vals = NULL;
246         }
247 }
248
249
250 /*
251  * ExecCheckQueryPerms
252  *              Check access permissions for all relations referenced in a query.
253  */
254 static void
255 ExecCheckQueryPerms(CmdType operation, Query *parseTree, Plan *plan)
256 {
257         /*
258          * Check RTEs in the query's primary rangetable.
259          */
260         ExecCheckRTPerms(parseTree->rtable, operation);
261
262         /*
263          * Search for subplans and APPEND nodes to check their rangetables.
264          */
265         ExecCheckPlanPerms(plan, parseTree->rtable, operation);
266 }
267
268 /*
269  * ExecCheckPlanPerms
270  *              Recursively scan the plan tree to check access permissions in
271  *              subplans.
272  */
273 static void
274 ExecCheckPlanPerms(Plan *plan, List *rangeTable, CmdType operation)
275 {
276         List       *subp;
277
278         if (plan == NULL)
279                 return;
280
281         /* Check subplans, which we assume are plain SELECT queries */
282
283         foreach(subp, plan->initPlan)
284         {
285                 SubPlan    *subplan = (SubPlan *) lfirst(subp);
286
287                 ExecCheckRTPerms(subplan->rtable, CMD_SELECT);
288                 ExecCheckPlanPerms(subplan->plan, subplan->rtable, CMD_SELECT);
289         }
290         foreach(subp, plan->subPlan)
291         {
292                 SubPlan    *subplan = (SubPlan *) lfirst(subp);
293
294                 ExecCheckRTPerms(subplan->rtable, CMD_SELECT);
295                 ExecCheckPlanPerms(subplan->plan, subplan->rtable, CMD_SELECT);
296         }
297
298         /* Check lower plan nodes */
299
300         ExecCheckPlanPerms(plan->lefttree, rangeTable, operation);
301         ExecCheckPlanPerms(plan->righttree, rangeTable, operation);
302
303         /* Do node-type-specific checks */
304
305         switch (nodeTag(plan))
306         {
307                 case T_SubqueryScan:
308                         {
309                                 SubqueryScan *scan = (SubqueryScan *) plan;
310                                 RangeTblEntry *rte;
311
312                                 /* Recursively check the subquery */
313                                 rte = rt_fetch(scan->scan.scanrelid, rangeTable);
314                                 Assert(rte->subquery != NULL);
315                                 ExecCheckQueryPerms(operation, rte->subquery, scan->subplan);
316                                 break;
317                         }
318                 case T_Append:
319                         {
320                                 Append     *app = (Append *) plan;
321                                 List       *appendplans;
322
323                                 foreach(appendplans, app->appendplans)
324                                 {
325                                         ExecCheckPlanPerms((Plan *) lfirst(appendplans),
326                                                                            rangeTable,
327                                                                            operation);
328                                 }
329                                 break;
330                         }
331
332                 default:
333                         break;
334         }
335 }
336
337 /*
338  * ExecCheckRTPerms
339  *              Check access permissions for all relations listed in a range table.
340  */
341 static void
342 ExecCheckRTPerms(List *rangeTable, CmdType operation)
343 {
344         List       *lp;
345
346         foreach(lp, rangeTable)
347         {
348                 RangeTblEntry *rte = lfirst(lp);
349
350                 ExecCheckRTEPerms(rte, operation);
351         }
352 }
353
354 /*
355  * ExecCheckRTEPerms
356  *              Check access permissions for a single RTE.
357  */
358 static void
359 ExecCheckRTEPerms(RangeTblEntry *rte, CmdType operation)
360 {
361         Oid                     relOid;
362         Oid                     userid;
363         AclResult       aclcheck_result;
364
365         /*
366          * If it's a subquery RTE, ignore it --- it will be checked when
367          * ExecCheckPlanPerms finds the SubqueryScan node for it.
368          */
369         if (rte->rtekind != RTE_RELATION)
370                 return;
371
372         relOid = rte->relid;
373
374         /*
375          * userid to check as: current user unless we have a setuid
376          * indication.
377          *
378          * Note: GetUserId() is presently fast enough that there's no harm in
379          * calling it separately for each RTE.  If that stops being true, we
380          * could call it once in ExecCheckQueryPerms and pass the userid down
381          * from there.  But for now, no need for the extra clutter.
382          */
383         userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
384
385 #define CHECK(MODE)             pg_class_aclcheck(relOid, userid, MODE)
386
387         if (rte->checkForRead)
388         {
389                 aclcheck_result = CHECK(ACL_SELECT);
390                 if (aclcheck_result != ACLCHECK_OK)
391                         aclcheck_error(aclcheck_result, get_rel_name(relOid));
392         }
393
394         if (rte->checkForWrite)
395         {
396                 /*
397                  * Note: write access in a SELECT context means SELECT FOR UPDATE.
398                  * Right now we don't distinguish that from true update as far as
399                  * permissions checks are concerned.
400                  */
401                 switch (operation)
402                 {
403                         case CMD_INSERT:
404                                 aclcheck_result = CHECK(ACL_INSERT);
405                                 break;
406                         case CMD_SELECT:
407                         case CMD_UPDATE:
408                                 aclcheck_result = CHECK(ACL_UPDATE);
409                                 break;
410                         case CMD_DELETE:
411                                 aclcheck_result = CHECK(ACL_DELETE);
412                                 break;
413                         default:
414                                 elog(ERROR, "ExecCheckRTEPerms: bogus operation %d",
415                                          operation);
416                                 aclcheck_result = ACLCHECK_OK;  /* keep compiler quiet */
417                                 break;
418                 }
419                 if (aclcheck_result != ACLCHECK_OK)
420                         aclcheck_error(aclcheck_result, get_rel_name(relOid));
421         }
422 }
423
424
425 /* ===============================================================
426  * ===============================================================
427                                                  static routines follow
428  * ===============================================================
429  * ===============================================================
430  */
431
432 typedef struct execRowMark
433 {
434         Relation        relation;
435         Index           rti;
436         char            resname[32];
437 } execRowMark;
438
439 typedef struct evalPlanQual
440 {
441         Plan       *plan;
442         Index           rti;
443         EState          estate;
444         struct evalPlanQual *free;
445 } evalPlanQual;
446
447 /* ----------------------------------------------------------------
448  *              InitPlan
449  *
450  *              Initializes the query plan: open files, allocate storage
451  *              and start up the rule manager
452  * ----------------------------------------------------------------
453  */
454 static TupleDesc
455 InitPlan(CmdType operation, Query *parseTree, Plan *plan, EState *estate)
456 {
457         List       *rangeTable;
458         Relation        intoRelationDesc;
459         TupleDesc       tupType;
460
461         /*
462          * Do permissions checks.
