]> granicus.if.org Git - postgresql/blob - src/backend/executor/execMain.c
Fix problems with cached tuple descriptors disappearing while still in use
[postgresql] / src / backend / executor / execMain.c
1 /*-------------------------------------------------------------------------
2  *
3  * execMain.c
4  *        top level executor interface routines
5  *
6  * INTERFACE ROUTINES
7  *      ExecutorStart()
8  *      ExecutorRun()
9  *      ExecutorEnd()
10  *
11  *      The old ExecutorMain() has been replaced by ExecutorStart(),
12  *      ExecutorRun() and ExecutorEnd()
13  *
14  *      These three procedures are the external interfaces to the executor.
15  *      In each case, the query descriptor is required as an argument.
16  *
17  *      ExecutorStart() must be called at the beginning of execution of any
18  *      query plan and ExecutorEnd() should always be called at the end of
19  *      execution of a plan.
20  *
21  *      ExecutorRun accepts direction and count arguments that specify whether
22  *      the plan is to be executed forwards, backwards, and for how many tuples.
23  *
24  * Portions Copyright (c) 1996-2006, PostgreSQL Global Development Group
25  * Portions Copyright (c) 1994, Regents of the University of California
26  *
27  *
28  * IDENTIFICATION
29  *        $PostgreSQL: pgsql/src/backend/executor/execMain.c,v 1.271 2006/06/16 18:42:21 tgl Exp $
30  *
31  *-------------------------------------------------------------------------
32  */
33 #include "postgres.h"
34
35 #include "access/heapam.h"
36 #include "access/xlog.h"
37 #include "catalog/heap.h"
38 #include "catalog/namespace.h"
39 #include "commands/tablecmds.h"
40 #include "commands/tablespace.h"
41 #include "commands/trigger.h"
42 #include "executor/execdebug.h"
43 #include "executor/execdefs.h"
44 #include "executor/instrument.h"
45 #include "miscadmin.h"
46 #include "optimizer/clauses.h"
47 #include "optimizer/var.h"
48 #include "parser/parsetree.h"
49 #include "storage/smgr.h"
50 #include "utils/acl.h"
51 #include "utils/guc.h"
52 #include "utils/lsyscache.h"
53 #include "utils/memutils.h"
54
55
56 typedef struct evalPlanQual
57 {
58         Index           rti;
59         EState     *estate;
60         PlanState  *planstate;
61         struct evalPlanQual *next;      /* stack of active PlanQual plans */
62         struct evalPlanQual *free;      /* list of free PlanQual plans */
63 } evalPlanQual;
64
65 /* decls for local routines only used within this module */
66 static void InitPlan(QueryDesc *queryDesc, int eflags);
67 static void initResultRelInfo(ResultRelInfo *resultRelInfo,
68                                   Index resultRelationIndex,
69                                   List *rangeTable,
70                                   CmdType operation,
71                                   bool doInstrument);
72 static TupleTableSlot *ExecutePlan(EState *estate, PlanState *planstate,
73                         CmdType operation,
74                         long numberTuples,
75                         ScanDirection direction,
76                         DestReceiver *dest);
77 static void ExecSelect(TupleTableSlot *slot,
78                    DestReceiver *dest,
79                    EState *estate);
80 static void ExecInsert(TupleTableSlot *slot, ItemPointer tupleid,
81                    EState *estate);
82 static void ExecDelete(TupleTableSlot *slot, ItemPointer tupleid,
83                    EState *estate);
84 static void ExecUpdate(TupleTableSlot *slot, ItemPointer tupleid,
85                    EState *estate);
86 static TupleTableSlot *EvalPlanQualNext(EState *estate);
87 static void EndEvalPlanQual(EState *estate);
88 static void ExecCheckRTEPerms(RangeTblEntry *rte);
89 static void ExecCheckXactReadOnly(Query *parsetree);
90 static void EvalPlanQualStart(evalPlanQual *epq, EState *estate,
91                                   evalPlanQual *priorepq);
92 static void EvalPlanQualStop(evalPlanQual *epq);
93
94 /* end of local decls */
95
96
97 /* ----------------------------------------------------------------
98  *              ExecutorStart
99  *
100  *              This routine must be called at the beginning of any execution of any
101  *              query plan
102  *
103  * Takes a QueryDesc previously created by CreateQueryDesc (it's not real
104  * clear why we bother to separate the two functions, but...).  The tupDesc
105  * field of the QueryDesc is filled in to describe the tuples that will be
106  * returned, and the internal fields (estate and planstate) are set up.
107  *
108  * eflags contains flag bits as described in executor.h.
109  *
110  * NB: the CurrentMemoryContext when this is called will become the parent
111  * of the per-query context used for this Executor invocation.
112  * ----------------------------------------------------------------
113  */
114 void
115 ExecutorStart(QueryDesc *queryDesc, int eflags)
116 {
117         EState     *estate;
118         MemoryContext oldcontext;
119
120         /* sanity checks: queryDesc must not be started already */
121         Assert(queryDesc != NULL);
122         Assert(queryDesc->estate == NULL);
123
124         /*
125          * If the transaction is read-only, we need to check if any writes are
126          * planned to non-temporary tables.  EXPLAIN is considered read-only.
127          */
128         if (XactReadOnly && !(eflags & EXEC_FLAG_EXPLAIN_ONLY))
129                 ExecCheckXactReadOnly(queryDesc->parsetree);
130
131         /*
132          * Build EState, switch into per-query memory context for startup.
133          */
134         estate = CreateExecutorState();
135         queryDesc->estate = estate;
136
137         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
138
139         /*
140          * Fill in parameters, if any, from queryDesc
141          */
142         estate->es_param_list_info = queryDesc->params;
143
144         if (queryDesc->plantree->nParamExec > 0)
145                 estate->es_param_exec_vals = (ParamExecData *)
146                         palloc0(queryDesc->plantree->nParamExec * sizeof(ParamExecData));
147
148         /*
149          * Copy other important information into the EState
150          */
151         estate->es_snapshot = queryDesc->snapshot;
152         estate->es_crosscheck_snapshot = queryDesc->crosscheck_snapshot;
153         estate->es_instrument = queryDesc->doInstrument;
154
155         /*
156          * Initialize the plan state tree
157          */
158         InitPlan(queryDesc, eflags);
159
160         MemoryContextSwitchTo(oldcontext);
161 }
162
163 /* ----------------------------------------------------------------
164  *              ExecutorRun
165  *
166  *              This is the main routine of the executor module. It accepts
167  *              the query descriptor from the traffic cop and executes the
168  *              query plan.
169  *
170  *              ExecutorStart must have been called already.
171  *
172  *              If direction is NoMovementScanDirection then nothing is done
173  *              except to start up/shut down the destination.  Otherwise,
174  *              we retrieve up to 'count' tuples in the specified direction.
175  *
176  *              Note: count = 0 is interpreted as no portal limit, i.e., run to
177  *              completion.
178  *
179  * ----------------------------------------------------------------
180  */
181 TupleTableSlot *
182 ExecutorRun(QueryDesc *queryDesc,
183                         ScanDirection direction, long count)
184 {
185         EState     *estate;
186         CmdType         operation;
187         DestReceiver *dest;
188         TupleTableSlot *result;
189         MemoryContext oldcontext;
190
191         /* sanity checks */
192         Assert(queryDesc != NULL);
193
194         estate = queryDesc->estate;
195
196         Assert(estate != NULL);
197
198         /*
199          * Switch into per-query memory context
200          */
201         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
202
203         /*
204          * extract information from the query descriptor and the query feature.
205          */
206         operation = queryDesc->operation;
207         dest = queryDesc->dest;
208
209         /*
210          * startup tuple receiver
211          */
212         estate->es_processed = 0;
213         estate->es_lastoid = InvalidOid;
214
215         (*dest->rStartup) (dest, operation, queryDesc->tupDesc);
216
217         /*
218          * run plan
219          */
220         if (ScanDirectionIsNoMovement(direction))
221                 result = NULL;
222         else
223                 result = ExecutePlan(estate,
224                                                          queryDesc->planstate,
225                                                          operation,
226                                                          count,
227                                                          direction,
228                                                          dest);
229
230         /*
231          * shutdown receiver
232          */
233         (*dest->rShutdown) (dest);
234
235         MemoryContextSwitchTo(oldcontext);
236
237         return result;
238 }
239
240 /* ----------------------------------------------------------------
241  *              ExecutorEnd
242  *
243  *              This routine must be called at the end of execution of any
244  *              query plan
245  * ----------------------------------------------------------------
246  */
247 void
248 ExecutorEnd(QueryDesc *queryDesc)
249 {
250         EState     *estate;
251         MemoryContext oldcontext;
252
253         /* sanity checks */
254         Assert(queryDesc != NULL);
255
256         estate = queryDesc->estate;
257
258         Assert(estate != NULL);
259
260         /*
261          * Switch into per-query memory context to run ExecEndPlan
262          */
263         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
264
265         ExecEndPlan(queryDesc->planstate, estate);
266
267         /*
268          * Must switch out of context before destroying it
269          */
270         MemoryContextSwitchTo(oldcontext);
271
272         /*
273          * Release EState and per-query memory context.  This should release
274          * everything the executor has allocated.
275          */
276         FreeExecutorState(estate);
277
278         /* Reset queryDesc fields that no longer point to anything */
279         queryDesc->tupDesc = NULL;
280         queryDesc->estate = NULL;
281         queryDesc->planstate = NULL;
282 }
283
284 /* ----------------------------------------------------------------
285  *              ExecutorRewind
286  *
287  *              This routine may be called on an open queryDesc to rewind it
288  *              to the start.
289  * ----------------------------------------------------------------
290  */
291 void
292 ExecutorRewind(QueryDesc *queryDesc)
293 {
294         EState     *estate;
295         MemoryContext oldcontext;
296
297         /* sanity checks */
298         Assert(queryDesc != NULL);
299
300         estate = queryDesc->estate;
301
302         Assert(estate != NULL);
303
304         /* It's probably not sensible to rescan updating queries */
305         Assert(queryDesc->operation == CMD_SELECT);
306
307         /*
308          * Switch into per-query memory context
309          */
310         oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
311
312         /*
313          * rescan plan
314          */
315         ExecReScan(queryDesc->planstate, NULL);
316
317         MemoryContextSwitchTo(oldcontext);
318 }
319
320
321 /*
322  * ExecCheckRTPerms
323  *              Check access permissions for all relations listed in a range table.