463          */
464         ExecCheckQueryPerms(operation, parseTree, plan);
465
466         /*
467          * get information from query descriptor
468          */
469         rangeTable = parseTree->rtable;
470
471         /*
472          * initialize the node's execution state
473          */
474         estate->es_range_table = rangeTable;
475
476         /*
477          * if there is a result relation, initialize result relation stuff
478          */
479         if (parseTree->resultRelation != 0 && operation != CMD_SELECT)
480         {
481                 List       *resultRelations = parseTree->resultRelations;
482                 int                     numResultRelations;
483                 ResultRelInfo *resultRelInfos;
484
485                 if (resultRelations != NIL)
486                 {
487                         /*
488                          * Multiple result relations (due to inheritance)
489                          * parseTree->resultRelations identifies them all
490                          */
491                         ResultRelInfo *resultRelInfo;
492
493                         numResultRelations = length(resultRelations);
494                         resultRelInfos = (ResultRelInfo *)
495                                 palloc(numResultRelations * sizeof(ResultRelInfo));
496                         resultRelInfo = resultRelInfos;
497                         while (resultRelations != NIL)
498                         {
499                                 initResultRelInfo(resultRelInfo,
500                                                                   lfirsti(resultRelations),
501                                                                   rangeTable,
502                                                                   operation);
503                                 resultRelInfo++;
504                                 resultRelations = lnext(resultRelations);
505                         }
506                 }
507                 else
508                 {
509                         /*
510                          * Single result relation identified by
511                          * parseTree->resultRelation
512                          */
513                         numResultRelations = 1;
514                         resultRelInfos = (ResultRelInfo *) palloc(sizeof(ResultRelInfo));
515                         initResultRelInfo(resultRelInfos,
516                                                           parseTree->resultRelation,
517                                                           rangeTable,
518                                                           operation);
519                 }
520
521                 estate->es_result_relations = resultRelInfos;
522                 estate->es_num_result_relations = numResultRelations;
523                 /* Initialize to first or only result rel */
524                 estate->es_result_relation_info = resultRelInfos;
525         }
526         else
527         {
528                 /*
529                  * if no result relation, then set state appropriately
530                  */
531                 estate->es_result_relations = NULL;
532                 estate->es_num_result_relations = 0;
533                 estate->es_result_relation_info = NULL;
534         }
535
536         /*
537          * Have to lock relations selected for update
538          */
539         estate->es_rowMark = NIL;
540         if (parseTree->rowMarks != NIL)
541         {
542                 List       *l;
543
544                 foreach(l, parseTree->rowMarks)
545                 {
546                         Index           rti = lfirsti(l);
547                         Oid                     relid = getrelid(rti, rangeTable);
548                         Relation        relation;
549                         execRowMark *erm;
550
551                         relation = heap_open(relid, RowShareLock);
552                         erm = (execRowMark *) palloc(sizeof(execRowMark));
553                         erm->relation = relation;
554                         erm->rti = rti;
555                         sprintf(erm->resname, "ctid%u", rti);
556                         estate->es_rowMark = lappend(estate->es_rowMark, erm);
557                 }
558         }
559
560         /*
561          * initialize the executor "tuple" table.  We need slots for all the
562          * plan nodes, plus possibly output slots for the junkfilter(s). At
563          * this point we aren't sure if we need junkfilters, so just add slots
564          * for them unconditionally.
565          */
566         {
567                 int                     nSlots = ExecCountSlotsNode(plan);
568
569                 if (parseTree->resultRelations != NIL)
570                         nSlots += length(parseTree->resultRelations);
571                 else
572                         nSlots += 1;
573                 estate->es_tupleTable = ExecCreateTupleTable(nSlots);
574         }
575
576         /* mark EvalPlanQual not active */
577         estate->es_origPlan = plan;
578         estate->es_evalPlanQual = NULL;
579         estate->es_evTuple = NULL;
580         estate->es_evTupleNull = NULL;
581         estate->es_useEvalPlan = false;
582
583         /*
584          * initialize the private state information for all the nodes in the
585          * query tree.  This opens files, allocates storage and leaves us
586          * ready to start processing tuples.
587          */
588         ExecInitNode(plan, estate, NULL);
589
590         /*
591          * Get the tuple descriptor describing the type of tuples to return.
592          * (this is especially important if we are creating a relation with
593          * "retrieve into")
594          */
595         tupType = ExecGetTupType(plan);         /* tuple descriptor */
596
597         /*
598          * Initialize the junk filter if needed. SELECT and INSERT queries
599          * need a filter if there are any junk attrs in the tlist.      UPDATE and
600          * DELETE always need one, since there's always a junk 'ctid'
601          * attribute present --- no need to look first.
602          */
603         {
604                 bool            junk_filter_needed = false;
605                 List       *tlist;
606
607                 switch (operation)
608                 {
609                         case CMD_SELECT:
610                         case CMD_INSERT:
611                                 foreach(tlist, plan->targetlist)
612                                 {
613                                         TargetEntry *tle = (TargetEntry *) lfirst(tlist);
614
615                                         if (tle->resdom->resjunk)
616                                         {
617                                                 junk_filter_needed = true;
618                                                 break;
619                                         }
620                                 }
621                                 break;
622                         case CMD_UPDATE:
623                         case CMD_DELETE:
624                                 junk_filter_needed = true;
625                                 break;
626                         default:
627                                 break;
628                 }
629
630                 if (junk_filter_needed)
631                 {
632                         /*
633                          * If there are multiple result relations, each one needs its
634                          * own junk filter.  Note this is only possible for
635                          * UPDATE/DELETE, so we can't be fooled by some needing a
636                          * filter and some not.
637                          */
638                         if (parseTree->resultRelations != NIL)
639                         {
640                                 List       *subplans;
641                                 ResultRelInfo *resultRelInfo;
642
643                                 /* Top plan had better be an Append here. */
644                                 Assert(IsA(plan, Append));
645                                 Assert(((Append *) plan)->isTarget);
646                                 subplans = ((Append *) plan)->appendplans;
647                                 Assert(length(subplans) == estate->es_num_result_relations);
648                                 resultRelInfo = estate->es_result_relations;
649                                 while (subplans != NIL)
650                                 {
651                                         Plan       *subplan = (Plan *) lfirst(subplans);
652                                         JunkFilter *j;
653
654                                         j = ExecInitJunkFilter(subplan->targetlist,
655                                                                                    ExecGetTupType(subplan),
656                                                           ExecAllocTableSlot(estate->es_tupleTable));
657                                         resultRelInfo->ri_junkFilter = j;
658                                         resultRelInfo++;
659                                         subplans = lnext(subplans);
660                                 }
661
662                                 /*
663                                  * Set active junkfilter too; at this point ExecInitAppend
664                                  * has already selected an active result relation...
665                                  */
666                                 estate->es_junkFilter =
667                                         estate->es_result_relation_info->ri_junkFilter;
668                         }
669                         else
670                         {
671                                 /* Normal case with just one JunkFilter */
672                                 JunkFilter *j;
673
674                                 j = ExecInitJunkFilter(plan->targetlist,
675                                                                            tupType,
676                                                           ExecAllocTableSlot(estate->es_tupleTable));
677                                 estate->es_junkFilter = j;
678                                 if (estate->es_result_relation_info)
679                                         estate->es_result_relation_info->ri_junkFilter = j;
680
681                                 /* For SELECT, want to return the cleaned tuple type */
682                                 if (operation == CMD_SELECT)
683                                         tupType = j->jf_cleanTupType;
684                         }
685                 }
686                 else
687                         estate->es_junkFilter = NULL;
688         }
689
690         /*
691          * initialize the "into" relation
692          */
693         intoRelationDesc = (Relation) NULL;
694
695         if (operation == CMD_SELECT)
696         {
697                 if (!parseTree->isPortal)
698                 {
699                         /*
700                          * a select into table --- need to create the "into" table
701                          */
702                         if (parseTree->into != NULL)
703                         {
704                                 char       *intoName;
705                                 Oid                     namespaceId;
706                                 Oid                     intoRelationId;
707                                 TupleDesc       tupdesc;
708
709                                 /*
710                                  * find namespace to create in, check permissions
711                                  */
712                                 intoName = parseTree->into->relname;
713                                 namespaceId = RangeVarGetCreationNamespace(parseTree->into);
714
715                                 if (!isTempNamespace(namespaceId))
716                                 {
717                                         AclResult       aclresult;
718
719                                         aclresult = pg_namespace_aclcheck(namespaceId, GetUserId(),
720                                                                                                           ACL_CREATE);
721                                         if (aclresult != ACLCHECK_OK)
722                                                 aclcheck_error(aclresult,
723                                                                            get_namespace_name(namespaceId));
724                                 }
725
726                                 /*
727                                  * have to copy tupType to get rid of constraints
728                                  */
729                                 tupdesc = CreateTupleDescCopy(tupType);
730
731                                 intoRelationId =
732                                         heap_create_with_catalog(intoName,
733                                                                                          namespaceId,
734                                                                                          tupdesc,
735                                                                                          RELKIND_RELATION,
736                                                                                          true,
737                                                                                          allowSystemTableMods);
738
739                                 FreeTupleDesc(tupdesc);
740
741                                 /*
742                                  * Advance command counter so that the newly-created
743                                  * relation's catalog tuples will be visible to heap_open.