324  */
325 void
326 ExecCheckRTPerms(List *rangeTable)
327 {
328         ListCell   *l;
329
330         foreach(l, rangeTable)
331         {
332                 RangeTblEntry *rte = lfirst(l);
333
334                 ExecCheckRTEPerms(rte);
335         }
336 }
337
338 /*
339  * ExecCheckRTEPerms
340  *              Check access permissions for a single RTE.
341  */
342 static void
343 ExecCheckRTEPerms(RangeTblEntry *rte)
344 {
345         AclMode         requiredPerms;
346         Oid                     relOid;
347         Oid                     userid;
348
349         /*
350          * Only plain-relation RTEs need to be checked here.  Subquery RTEs are
351          * checked by ExecInitSubqueryScan if the subquery is still a separate
352          * subquery --- if it's been pulled up into our query level then the RTEs
353          * are in our rangetable and will be checked here. Function RTEs are
354          * checked by init_fcache when the function is prepared for execution.
355          * Join and special RTEs need no checks.
356          */
357         if (rte->rtekind != RTE_RELATION)
358                 return;
359
360         /*
361          * No work if requiredPerms is empty.
362          */
363         requiredPerms = rte->requiredPerms;
364         if (requiredPerms == 0)
365                 return;
366
367         relOid = rte->relid;
368
369         /*
370          * userid to check as: current user unless we have a setuid indication.
371          *
372          * Note: GetUserId() is presently fast enough that there's no harm in
373          * calling it separately for each RTE.  If that stops being true, we could
374          * call it once in ExecCheckRTPerms and pass the userid down from there.
375          * But for now, no need for the extra clutter.
376          */
377         userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
378
379         /*
380          * We must have *all* the requiredPerms bits, so use aclmask not aclcheck.
381          */
382         if (pg_class_aclmask(relOid, userid, requiredPerms, ACLMASK_ALL)
383                 != requiredPerms)
384                 aclcheck_error(ACLCHECK_NO_PRIV, ACL_KIND_CLASS,
385                                            get_rel_name(relOid));
386 }
387
388 /*
389  * Check that the query does not imply any writes to non-temp tables.
390  */
391 static void
392 ExecCheckXactReadOnly(Query *parsetree)
393 {
394         ListCell   *l;
395
396         /*
397          * CREATE TABLE AS or SELECT INTO?
398          *
399          * XXX should we allow this if the destination is temp?
400          */
401         if (parsetree->into != NULL)
402                 goto fail;
403
404         /* Fail if write permissions are requested on any non-temp table */
405         foreach(l, parsetree->rtable)
406         {
407                 RangeTblEntry *rte = lfirst(l);
408
409                 if (rte->rtekind == RTE_SUBQUERY)
410                 {
411                         ExecCheckXactReadOnly(rte->subquery);
412                         continue;
413                 }
414
415                 if (rte->rtekind != RTE_RELATION)
416                         continue;
417
418                 if ((rte->requiredPerms & (~ACL_SELECT)) == 0)
419                         continue;
420
421                 if (isTempNamespace(get_rel_namespace(rte->relid)))
422                         continue;
423
424                 goto fail;
425         }
426
427         return;
428
429 fail:
430         ereport(ERROR,
431                         (errcode(ERRCODE_READ_ONLY_SQL_TRANSACTION),
432                          errmsg("transaction is read-only")));
433 }
434
435
436 /* ----------------------------------------------------------------
437  *              InitPlan
438  *
439  *              Initializes the query plan: open files, allocate storage
440  *              and start up the rule manager
441  * ----------------------------------------------------------------
442  */
443 static void
444 InitPlan(QueryDesc *queryDesc, int eflags)
445 {
446         CmdType         operation = queryDesc->operation;
447         Query      *parseTree = queryDesc->parsetree;
448         Plan       *plan = queryDesc->plantree;
449         EState     *estate = queryDesc->estate;
450         PlanState  *planstate;
451         List       *rangeTable;
452         Relation        intoRelationDesc;
453         bool            do_select_into;
454         TupleDesc       tupType;
455         ListCell   *l;
456
457         /*
458          * Do permissions checks.  It's sufficient to examine the query's top
459          * rangetable here --- subplan RTEs will be checked during
460          * ExecInitSubPlan().
461          */
462         ExecCheckRTPerms(parseTree->rtable);
463
464         /*
465          * get information from query descriptor
466          */
467         rangeTable = parseTree->rtable;
468
469         /*
470          * initialize the node's execution state
471          */
472         estate->es_range_table = rangeTable;
473
474         /*
475          * if there is a result relation, initialize result relation stuff
476          */
477         if (parseTree->resultRelation != 0 && operation != CMD_SELECT)
478         {
479                 List       *resultRelations = parseTree->resultRelations;
480                 int                     numResultRelations;
481                 ResultRelInfo *resultRelInfos;
482
483                 if (resultRelations != NIL)
484                 {
485                         /*
486                          * Multiple result relations (due to inheritance)
487                          * parseTree->resultRelations identifies them all
488                          */
489                         ResultRelInfo *resultRelInfo;
490
491                         numResultRelations = list_length(resultRelations);
492                         resultRelInfos = (ResultRelInfo *)
493                                 palloc(numResultRelations * sizeof(ResultRelInfo));
494                         resultRelInfo = resultRelInfos;
495                         foreach(l, resultRelations)
496                         {
497                                 initResultRelInfo(resultRelInfo,
498                                                                   lfirst_int(l),
499                                                                   rangeTable,
500                                                                   operation,
501                                                                   estate->es_instrument);
502                                 resultRelInfo++;
503                         }
504                 }
505                 else
506                 {
507                         /*
508                          * Single result relation identified by parseTree->resultRelation
509                          */
510                         numResultRelations = 1;
511                         resultRelInfos = (ResultRelInfo *) palloc(sizeof(ResultRelInfo));
512                         initResultRelInfo(resultRelInfos,
513                                                           parseTree->resultRelation,
514                                                           rangeTable,
515                                                           operation,
516                                                           estate->es_instrument);
517                 }
518
519                 estate->es_result_relations = resultRelInfos;
520                 estate->es_num_result_relations = numResultRelations;
521                 /* Initialize to first or only result rel */
522                 estate->es_result_relation_info = resultRelInfos;
523         }
524         else
525         {
526                 /*
527                  * if no result relation, then set state appropriately
528                  */
529                 estate->es_result_relations = NULL;
530                 estate->es_num_result_relations = 0;
531                 estate->es_result_relation_info = NULL;
532         }
533
534         /*
535          * Detect whether we're doing SELECT INTO.  If so, set the es_into_oids
536          * flag appropriately so that the plan tree will be initialized with the
537          * correct tuple descriptors.
538          */
539         do_select_into = false;
540
541         if (operation == CMD_SELECT && parseTree->into != NULL)
542         {
543                 do_select_into = true;
544                 estate->es_select_into = true;
545                 estate->es_into_oids = parseTree->intoHasOids;
546         }
547
548         /*
549          * Have to lock relations selected FOR UPDATE/FOR SHARE
550          */
551         estate->es_rowMarks = NIL;
552         foreach(l, parseTree->rowMarks)
553         {
554                 RowMarkClause *rc = (RowMarkClause *) lfirst(l);
555                 Oid                     relid = getrelid(rc->rti, rangeTable);
556                 Relation        relation;
557                 ExecRowMark *erm;
558
559                 relation = heap_open(relid, RowShareLock);
560                 erm = (ExecRowMark *) palloc(sizeof(ExecRowMark));
561                 erm->relation = relation;
562                 erm->rti = rc->rti;
563                 erm->forUpdate = rc->forUpdate;
564                 erm->noWait = rc->noWait;
565                 snprintf(erm->resname, sizeof(erm->resname), "ctid%u", rc->rti);
566                 estate->es_rowMarks = lappend(estate->es_rowMarks, erm);
567         }
568
569         /*
570          * initialize the executor "tuple" table.  We need slots for all the plan
571          * nodes, plus possibly output slots for the junkfilter(s). At this point
572          * we aren't sure if we need junkfilters, so just add slots for them
573          * unconditionally.  Also, if it's not a SELECT, set up a slot for use for
574          * trigger output tuples.
575          */
576         {
577                 int                     nSlots = ExecCountSlotsNode(plan);
578
579                 if (parseTree->resultRelations != NIL)
580                         nSlots += list_length(parseTree->resultRelations);
581                 else
582                         nSlots += 1;
583                 if (operation != CMD_SELECT)
584                         nSlots++;
585
586                 estate->es_tupleTable = ExecCreateTupleTable(nSlots);
587
588                 if (operation != CMD_SELECT)
589                         estate->es_trig_tuple_slot =
590                                 ExecAllocTableSlot(estate->es_tupleTable);
591         }
592
593         /* mark EvalPlanQual not active */
594         estate->es_topPlan = plan;
595         estate->es_evalPlanQual = NULL;
596         estate->es_evTupleNull = NULL;
597         estate->es_evTuple = NULL;
598         estate->es_useEvalPlan = false;
599
600         /*
601          * initialize the private state information for all the nodes in the query
602          * tree.  This opens files, allocates storage and leaves us ready to start
603          * processing tuples.
604          */
605         planstate = ExecInitNode(plan, estate, eflags);
606
607         /*
608          * Get the tuple descriptor describing the type of tuples to return. (this
609          * is especially important if we are creating a relation with "SELECT
610          * INTO")
611          */
612         tupType = ExecGetResultType(planstate);
613
614         /*
615          * Initialize the junk filter if needed.  SELECT and INSERT queries need a
616          * filter if there are any junk attrs in the tlist.  INSERT and SELECT
617          * INTO also need a filter if the plan may return raw disk tuples (else
618          * heap_insert will be scribbling on the source relation!). UPDATE and
619          * DELETE always need a filter, since there's always a junk 'ctid'
620          * attribute present --- no need to look first.