744                                  */
745                                 CommandCounterIncrement();
746
747                                 /*
748                                  * If necessary, create a TOAST table for the into
749                                  * relation. Note that AlterTableCreateToastTable ends
750                                  * with CommandCounterIncrement(), so that the TOAST table
751                                  * will be visible for insertion.
752                                  */
753                                 AlterTableCreateToastTable(intoRelationId, true);
754
755                                 intoRelationDesc = heap_open(intoRelationId,
756                                                                                          AccessExclusiveLock);
757                         }
758                 }
759         }
760
761         estate->es_into_relation_descriptor = intoRelationDesc;
762
763         return tupType;
764 }
765
766 /*
767  * Initialize ResultRelInfo data for one result relation
768  */
769 static void
770 initResultRelInfo(ResultRelInfo *resultRelInfo,
771                                   Index resultRelationIndex,
772                                   List *rangeTable,
773                                   CmdType operation)
774 {
775         Oid                     resultRelationOid;
776         Relation        resultRelationDesc;
777
778         resultRelationOid = getrelid(resultRelationIndex, rangeTable);
779         resultRelationDesc = heap_open(resultRelationOid, RowExclusiveLock);
780
781         switch (resultRelationDesc->rd_rel->relkind)
782         {
783                 case RELKIND_SEQUENCE:
784                         elog(ERROR, "You can't change sequence relation %s",
785                                  RelationGetRelationName(resultRelationDesc));
786                         break;
787                 case RELKIND_TOASTVALUE:
788                         elog(ERROR, "You can't change toast relation %s",
789                                  RelationGetRelationName(resultRelationDesc));
790                         break;
791                 case RELKIND_VIEW:
792                         elog(ERROR, "You can't change view relation %s",
793                                  RelationGetRelationName(resultRelationDesc));
794                         break;
795         }
796
797         MemSet(resultRelInfo, 0, sizeof(ResultRelInfo));
798         resultRelInfo->type = T_ResultRelInfo;
799         resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
800         resultRelInfo->ri_RelationDesc = resultRelationDesc;
801         resultRelInfo->ri_NumIndices = 0;
802         resultRelInfo->ri_IndexRelationDescs = NULL;
803         resultRelInfo->ri_IndexRelationInfo = NULL;
804         resultRelInfo->ri_TrigDesc = resultRelationDesc->trigdesc;
805         resultRelInfo->ri_TrigFunctions = NULL;
806         resultRelInfo->ri_ConstraintExprs = NULL;
807         resultRelInfo->ri_junkFilter = NULL;
808
809         /*
810          * If there are indices on the result relation, open them and save
811          * descriptors in the result relation info, so that we can add new
812          * index entries for the tuples we add/update.  We need not do this
813          * for a DELETE, however, since deletion doesn't affect indexes.
814          */
815         if (resultRelationDesc->rd_rel->relhasindex &&
816                 operation != CMD_DELETE)
817                 ExecOpenIndices(resultRelInfo);
818 }
819
820 /* ----------------------------------------------------------------
821  *              EndPlan
822  *
823  *              Cleans up the query plan -- closes files and free up storages
824  * ----------------------------------------------------------------
825  */
826 static void
827 EndPlan(Plan *plan, EState *estate)
828 {
829         ResultRelInfo *resultRelInfo;
830         int                     i;
831         List       *l;
832
833         /*
834          * shut down any PlanQual processing we were doing
835          */
836         if (estate->es_evalPlanQual != NULL)
837                 EndEvalPlanQual(estate);
838
839         /*
840          * shut down the node-type-specific query processing
841          */
842         ExecEndNode(plan, NULL);
843
844         /*
845          * destroy the executor "tuple" table.
846          */
847         ExecDropTupleTable(estate->es_tupleTable, true);
848         estate->es_tupleTable = NULL;
849
850         /*
851          * close the result relation(s) if any, but hold locks until xact
852          * commit.      Also clean up junkfilters if present.
853          */
854         resultRelInfo = estate->es_result_relations;
855         for (i = estate->es_num_result_relations; i > 0; i--)
856         {
857                 /* Close indices and then the relation itself */
858                 ExecCloseIndices(resultRelInfo);
859                 heap_close(resultRelInfo->ri_RelationDesc, NoLock);
860                 /* Delete the junkfilter if any */
861                 if (resultRelInfo->ri_junkFilter != NULL)
862                         ExecFreeJunkFilter(resultRelInfo->ri_junkFilter);
863                 resultRelInfo++;
864         }
865
866         /*
867          * close the "into" relation if necessary, again keeping lock
868          */
869         if (estate->es_into_relation_descriptor != NULL)
870                 heap_close(estate->es_into_relation_descriptor, NoLock);
871
872         /*
873          * There might be a junkfilter without a result relation.
874          */
875         if (estate->es_num_result_relations == 0 &&
876                 estate->es_junkFilter != NULL)
877         {
878                 ExecFreeJunkFilter(estate->es_junkFilter);
879                 estate->es_junkFilter = NULL;
880         }
881
882         /*
883          * close any relations selected FOR UPDATE, again keeping locks
884          */
885         foreach(l, estate->es_rowMark)
886         {
887                 execRowMark *erm = lfirst(l);
888
889                 heap_close(erm->relation, NoLock);
890         }
891 }
892
893 /* ----------------------------------------------------------------
894  *              ExecutePlan
895  *
896  *              processes the query plan to retrieve 'numberTuples' tuples in the
897  *              direction specified.
898  *              Retrieves all tuples if numberTuples is 0
899  *
900  *              result is either a slot containing the last tuple in the case
901  *              of a RETRIEVE or NULL otherwise.
902  *
903  * Note: the ctid attribute is a 'junk' attribute that is removed before the
904  * user can see it
905  * ----------------------------------------------------------------
906  */
907 static TupleTableSlot *
908 ExecutePlan(EState *estate,
909                         Plan *plan,
910                         CmdType operation,
911                         long numberTuples,
912                         ScanDirection direction,
913                         DestReceiver *destfunc)
914 {
915         JunkFilter *junkfilter;
916         TupleTableSlot *slot;
917         ItemPointer tupleid = NULL;
918         ItemPointerData tuple_ctid;
919         long            current_tuple_count;
920         TupleTableSlot *result;
921
922         /*
923          * initialize local variables
924          */
925         slot = NULL;
926         current_tuple_count = 0;
927         result = NULL;
928
929         /*
930          * Set the direction.