621          */
622         {
623                 bool            junk_filter_needed = false;
624                 ListCell   *tlist;
625
626                 switch (operation)
627                 {
628                         case CMD_SELECT:
629                         case CMD_INSERT:
630                                 foreach(tlist, plan->targetlist)
631                                 {
632                                         TargetEntry *tle = (TargetEntry *) lfirst(tlist);
633
634                                         if (tle->resjunk)
635                                         {
636                                                 junk_filter_needed = true;
637                                                 break;
638                                         }
639                                 }
640                                 if (!junk_filter_needed &&
641                                         (operation == CMD_INSERT || do_select_into) &&
642                                         ExecMayReturnRawTuples(planstate))
643                                         junk_filter_needed = true;
644                                 break;
645                         case CMD_UPDATE:
646                         case CMD_DELETE:
647                                 junk_filter_needed = true;
648                                 break;
649                         default:
650                                 break;
651                 }
652
653                 if (junk_filter_needed)
654                 {
655                         /*
656                          * If there are multiple result relations, each one needs its own
657                          * junk filter.  Note this is only possible for UPDATE/DELETE, so
658                          * we can't be fooled by some needing a filter and some not.
659                          */
660                         if (parseTree->resultRelations != NIL)
661                         {
662                                 PlanState **appendplans;
663                                 int                     as_nplans;
664                                 ResultRelInfo *resultRelInfo;
665                                 int                     i;
666
667                                 /* Top plan had better be an Append here. */
668                                 Assert(IsA(plan, Append));
669                                 Assert(((Append *) plan)->isTarget);
670                                 Assert(IsA(planstate, AppendState));
671                                 appendplans = ((AppendState *) planstate)->appendplans;
672                                 as_nplans = ((AppendState *) planstate)->as_nplans;
673                                 Assert(as_nplans == estate->es_num_result_relations);
674                                 resultRelInfo = estate->es_result_relations;
675                                 for (i = 0; i < as_nplans; i++)
676                                 {
677                                         PlanState  *subplan = appendplans[i];
678                                         JunkFilter *j;
679
680                                         j = ExecInitJunkFilter(subplan->plan->targetlist,
681                                                         resultRelInfo->ri_RelationDesc->rd_att->tdhasoid,
682                                                                   ExecAllocTableSlot(estate->es_tupleTable));
683                                         resultRelInfo->ri_junkFilter = j;
684                                         resultRelInfo++;
685                                 }
686
687                                 /*
688                                  * Set active junkfilter too; at this point ExecInitAppend has
689                                  * already selected an active result relation...
690                                  */
691                                 estate->es_junkFilter =
692                                         estate->es_result_relation_info->ri_junkFilter;
693                         }
694                         else
695                         {
696                                 /* Normal case with just one JunkFilter */
697                                 JunkFilter *j;
698
699                                 j = ExecInitJunkFilter(planstate->plan->targetlist,
700                                                                            tupType->tdhasoid,
701                                                                   ExecAllocTableSlot(estate->es_tupleTable));
702                                 estate->es_junkFilter = j;
703                                 if (estate->es_result_relation_info)
704                                         estate->es_result_relation_info->ri_junkFilter = j;
705
706                                 /* For SELECT, want to return the cleaned tuple type */
707                                 if (operation == CMD_SELECT)
708                                         tupType = j->jf_cleanTupType;
709                         }
710                 }
711                 else
712                         estate->es_junkFilter = NULL;
713         }
714
715         /*
716          * If doing SELECT INTO, initialize the "into" relation.  We must wait
717          * till now so we have the "clean" result tuple type to create the new
718          * table from.
719          *
720          * If EXPLAIN, skip creating the "into" relation.
721          */
722         intoRelationDesc = NULL;
723
724         if (do_select_into && !(eflags & EXEC_FLAG_EXPLAIN_ONLY))
725         {
726                 char       *intoName;
727                 Oid                     namespaceId;
728                 Oid                     tablespaceId;
729                 AclResult       aclresult;
730                 Oid                     intoRelationId;
731                 TupleDesc       tupdesc;
732
733                 /*
734                  * Check consistency of arguments
735                  */
736                 if (parseTree->intoOnCommit != ONCOMMIT_NOOP && !parseTree->into->istemp)
737                         ereport(ERROR,
738                                         (errcode(ERRCODE_INVALID_TABLE_DEFINITION),
739                                          errmsg("ON COMMIT can only be used on temporary tables")));
740
741                 /*
742                  * find namespace to create in, check permissions
743                  */
744                 intoName = parseTree->into->relname;
745                 namespaceId = RangeVarGetCreationNamespace(parseTree->into);
746
747                 aclresult = pg_namespace_aclcheck(namespaceId, GetUserId(),
748                                                                                   ACL_CREATE);
749                 if (aclresult != ACLCHECK_OK)
750                         aclcheck_error(aclresult, ACL_KIND_NAMESPACE,
751                                                    get_namespace_name(namespaceId));
752
753                 /*
754                  * Select tablespace to use.  If not specified, use default_tablespace
755                  * (which may in turn default to database's default).
756                  */
757                 if (parseTree->intoTableSpaceName)
758                 {
759                         tablespaceId = get_tablespace_oid(parseTree->intoTableSpaceName);
760                         if (!OidIsValid(tablespaceId))
761                                 ereport(ERROR,
762                                                 (errcode(ERRCODE_UNDEFINED_OBJECT),
763                                                  errmsg("tablespace \"%s\" does not exist",
764                                                                 parseTree->intoTableSpaceName)));
765                 } else
766                 {
767                         tablespaceId = GetDefaultTablespace();
768                         /* note InvalidOid is OK in this case */
769                 }
770
771                 /* Check permissions except when using the database's default */
772                 if (OidIsValid(tablespaceId))
773                 {
774                         AclResult       aclresult;
775
776                         aclresult = pg_tablespace_aclcheck(tablespaceId, GetUserId(),
777                                                                                            ACL_CREATE);
778
779                         if (aclresult != ACLCHECK_OK)
780                                 aclcheck_error(aclresult, ACL_KIND_TABLESPACE,
781                                                            get_tablespace_name(tablespaceId));
782                 }
783
784                 /*
785                  * have to copy tupType to get rid of constraints
786                  */
787                 tupdesc = CreateTupleDescCopy(tupType);
788
789                 intoRelationId = heap_create_with_catalog(intoName,
790                                                                                                   namespaceId,
791                                                                                                   tablespaceId,
792                                                                                                   InvalidOid,
793                                                                                                   GetUserId(),
794                                                                                                   tupdesc,
795                                                                                                   RELKIND_RELATION,
796                                                                                                   false,
797                                                                                                   true,
798                                                                                                   0,
799                                                                                                   parseTree->intoOnCommit,
800                                                                                                   allowSystemTableMods);
801
802                 FreeTupleDesc(tupdesc);
803
804                 /*
805                  * Advance command counter so that the newly-created relation's
806                  * catalog tuples will be visible to heap_open.
807                  */
808                 CommandCounterIncrement();
809
810                 /*
811                  * If necessary, create a TOAST table for the into relation. Note that
812                  * AlterTableCreateToastTable ends with CommandCounterIncrement(), so
813                  * that the TOAST table will be visible for insertion.
814                  */
815                 AlterTableCreateToastTable(intoRelationId, true);
816
817                 /*
818                  * And open the constructed table for writing.
819                  */
820                 intoRelationDesc = heap_open(intoRelationId, AccessExclusiveLock);
821
822                 /* use_wal off requires rd_targblock be initially invalid */
823                 Assert(intoRelationDesc->rd_targblock == InvalidBlockNumber);
824
825                 /*
826                  * We can skip WAL-logging the insertions, unless PITR is in use.
827                  *
828                  * Note that for a non-temp INTO table, this is safe only because we
829                  * know that the catalog changes above will have been WAL-logged, and
830                  * so RecordTransactionCommit will think it needs to WAL-log the
831                  * eventual transaction commit.  Else the commit might be lost, even
832                  * though all the data is safely fsync'd ...
833                  */
834                 estate->es_into_relation_use_wal = XLogArchivingActive();
835         }
836
837         estate->es_into_relation_descriptor = intoRelationDesc;
838
839         queryDesc->tupDesc = tupType;
840         queryDesc->planstate = planstate;
841 }
842
843 /*
844  * Initialize ResultRelInfo data for one result relation
845  */
846 static void
847 initResultRelInfo(ResultRelInfo *resultRelInfo,
848                                   Index resultRelationIndex,
849                                   List *rangeTable,
850                                   CmdType operation,
851                                   bool doInstrument)
852 {
853         Oid                     resultRelationOid;
854         Relation        resultRelationDesc;
855
856         resultRelationOid = getrelid(resultRelationIndex, rangeTable);
857         resultRelationDesc = heap_open(resultRelationOid, RowExclusiveLock);
858
859         switch (resultRelationDesc->rd_rel->relkind)
860         {
861                 case RELKIND_SEQUENCE:
862                         ereport(ERROR,
863                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
864                                          errmsg("cannot change sequence \"%s\"",
865                                                         RelationGetRelationName(resultRelationDesc))));
866                         break;
867                 case RELKIND_TOASTVALUE:
868                         ereport(ERROR,
869                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
870                                          errmsg("cannot change TOAST relation \"%s\"",
871                                                         RelationGetRelationName(resultRelationDesc))));
872                         break;
873                 case RELKIND_VIEW:
874                         ereport(ERROR,
875                                         (errcode(ERRCODE_WRONG_OBJECT_TYPE),
876                                          errmsg("cannot change view \"%s\"",
877                                                         RelationGetRelationName(resultRelationDesc))));
878                         break;
879         }
880
881         MemSet(resultRelInfo, 0, sizeof(ResultRelInfo));
882         resultRelInfo->type = T_ResultRelInfo;
883         resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
884         resultRelInfo->ri_RelationDesc = resultRelationDesc;
885         resultRelInfo->ri_NumIndices = 0;
886         resultRelInfo->ri_IndexRelationDescs = NULL;
887         resultRelInfo->ri_IndexRelationInfo = NULL;
888         /* make a copy so as not to depend on relcache info not changing... */
889         resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc);
890         if (resultRelInfo->ri_TrigDesc)
891         {
892                 int                     n = resultRelInfo->ri_TrigDesc->numtriggers;
893
894                 resultRelInfo->ri_TrigFunctions = (FmgrInfo *)
895                         palloc0(n * sizeof(FmgrInfo));
896                 if (doInstrument)
897                         resultRelInfo->ri_TrigInstrument = InstrAlloc(n);
898                 else
899                         resultRelInfo->ri_TrigInstrument = NULL;
900         }
901         else
902         {
903                 resultRelInfo->ri_TrigFunctions = NULL;
904                 resultRelInfo->ri_TrigInstrument = NULL;
905         }
906         resultRelInfo->ri_ConstraintExprs = NULL;
907         resultRelInfo->ri_junkFilter = NULL;
908
909         /*
910          * If there are indices on the result relation, open them and save
911          * descriptors in the result relation info, so that we can add new index
912          * entries for the tuples we add/update.  We need not do this for a
913          * DELETE, however, since deletion doesn't affect indexes.