931          */
932         estate->es_direction = direction;
933
934         /*
935          * Loop until we've processed the proper number of tuples from the
936          * plan.
937          */
938
939         for (;;)
940         {
941                 /* Reset the per-output-tuple exprcontext */
942                 ResetPerTupleExprContext(estate);
943
944                 /*
945                  * Execute the plan and obtain a tuple
946                  */
947 lnext:  ;
948                 if (estate->es_useEvalPlan)
949                 {
950                         slot = EvalPlanQualNext(estate);
951                         if (TupIsNull(slot))
952                                 slot = ExecProcNode(plan, NULL);
953                 }
954                 else
955                         slot = ExecProcNode(plan, NULL);
956
957                 /*
958                  * if the tuple is null, then we assume there is nothing more to
959                  * process so we just return null...
960                  */
961                 if (TupIsNull(slot))
962                 {
963                         result = NULL;
964                         break;
965                 }
966
967                 /*
968                  * if we have a junk filter, then project a new tuple with the
969                  * junk removed.
970                  *
971                  * Store this new "clean" tuple in the junkfilter's resultSlot.
972                  * (Formerly, we stored it back over the "dirty" tuple, which is
973                  * WRONG because that tuple slot has the wrong descriptor.)
974                  *
975                  * Also, extract all the junk information we need.
976                  */
977                 if ((junkfilter = estate->es_junkFilter) != (JunkFilter *) NULL)
978                 {
979                         Datum           datum;
980                         HeapTuple       newTuple;
981                         bool            isNull;
982
983                         /*
984                          * extract the 'ctid' junk attribute.
985                          */
986                         if (operation == CMD_UPDATE || operation == CMD_DELETE)
987                         {
988                                 if (!ExecGetJunkAttribute(junkfilter,
989                                                                                   slot,
990                                                                                   "ctid",
991                                                                                   &datum,
992                                                                                   &isNull))
993                                         elog(ERROR, "ExecutePlan: NO (junk) `ctid' was found!");
994
995                                 /* shouldn't ever get a null result... */
996                                 if (isNull)
997                                         elog(ERROR, "ExecutePlan: (junk) `ctid' is NULL!");
998
999                                 tupleid = (ItemPointer) DatumGetPointer(datum);
1000                                 tuple_ctid = *tupleid;  /* make sure we don't free the
1001                                                                                  * ctid!! */
1002                                 tupleid = &tuple_ctid;
1003                         }
1004                         else if (estate->es_rowMark != NIL)
1005                         {
1006                                 List       *l;
1007
1008                 lmark:  ;
1009                                 foreach(l, estate->es_rowMark)
1010                                 {
1011                                         execRowMark *erm = lfirst(l);
1012                                         Buffer          buffer;
1013                                         HeapTupleData tuple;
1014                                         TupleTableSlot *newSlot;
1015                                         int                     test;
1016
1017                                         if (!ExecGetJunkAttribute(junkfilter,
1018                                                                                           slot,
1019                                                                                           erm->resname,
1020                                                                                           &datum,
1021                                                                                           &isNull))
1022                                                 elog(ERROR, "ExecutePlan: NO (junk) `%s' was found!",
1023                                                          erm->resname);
1024
1025                                         /* shouldn't ever get a null result... */
1026                                         if (isNull)
1027                                                 elog(ERROR, "ExecutePlan: (junk) `%s' is NULL!",
1028                                                          erm->resname);
1029
1030                                         tuple.t_self = *((ItemPointer) DatumGetPointer(datum));
1031                                         test = heap_mark4update(erm->relation, &tuple, &buffer);
1032                                         ReleaseBuffer(buffer);
1033                                         switch (test)
1034                                         {
1035                                                 case HeapTupleSelfUpdated:
1036                                                 case HeapTupleMayBeUpdated:
1037                                                         break;
1038
1039                                                 case HeapTupleUpdated:
1040                                                         if (XactIsoLevel == XACT_SERIALIZABLE)
1041                                                                 elog(ERROR, "Can't serialize access due to concurrent update");
1042                                                         if (!(ItemPointerEquals(&(tuple.t_self),
1043                                                                   (ItemPointer) DatumGetPointer(datum))))
1044                                                         {
1045                                                                 newSlot = EvalPlanQual(estate, erm->rti, &(tuple.t_self));
1046                                                                 if (!(TupIsNull(newSlot)))
1047                                                                 {
1048                                                                         slot = newSlot;
1049                                                                         estate->es_useEvalPlan = true;
1050                                                                         goto lmark;
1051                                                                 }
1052                                                         }
1053
1054                                                         /*
1055                                                          * if tuple was deleted or PlanQual failed for
1056                                                          * updated tuple - we must not return this
1057                                                          * tuple!
1058                                                          */
1059                                                         goto lnext;
1060
1061                                                 default:
1062                                                         elog(ERROR, "Unknown status %u from heap_mark4update", test);
1063                                                         return (NULL);
1064                                         }
1065                                 }
1066                         }
1067
1068                         /*
1069                          * Finally create a new "clean" tuple with all junk attributes
1070                          * removed
1071                          */
1072                         newTuple = ExecRemoveJunk(junkfilter, slot);
1073
1074                         slot = ExecStoreTuple(newTuple,         /* tuple to store */
1075                                                                   junkfilter->jf_resultSlot,    /* dest slot */
1076                                                                   InvalidBuffer,                /* this tuple has no
1077                                                                                                                  * buffer */
1078                                                                   true);                /* tuple should be pfreed */
1079                 }                                               /* if (junkfilter... */
1080
1081                 /*
1082                  * now that we have a tuple, do the appropriate thing with it..
1083                  * either return it to the user, add it to a relation someplace,
1084                  * delete it from a relation, or modify some of its attributes.
1085                  */
1086
1087                 switch (operation)
1088                 {
1089                         case CMD_SELECT:
1090                                 ExecRetrieve(slot,              /* slot containing tuple */
1091                                                          destfunc,      /* destination's tuple-receiver
1092                                                                                  * obj */
1093                                                          estate);       /* */
1094                                 result = slot;
1095                                 break;
1096
1097                         case CMD_INSERT:
1098                                 ExecAppend(slot, tupleid, estate);
1099                                 result = NULL;
1100                                 break;
1101
1102                         case CMD_DELETE:
1103                                 ExecDelete(slot, tupleid, estate);
1104                                 result = NULL;
1105                                 break;
1106
1107                         case CMD_UPDATE:
1108                                 ExecReplace(slot, tupleid, estate);
1109                                 result = NULL;
1110                                 break;
1111
1112                         default:
1113                                 elog(LOG, "ExecutePlan: unknown operation in queryDesc");
1114                                 result = NULL;
1115                                 break;
1116                 }
1117
1118                 /*
1119                  * check our tuple count.. if we've processed the proper number
1120                  * then quit, else loop again and process more tuples..
1121                  */
1122                 current_tuple_count++;
1123                 if (numberTuples == current_tuple_count)
1124                         break;
1125         }
1126
1127         /*
1128          * here, result is either a slot containing a tuple in the case of a
1129          * RETRIEVE or NULL otherwise.
1130          */
1131         return result;
1132 }
1133
1134 /* ----------------------------------------------------------------
1135  *              ExecRetrieve
1136  *
1137  *              RETRIEVEs are easy.. we just pass the tuple to the appropriate
1138  *              print function.  The only complexity is when we do a
1139  *              "retrieve into", in which case we insert the tuple into
1140  *              the appropriate relation (note: this is a newly created relation
1141  *              so we don't need to worry about indices or locks.)