914          */
915         if (resultRelationDesc->rd_rel->relhasindex &&
916                 operation != CMD_DELETE)
917                 ExecOpenIndices(resultRelInfo);
918 }
919
920 /*
921  *              ExecContextForcesOids
922  *
923  * This is pretty grotty: when doing INSERT, UPDATE, or SELECT INTO,
924  * we need to ensure that result tuples have space for an OID iff they are
925  * going to be stored into a relation that has OIDs.  In other contexts
926  * we are free to choose whether to leave space for OIDs in result tuples
927  * (we generally don't want to, but we do if a physical-tlist optimization
928  * is possible).  This routine checks the plan context and returns TRUE if the
929  * choice is forced, FALSE if the choice is not forced.  In the TRUE case,
930  * *hasoids is set to the required value.
931  *
932  * One reason this is ugly is that all plan nodes in the plan tree will emit
933  * tuples with space for an OID, though we really only need the topmost node
934  * to do so.  However, node types like Sort don't project new tuples but just
935  * return their inputs, and in those cases the requirement propagates down
936  * to the input node.  Eventually we might make this code smart enough to
937  * recognize how far down the requirement really goes, but for now we just
938  * make all plan nodes do the same thing if the top level forces the choice.
939  *
940  * We assume that estate->es_result_relation_info is already set up to
941  * describe the target relation.  Note that in an UPDATE that spans an
942  * inheritance tree, some of the target relations may have OIDs and some not.
943  * We have to make the decisions on a per-relation basis as we initialize
944  * each of the child plans of the topmost Append plan.
945  *
946  * SELECT INTO is even uglier, because we don't have the INTO relation's
947  * descriptor available when this code runs; we have to look aside at a
948  * flag set by InitPlan().
949  */
950 bool
951 ExecContextForcesOids(PlanState *planstate, bool *hasoids)
952 {
953         if (planstate->state->es_select_into)
954         {
955                 *hasoids = planstate->state->es_into_oids;
956                 return true;
957         }
958         else
959         {
960                 ResultRelInfo *ri = planstate->state->es_result_relation_info;
961
962                 if (ri != NULL)
963                 {
964                         Relation        rel = ri->ri_RelationDesc;
965
966                         if (rel != NULL)
967                         {
968                                 *hasoids = rel->rd_rel->relhasoids;
969                                 return true;
970                         }
971                 }
972         }
973
974         return false;
975 }
976
977 /* ----------------------------------------------------------------
978  *              ExecEndPlan
979  *
980  *              Cleans up the query plan -- closes files and frees up storage
981  *
982  * NOTE: we are no longer very worried about freeing storage per se
983  * in this code; FreeExecutorState should be guaranteed to release all
984  * memory that needs to be released.  What we are worried about doing
985  * is closing relations and dropping buffer pins.  Thus, for example,
986  * tuple tables must be cleared or dropped to ensure pins are released.
987  * ----------------------------------------------------------------
988  */
989 void
990 ExecEndPlan(PlanState *planstate, EState *estate)
991 {
992         ResultRelInfo *resultRelInfo;
993         int                     i;
994         ListCell   *l;
995
996         /*
997          * shut down any PlanQual processing we were doing
998          */
999         if (estate->es_evalPlanQual != NULL)
1000                 EndEvalPlanQual(estate);
1001
1002         /*
1003          * shut down the node-type-specific query processing
1004          */
1005         ExecEndNode(planstate);
1006
1007         /*
1008          * destroy the executor "tuple" table.
1009          */
1010         ExecDropTupleTable(estate->es_tupleTable, true);
1011         estate->es_tupleTable = NULL;
1012
1013         /*
1014          * close the result relation(s) if any, but hold locks until xact commit.
1015          */
1016         resultRelInfo = estate->es_result_relations;
1017         for (i = estate->es_num_result_relations; i > 0; i--)
1018         {
1019                 /* Close indices and then the relation itself */
1020                 ExecCloseIndices(resultRelInfo);
1021                 heap_close(resultRelInfo->ri_RelationDesc, NoLock);
1022                 resultRelInfo++;
1023         }
1024
1025         /*
1026          * close the "into" relation if necessary, again keeping lock
1027          */
1028         if (estate->es_into_relation_descriptor != NULL)
1029         {
1030                 /*
1031                  * If we skipped using WAL, and it's not a temp relation, we must
1032                  * force the relation down to disk before it's safe to commit the
1033                  * transaction.  This requires forcing out any dirty buffers and then
1034                  * doing a forced fsync.
1035                  */
1036                 if (!estate->es_into_relation_use_wal &&
1037                         !estate->es_into_relation_descriptor->rd_istemp)
1038                 {
1039                         FlushRelationBuffers(estate->es_into_relation_descriptor);
1040                         /* FlushRelationBuffers will have opened rd_smgr */
1041                         smgrimmedsync(estate->es_into_relation_descriptor->rd_smgr);
1042                 }
1043
1044                 heap_close(estate->es_into_relation_descriptor, NoLock);
1045         }
1046
1047         /*
1048          * close any relations selected FOR UPDATE/FOR SHARE, again keeping locks
1049          */
1050         foreach(l, estate->es_rowMarks)
1051         {
1052                 ExecRowMark *erm = lfirst(l);
1053
1054                 heap_close(erm->relation, NoLock);
1055         }
1056 }
1057
1058 /* ----------------------------------------------------------------
1059  *              ExecutePlan
1060  *
1061  *              processes the query plan to retrieve 'numberTuples' tuples in the
1062  *              direction specified.