1142  * ----------------------------------------------------------------
1143  */
1144 static void
1145 ExecRetrieve(TupleTableSlot *slot,
1146                          DestReceiver *destfunc,
1147                          EState *estate)
1148 {
1149         HeapTuple       tuple;
1150         TupleDesc       attrtype;
1151
1152         /*
1153          * get the heap tuple out of the tuple table slot
1154          */
1155         tuple = slot->val;
1156         attrtype = slot->ttc_tupleDescriptor;
1157
1158         /*
1159          * insert the tuple into the "into relation"
1160          */
1161         if (estate->es_into_relation_descriptor != NULL)
1162         {
1163                 heap_insert(estate->es_into_relation_descriptor, tuple);
1164                 IncrAppended();
1165         }
1166
1167         /*
1168          * send the tuple to the front end (or the screen)
1169          */
1170         (*destfunc->receiveTuple) (tuple, attrtype, destfunc);
1171         IncrRetrieved();
1172         (estate->es_processed)++;
1173 }
1174
1175 /* ----------------------------------------------------------------
1176  *              ExecAppend
1177  *
1178  *              APPENDs are trickier.. we have to insert the tuple into
1179  *              the base relation and insert appropriate tuples into the
1180  *              index relations.
1181  * ----------------------------------------------------------------
1182  */
1183
1184 static void
1185 ExecAppend(TupleTableSlot *slot,
1186                    ItemPointer tupleid,
1187                    EState *estate)
1188 {
1189         HeapTuple       tuple;
1190         ResultRelInfo *resultRelInfo;
1191         Relation        resultRelationDesc;
1192         int                     numIndices;
1193         Oid                     newId;
1194
1195         /*
1196          * get the heap tuple out of the tuple table slot
1197          */
1198         tuple = slot->val;
1199
1200         /*
1201          * get information on the (current) result relation
1202          */
1203         resultRelInfo = estate->es_result_relation_info;
1204         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1205
1206         /* BEFORE ROW INSERT Triggers */
1207         if (resultRelInfo->ri_TrigDesc &&
1208           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_INSERT] > 0)
1209         {
1210                 HeapTuple       newtuple;
1211
1212                 newtuple = ExecBRInsertTriggers(estate, resultRelInfo, tuple);
1213
1214                 if (newtuple == NULL)   /* "do nothing" */
1215                         return;
1216
1217                 if (newtuple != tuple)  /* modified by Trigger(s) */
1218                 {
1219                         /*
1220                          * Insert modified tuple into tuple table slot, replacing the
1221                          * original.  We assume that it was allocated in per-tuple
1222                          * memory context, and therefore will go away by itself. The
1223                          * tuple table slot should not try to clear it.
1224                          */
1225                         ExecStoreTuple(newtuple, slot, InvalidBuffer, false);
1226                         tuple = newtuple;
1227                 }
1228         }
1229
1230         /*
1231          * Check the constraints of the tuple
1232          */
1233         if (resultRelationDesc->rd_att->constr)
1234                 ExecConstraints("ExecAppend", resultRelInfo, slot, estate);
1235
1236         /*
1237          * insert the tuple
1238          */
1239         newId = heap_insert(resultRelationDesc, tuple);
1240
1241         IncrAppended();
1242         (estate->es_processed)++;
1243         estate->es_lastoid = newId;
1244         setLastTid(&(tuple->t_self));
1245
1246         /*
1247          * process indices
1248          *
1249          * Note: heap_insert adds a new tuple to a relation.  As a side effect,
1250          * the tupleid of the new tuple is placed in the new tuple's t_ctid
1251          * field.
1252          */
1253         numIndices = resultRelInfo->ri_NumIndices;
1254         if (numIndices > 0)
1255                 ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
1256
1257         /* AFTER ROW INSERT Triggers */
1258         if (resultRelInfo->ri_TrigDesc)
1259                 ExecARInsertTriggers(estate, resultRelInfo, tuple);
1260 }
1261
1262 /* ----------------------------------------------------------------
1263  *              ExecDelete
1264  *
1265  *              DELETE is like append, we delete the tuple and its
1266  *              index tuples.
1267  * ----------------------------------------------------------------
1268  */
1269 static void
1270 ExecDelete(TupleTableSlot *slot,
1271                    ItemPointer tupleid,
1272                    EState *estate)
1273 {
1274         ResultRelInfo *resultRelInfo;
1275         Relation        resultRelationDesc;
1276         ItemPointerData ctid;
1277         int                     result;
1278
1279         /*
1280          * get information on the (current) result relation
1281          */
1282         resultRelInfo = estate->es_result_relation_info;
1283         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1284
1285         /* BEFORE ROW DELETE Triggers */
1286         if (resultRelInfo->ri_TrigDesc &&
1287           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_DELETE] > 0)
1288         {
1289                 bool            dodelete;
1290
1291                 dodelete = ExecBRDeleteTriggers(estate, resultRelInfo, tupleid);
1292
1293                 if (!dodelete)                  /* "do nothing" */
1294                         return;
1295         }
1296
1297         /*
1298          * delete the tuple
1299          */
1300 ldelete:;
1301         result = heap_delete(resultRelationDesc, tupleid, &ctid);
1302         switch (result)
1303         {
1304                 case HeapTupleSelfUpdated:
1305                         return;
1306
1307                 case HeapTupleMayBeUpdated:
1308                         break;
1309
1310                 case HeapTupleUpdated:
1311                         if (XactIsoLevel == XACT_SERIALIZABLE)
1312                                 elog(ERROR, "Can't serialize access due to concurrent update");
1313                         else if (!(ItemPointerEquals(tupleid, &ctid)))
1314                         {
1315                                 TupleTableSlot *epqslot = EvalPlanQual(estate,
1316                                                            resultRelInfo->ri_RangeTableIndex, &ctid);
1317
1318                                 if (!TupIsNull(epqslot))
1319                                 {
1320                                         *tupleid = ctid;
1321                                         goto ldelete;
1322                                 }
1323                         }
1324                         /* tuple already deleted; nothing to do */
1325                         return;
1326
1327                 default:
1328                         elog(ERROR, "Unknown status %u from heap_delete", result);
1329                         return;
1330         }
1331
1332         IncrDeleted();
1333         (estate->es_processed)++;
1334
1335         /*
1336          * Note: Normally one would think that we have to delete index tuples
1337          * associated with the heap tuple now..
1338          *
1339          * ... but in POSTGRES, we have no need to do this because the vacuum
1340          * daemon automatically opens an index scan and deletes index tuples
1341          * when it finds deleted heap tuples. -cim 9/27/89
1342          */
1343
1344         /* AFTER ROW DELETE Triggers */
1345         if (resultRelInfo->ri_TrigDesc)
1346                 ExecARDeleteTriggers(estate, resultRelInfo, tupleid);
1347 }
1348
1349 /* ----------------------------------------------------------------
1350  *              ExecReplace
1351  *
1352  *              note: we can't run replace queries with transactions
1353  *              off because replaces are actually appends and our
1354  *              scan will mistakenly loop forever, replacing the tuple
1355  *              it just appended..      This should be fixed but until it
1356  *              is, we don't want to get stuck in an infinite loop
1357  *              which corrupts your database..
1358  * ----------------------------------------------------------------
1359  */
1360 static void
1361 ExecReplace(TupleTableSlot *slot,
1362                         ItemPointer tupleid,
1363                         EState *estate)
1364 {
1365         HeapTuple       tuple;
1366         ResultRelInfo *resultRelInfo;
1367         Relation        resultRelationDesc;
1368         ItemPointerData ctid;
1369         int                     result;
1370         int                     numIndices;
1371
1372         /*
1373          * abort the operation if not running transactions
1374          */
1375         if (IsBootstrapProcessingMode())
1376         {
1377                 elog(WARNING, "ExecReplace: replace can't run without transactions");
1378                 return;
1379         }
1380
1381         /*
1382          * get the heap tuple out of the tuple table slot
1383          */
1384         tuple = slot->val;
1385
1386         /*
1387          * get information on the (current) result relation
1388          */
1389         resultRelInfo = estate->es_result_relation_info;
1390         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1391
1392         /* BEFORE ROW UPDATE Triggers */
1393         if (resultRelInfo->ri_TrigDesc &&
1394           resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_UPDATE] > 0)
1395         {
1396                 HeapTuple       newtuple;
1397
1398                 newtuple = ExecBRUpdateTriggers(estate, resultRelInfo,
1399                                                                                 tupleid, tuple);
1400
1401                 if (newtuple == NULL)   /* "do nothing" */
1402                         return;
1403
1404                 if (newtuple != tuple)  /* modified by Trigger(s) */
1405                 {
1406                         /*
1407                          * Insert modified tuple into tuple table slot, replacing the
1408                          * original.  We assume that it was allocated in per-tuple
1409                          * memory context, and therefore will go away by itself. The
1410                          * tuple table slot should not try to clear it.
1411                          */
1412                         ExecStoreTuple(newtuple, slot, InvalidBuffer, false);
1413                         tuple = newtuple;
1414                 }
1415         }
1416
1417         /*
1418          * Check the constraints of the tuple
1419          *
1420          * If we generate a new candidate tuple after EvalPlanQual testing, we
1421          * must loop back here and recheck constraints.  (We don't need to
1422          * redo triggers, however.      If there are any BEFORE triggers then
1423          * trigger.c will have done mark4update to lock the correct tuple, so
1424          * there's no need to do them again.)
1425          */
1426 lreplace:;
1427         if (resultRelationDesc->rd_att->constr)
1428                 ExecConstraints("ExecReplace", resultRelInfo, slot, estate);
1429
1430         /*
1431          * replace the heap tuple
1432          */
1433         result = heap_update(resultRelationDesc, tupleid, tuple, &ctid);
1434         switch (result)
1435         {
1436                 case HeapTupleSelfUpdated:
1437                         return;
1438
1439                 case HeapTupleMayBeUpdated:
1440                         break;
1441
1442                 case HeapTupleUpdated:
1443                         if (XactIsoLevel == XACT_SERIALIZABLE)
1444                                 elog(ERROR, "Can't serialize access due to concurrent update");
1445                         else if (!(ItemPointerEquals(tupleid, &ctid)))
1446                         {
1447                                 TupleTableSlot *epqslot = EvalPlanQual(estate,
1448                                                            resultRelInfo->ri_RangeTableIndex, &ctid);
1449
1450                                 if (!TupIsNull(epqslot))
1451                                 {
1452                                         *tupleid = ctid;
1453                                         tuple = ExecRemoveJunk(estate->es_junkFilter, epqslot);
1454                                         slot = ExecStoreTuple(tuple,
1455                                                                         estate->es_junkFilter->jf_resultSlot,
1456                                                                                   InvalidBuffer, true);
1457                                         goto lreplace;
1458                                 }
1459                         }
1460                         /* tuple already deleted; nothing to do */
1461                         return;
1462
1463                 default:
1464                         elog(ERROR, "Unknown status %u from heap_update", result);
1465                         return;
1466         }
1467
1468         IncrReplaced();
1469         (estate->es_processed)++;
1470
1471         /*
1472          * Note: instead of having to update the old index tuples associated
1473          * with the heap tuple, all we do is form and insert new index tuples.
1474          * This is because replaces are actually deletes and inserts and index
1475          * tuple deletion is done automagically by the vacuum daemon. All we
1476          * do is insert new index tuples.  -cim 9/27/89
1477          */
1478
1479         /*
1480          * process indices
1481          *
1482          * heap_update updates a tuple in the base relation by invalidating it
1483          * and then appending a new tuple to the relation.      As a side effect,
1484          * the tupleid of the new tuple is placed in the new tuple's t_ctid
1485          * field.  So we now insert index tuples using the new tupleid stored
1486          * there.
1487          */
1488
1489         numIndices = resultRelInfo->ri_NumIndices;
1490         if (numIndices > 0)
1491                 ExecInsertIndexTuples(slot, &(tuple->t_self), estate, true);
1492
1493         /* AFTER ROW UPDATE Triggers */
1494         if (resultRelInfo->ri_TrigDesc)
1495                 ExecARUpdateTriggers(estate, resultRelInfo, tupleid, tuple);
1496 }
1497
1498 static char *
1499 ExecRelCheck(ResultRelInfo *resultRelInfo,
1500                          TupleTableSlot *slot, EState *estate)
1501 {
1502         Relation        rel = resultRelInfo->ri_RelationDesc;
1503         int                     ncheck = rel->rd_att->constr->num_check;
1504         ConstrCheck *check = rel->rd_att->constr->check;
1505         ExprContext *econtext;
1506         MemoryContext oldContext;
1507         List       *qual;
1508         int                     i;
1509
1510         /*
1511          * If first time through for this result relation, build expression
1512          * nodetrees for rel's constraint expressions.  Keep them in the
1513          * per-query memory context so they'll survive throughout the query.
1514          */
1515         if (resultRelInfo->ri_ConstraintExprs == NULL)
1516         {
1517                 oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
1518                 resultRelInfo->ri_ConstraintExprs =
1519                         (List **) palloc(ncheck * sizeof(List *));
1520                 for (i = 0; i < ncheck; i++)
1521                 {
1522                         qual = (List *) stringToNode(check[i].ccbin);
1523                         resultRelInfo->ri_ConstraintExprs[i] = qual;
1524                 }
1525                 MemoryContextSwitchTo(oldContext);
1526         }
1527
1528         /*
1529          * We will use the EState's per-tuple context for evaluating
1530          * constraint expressions (creating it if it's not already there).
1531          */
1532         econtext = GetPerTupleExprContext(estate);
1533
1534         /* Arrange for econtext's scan tuple to be the tuple under test */
1535         econtext->ecxt_scantuple = slot;
1536
1537         /* And evaluate the constraints */
1538         for (i = 0; i < ncheck; i++)
1539         {
1540                 qual = resultRelInfo->ri_ConstraintExprs[i];
1541
1542                 /*
1543                  * NOTE: SQL92 specifies that a NULL result from a constraint
1544                  * expression is not to be treated as a failure.  Therefore, tell
1545                  * ExecQual to return TRUE for NULL.
1546                  */
1547                 if (!ExecQual(qual, econtext, true))
1548                         return check[i].ccname;
1549         }
1550
1551         /* NULL result means no error */
1552         return (char *) NULL;
1553 }
1554
1555 void
1556 ExecConstraints(char *caller, ResultRelInfo *resultRelInfo,
1557                                 TupleTableSlot *slot, EState *estate)
1558 {
1559         Relation        rel = resultRelInfo->ri_RelationDesc;
1560         HeapTuple       tuple = slot->val;
1561         TupleConstr *constr = rel->rd_att->constr;
1562
1563         Assert(constr);
1564
1565         if (constr->has_not_null)
1566         {
1567                 int                     natts = rel->rd_att->natts;
1568                 int                     attrChk;
1569
1570                 for (attrChk = 1; attrChk <= natts; attrChk++)
1571                 {
1572                         if (rel->rd_att->attrs[attrChk - 1]->attnotnull &&
1573                                 heap_attisnull(tuple, attrChk))
1574                                 elog(ERROR, "%s: Fail to add null value in not null attribute %s",
1575                                          caller, NameStr(rel->rd_att->attrs[attrChk - 1]->attname));
1576                 }
1577         }
1578
1579         if (constr->num_check > 0)
1580         {
1581                 char       *failed;
1582
1583                 if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
1584                         elog(ERROR, "%s: rejected due to CHECK constraint %s",
1585                                  caller, failed);
1586         }
1587 }
1588
1589 /*
1590  * Check a modified tuple to see if we want to process its updated version
1591  * under READ COMMITTED rules.
1592  *
1593  * See backend/executor/README for some info about how this works.
1594  */
1595 TupleTableSlot *
1596 EvalPlanQual(EState *estate, Index rti, ItemPointer tid)
1597 {
1598         evalPlanQual *epq;
1599         EState     *epqstate;
1600         Relation        relation;
1601         HeapTupleData tuple;
1602         HeapTuple       copyTuple = NULL;
1603         int                     rtsize;
1604         bool            endNode;
1605
1606         Assert(rti != 0);
1607
1608         /*
1609          * find relation containing target tuple
1610          */
1611         if (estate->es_result_relation_info != NULL &&
1612                 estate->es_result_relation_info->ri_RangeTableIndex == rti)
1613                 relation = estate->es_result_relation_info->ri_RelationDesc;
1614         else
1615         {
1616                 List       *l;
1617
1618                 relation = NULL;
1619                 foreach(l, estate->es_rowMark)
1620                 {
1621                         if (((execRowMark *) lfirst(l))->rti == rti)
1622                         {
1623                                 relation = ((execRowMark *) lfirst(l))->relation;
1624                                 break;
1625                         }
1626                 }
1627                 if (relation == NULL)
1628                         elog(ERROR, "EvalPlanQual: can't find RTE %d", (int) rti);
1629         }
1630
1631         /*
1632          * fetch tid tuple
1633          *
1634          * Loop here to deal with updated or busy tuples
1635          */
1636         tuple.t_self = *tid;
1637         for (;;)
1638         {
1639                 Buffer          buffer;
1640
1641                 heap_fetch(relation, SnapshotDirty, &tuple, &buffer, NULL);
1642                 if (tuple.t_data != NULL)
1643                 {
1644                         TransactionId xwait = SnapshotDirty->xmax;
1645
1646                         if (TransactionIdIsValid(SnapshotDirty->xmin))
1647                                 elog(ERROR, "EvalPlanQual: t_xmin is uncommitted ?!");
1648
1649                         /*
1650                          * If tuple is being updated by other transaction then we have
1651                          * to wait for its commit/abort.
1652                          */
1653                         if (TransactionIdIsValid(xwait))
1654                         {
1655                                 ReleaseBuffer(buffer);
1656                                 XactLockTableWait(xwait);
1657                                 continue;
1658                         }
1659
1660                         /*
1661                          * We got tuple - now copy it for use by recheck query.
1662                          */
1663                         copyTuple = heap_copytuple(&tuple);
1664                         ReleaseBuffer(buffer);
1665                         break;
1666                 }
1667
1668                 /*
1669                  * Oops! Invalid tuple. Have to check is it updated or deleted.
1670                  * Note that it's possible to get invalid SnapshotDirty->tid if
1671                  * tuple updated by this transaction. Have we to check this ?
1672                  */
1673                 if (ItemPointerIsValid(&(SnapshotDirty->tid)) &&
1674                         !(ItemPointerEquals(&(tuple.t_self), &(SnapshotDirty->tid))))
1675                 {
1676                         /* updated, so look at the updated copy */
1677                         tuple.t_self = SnapshotDirty->tid;
1678                         continue;
1679                 }
1680
1681                 /*
1682                  * Deleted or updated by this transaction; forget it.
1683                  */
1684                 return NULL;
1685         }
1686
1687         /*
1688          * For UPDATE/DELETE we have to return tid of actual row we're
1689          * executing PQ for.
1690          */
1691         *tid = tuple.t_self;
1692
1693         /*
1694          * Need to run a recheck subquery.      Find or create a PQ stack entry.
1695          */
1696         epq = (evalPlanQual *) estate->es_evalPlanQual;
1697         rtsize = length(estate->es_range_table);
1698         endNode = true;
1699
1700         if (epq != NULL && epq->rti == 0)
1701         {
1702                 /* Top PQ stack entry is idle, so re-use it */
1703                 Assert(!(estate->es_useEvalPlan) &&
1704                            epq->estate.es_evalPlanQual == NULL);
1705                 epq->rti = rti;
1706                 endNode = false;
1707         }
1708
1709         /*
1710          * If this is request for another RTE - Ra, - then we have to check
1711          * wasn't PlanQual requested for Ra already and if so then Ra' row was
1712          * updated again and we have to re-start old execution for Ra and
1713          * forget all what we done after Ra was suspended. Cool? -:))
1714          */
1715         if (epq != NULL && epq->rti != rti &&
1716                 epq->estate.es_evTuple[rti - 1] != NULL)
1717         {
1718                 do
1719                 {
1720                         evalPlanQual *oldepq;
1721
1722                         /* pop previous PlanQual from the stack */
1723                         epqstate = &(epq->estate);
1724                         oldepq = (evalPlanQual *) epqstate->es_evalPlanQual;
1725                         Assert(oldepq->rti != 0);
1726                         /* stop execution */
1727                         ExecEndNode(epq->plan, NULL);
1728                         ExecDropTupleTable(epqstate->es_tupleTable, true);
1729                         epqstate->es_tupleTable = NULL;
1730                         heap_freetuple(epqstate->es_evTuple[epq->rti - 1]);
1731                         epqstate->es_evTuple[epq->rti - 1] = NULL;
1732                         /* push current PQ to freePQ stack */
1733                         oldepq->free = epq;
1734                         epq = oldepq;
1735                         estate->es_evalPlanQual = (Pointer) epq;
1736                 } while (epq->rti != rti);
1737         }
1738
1739         /*
1740          * If we are requested for another RTE then we have to suspend
1741          * execution of current PlanQual and start execution for new one.
1742          */
1743         if (epq == NULL || epq->rti != rti)
1744         {
1745                 /* try to reuse plan used previously */
1746                 evalPlanQual *newepq = (epq != NULL) ? epq->free : NULL;
1747
1748                 if (newepq == NULL)             /* first call or freePQ stack is empty */
1749                 {
1750                         newepq = (evalPlanQual *) palloc(sizeof(evalPlanQual));
1751                         newepq->free = NULL;
1752
1753                         /*
1754                          * Each stack level has its own copy of the plan tree.  This
1755                          * is wasteful, but necessary as long as plan nodes point to
1756                          * exec state nodes rather than vice versa.  Note that
1757                          * copyfuncs.c doesn't attempt to copy the exec state nodes,
1758                          * which is a good thing in this situation.
1759                          */
1760                         newepq->plan = copyObject(estate->es_origPlan);
1761
1762                         /*
1763                          * Init stack level's EState.  We share top level's copy of
1764                          * es_result_relations array and other non-changing status. We
1765                          * need our own tupletable, es_param_exec_vals, and other
1766                          * changeable state.
1767                          */
1768                         epqstate = &(newepq->estate);
1769                         memcpy(epqstate, estate, sizeof(EState));
1770                         epqstate->es_direction = ForwardScanDirection;
1771                         if (estate->es_origPlan->nParamExec > 0)
1772                                 epqstate->es_param_exec_vals = (ParamExecData *)
1773                                         palloc(estate->es_origPlan->nParamExec *
1774                                                    sizeof(ParamExecData));
1775                         epqstate->es_tupleTable = NULL;
1776                         epqstate->es_per_tuple_exprcontext = NULL;
1777
1778                         /*
1779                          * Each epqstate must have its own es_evTupleNull state, but
1780                          * all the stack entries share es_evTuple state.  This allows
1781                          * sub-rechecks to inherit the value being examined by an
1782                          * outer recheck.
1783                          */
1784                         epqstate->es_evTupleNull = (bool *) palloc(rtsize * sizeof(bool));
1785                         if (epq == NULL)
1786                         {
1787                                 /* first PQ stack entry */
1788                                 epqstate->es_evTuple = (HeapTuple *)
1789                                         palloc(rtsize * sizeof(HeapTuple));
1790                                 memset(epqstate->es_evTuple, 0, rtsize * sizeof(HeapTuple));
1791                         }
1792                         else
1793                         {
1794                                 /* later stack entries share the same storage */
1795                                 epqstate->es_evTuple = epq->estate.es_evTuple;
1796                         }
1797                 }
1798                 else
1799                 {
1800                         /* recycle previously used EState */
1801                         epqstate = &(newepq->estate);
1802                 }
1803                 /* push current PQ to the stack */
1804                 epqstate->es_evalPlanQual = (Pointer) epq;
1805                 epq = newepq;
1806                 estate->es_evalPlanQual = (Pointer) epq;
1807                 epq->rti = rti;
1808                 endNode = false;
1809         }
1810
1811         Assert(epq->rti == rti);
1812         epqstate = &(epq->estate);
1813
1814         /*
1815          * Ok - we're requested for the same RTE.  Unfortunately we still have
1816          * to end and restart execution of the plan, because ExecReScan
1817          * wouldn't ensure that upper plan nodes would reset themselves.  We
1818          * could make that work if insertion of the target tuple were
1819          * integrated with the Param mechanism somehow, so that the upper plan
1820          * nodes know that their children's outputs have changed.
1821          */
1822         if (endNode)
1823         {
1824                 /* stop execution */
1825                 ExecEndNode(epq->plan, NULL);
1826                 ExecDropTupleTable(epqstate->es_tupleTable, true);
1827                 epqstate->es_tupleTable = NULL;
1828         }
1829
1830         /*
1831          * free old RTE' tuple, if any, and store target tuple where
1832          * relation's scan node will see it
1833          */
1834         if (epqstate->es_evTuple[rti - 1] != NULL)
1835                 heap_freetuple(epqstate->es_evTuple[rti - 1]);
1836         epqstate->es_evTuple[rti - 1] = copyTuple;
1837
1838         /*
1839          * Initialize for new recheck query; be careful to copy down state
1840          * that might have changed in top EState.
1841          */
1842         epqstate->es_result_relation_info = estate->es_result_relation_info;
1843         epqstate->es_junkFilter = estate->es_junkFilter;
1844         if (estate->es_origPlan->nParamExec > 0)
1845                 memset(epqstate->es_param_exec_vals, 0,
1846                            estate->es_origPlan->nParamExec * sizeof(ParamExecData));
1847         memset(epqstate->es_evTupleNull, false, rtsize * sizeof(bool));
1848         epqstate->es_useEvalPlan = false;
1849         Assert(epqstate->es_tupleTable == NULL);
1850         epqstate->es_tupleTable =
1851                 ExecCreateTupleTable(estate->es_tupleTable->size);
1852
1853         ExecInitNode(epq->plan, epqstate, NULL);
1854
1855         return EvalPlanQualNext(estate);
1856 }
1857
1858 static TupleTableSlot *
1859 EvalPlanQualNext(EState *estate)
1860 {
1861         evalPlanQual *epq = (evalPlanQual *) estate->es_evalPlanQual;
1862         EState     *epqstate = &(epq->estate);
1863         evalPlanQual *oldepq;
1864         TupleTableSlot *slot;
1865
1866         Assert(epq->rti != 0);
1867
1868 lpqnext:;
1869         slot = ExecProcNode(epq->plan, NULL);
1870
1871         /*
1872          * No more tuples for this PQ. Continue previous one.
1873          */
1874         if (TupIsNull(slot))
1875         {
1876                 /* stop execution */
1877                 ExecEndNode(epq->plan, NULL);
1878                 ExecDropTupleTable(epqstate->es_tupleTable, true);
1879                 epqstate->es_tupleTable = NULL;
1880                 heap_freetuple(epqstate->es_evTuple[epq->rti - 1]);
1881                 epqstate->es_evTuple[epq->rti - 1] = NULL;
1882                 /* pop old PQ from the stack */
1883                 oldepq = (evalPlanQual *) epqstate->es_evalPlanQual;
1884                 if (oldepq == (evalPlanQual *) NULL)
1885                 {
1886                         epq->rti = 0;           /* this is the first (oldest) */
1887                         estate->es_useEvalPlan = false;         /* PQ - mark as free and          */
1888                         return (NULL);          /* continue Query execution   */
1889                 }
1890                 Assert(oldepq->rti != 0);
1891                 /* push current PQ to freePQ stack */
1892                 oldepq->free = epq;
1893                 epq = oldepq;
1894                 epqstate = &(epq->estate);
1895                 estate->es_evalPlanQual = (Pointer) epq;
1896                 goto lpqnext;
1897         }
1898
1899         return (slot);
1900 }
1901
1902 static void
1903 EndEvalPlanQual(EState *estate)
1904 {
1905         evalPlanQual *epq = (evalPlanQual *) estate->es_evalPlanQual;
1906         EState     *epqstate = &(epq->estate);
1907         evalPlanQual *oldepq;
1908
1909         if (epq->rti == 0)                      /* plans already shutdowned */
1910         {
1911                 Assert(epq->estate.es_evalPlanQual == NULL);
1912                 return;
1913         }
1914
1915         for (;;)
1916         {
1917                 /* stop execution */
1918                 ExecEndNode(epq->plan, NULL);
1919                 ExecDropTupleTable(epqstate->es_tupleTable, true);
1920                 epqstate->es_tupleTable = NULL;
1921                 if (epqstate->es_evTuple[epq->rti - 1] != NULL)
1922                 {
1923                         heap_freetuple(epqstate->es_evTuple[epq->rti - 1]);
1924                         epqstate->es_evTuple[epq->rti - 1] = NULL;
1925                 }
1926                 /* pop old PQ from the stack */
1927                 oldepq = (evalPlanQual *) epqstate->es_evalPlanQual;
1928                 if (oldepq == (evalPlanQual *) NULL)
1929                 {
1930                         epq->rti = 0;           /* this is the first (oldest) */
1931                         estate->es_useEvalPlan = false;         /* PQ - mark as free */
1932                         break;
1933                 }
1934                 Assert(oldepq->rti != 0);
1935                 /* push current PQ to freePQ stack */
1936                 oldepq->free = epq;
1937                 epq = oldepq;
1938                 epqstate = &(epq->estate);
1939                 estate->es_evalPlanQual = (Pointer) epq;
1940         }
1941 }