1063  *
1064  *              Retrieves all tuples if numberTuples is 0
1065  *
1066  *              result is either a slot containing the last tuple in the case
1067  *              of a SELECT or NULL otherwise.
1068  *
1069  * Note: the ctid attribute is a 'junk' attribute that is removed before the
1070  * user can see it
1071  * ----------------------------------------------------------------
1072  */
1073 static TupleTableSlot *
1074 ExecutePlan(EState *estate,
1075                         PlanState *planstate,
1076                         CmdType operation,
1077                         long numberTuples,
1078                         ScanDirection direction,
1079                         DestReceiver *dest)
1080 {
1081         JunkFilter *junkfilter;
1082         TupleTableSlot *slot;
1083         ItemPointer tupleid = NULL;
1084         ItemPointerData tuple_ctid;
1085         long            current_tuple_count;
1086         TupleTableSlot *result;
1087
1088         /*
1089          * initialize local variables
1090          */
1091         slot = NULL;
1092         current_tuple_count = 0;
1093         result = NULL;
1094
1095         /*
1096          * Set the direction.
1097          */
1098         estate->es_direction = direction;
1099
1100         /*
1101          * Process BEFORE EACH STATEMENT triggers
1102          */
1103         switch (operation)
1104         {
1105                 case CMD_UPDATE:
1106                         ExecBSUpdateTriggers(estate, estate->es_result_relation_info);
1107                         break;
1108                 case CMD_DELETE:
1109                         ExecBSDeleteTriggers(estate, estate->es_result_relation_info);
1110                         break;
1111                 case CMD_INSERT:
1112                         ExecBSInsertTriggers(estate, estate->es_result_relation_info);
1113                         break;
1114                 default:
1115                         /* do nothing */
1116                         break;
1117         }
1118
1119         /*
1120          * Loop until we've processed the proper number of tuples from the plan.
1121          */
1122
1123         for (;;)
1124         {
1125                 /* Reset the per-output-tuple exprcontext */
1126                 ResetPerTupleExprContext(estate);
1127
1128                 /*
1129                  * Execute the plan and obtain a tuple
1130                  */
1131 lnext:  ;
1132                 if (estate->es_useEvalPlan)
1133                 {
1134                         slot = EvalPlanQualNext(estate);
1135                         if (TupIsNull(slot))
1136                                 slot = ExecProcNode(planstate);
1137                 }
1138                 else
1139                         slot = ExecProcNode(planstate);
1140
1141                 /*
1142                  * if the tuple is null, then we assume there is nothing more to
1143                  * process so we just return null...
1144                  */
1145                 if (TupIsNull(slot))
1146                 {
1147                         result = NULL;
1148                         break;
1149                 }
1150
1151                 /*
1152                  * if we have a junk filter, then project a new tuple with the junk
1153                  * removed.
1154                  *
1155                  * Store this new "clean" tuple in the junkfilter's resultSlot.
1156                  * (Formerly, we stored it back over the "dirty" tuple, which is WRONG
1157                  * because that tuple slot has the wrong descriptor.)
1158                  *
1159                  * Also, extract all the junk information we need.
1160                  */
1161                 if ((junkfilter = estate->es_junkFilter) != NULL)
1162                 {
1163                         Datum           datum;
1164                         bool            isNull;
1165
1166                         /*
1167                          * extract the 'ctid' junk attribute.
1168                          */
1169                         if (operation == CMD_UPDATE || operation == CMD_DELETE)
1170                         {
1171                                 if (!ExecGetJunkAttribute(junkfilter,
1172                                                                                   slot,
1173                                                                                   "ctid",
1174                                                                                   &datum,
1175                                                                                   &isNull))
1176                                         elog(ERROR, "could not find junk ctid column");
1177
1178                                 /* shouldn't ever get a null result... */
1179                                 if (isNull)
1180                                         elog(ERROR, "ctid is NULL");
1181
1182                                 tupleid = (ItemPointer) DatumGetPointer(datum);
1183                                 tuple_ctid = *tupleid;  /* make sure we don't free the ctid!! */
1184                                 tupleid = &tuple_ctid;
1185                         }
1186
1187                         /*
1188                          * Process any FOR UPDATE or FOR SHARE locking requested.
1189                          */
1190                         else if (estate->es_rowMarks != NIL)
1191                         {
1192                                 ListCell   *l;
1193
1194                 lmark:  ;
1195                                 foreach(l, estate->es_rowMarks)
1196                                 {
1197                                         ExecRowMark *erm = lfirst(l);
1198                                         HeapTupleData tuple;
1199                                         Buffer          buffer;
1200                                         ItemPointerData update_ctid;
1201                                         TransactionId update_xmax;
1202                                         TupleTableSlot *newSlot;
1203                                         LockTupleMode lockmode;
1204                                         HTSU_Result test;
1205
1206                                         if (!ExecGetJunkAttribute(junkfilter,
1207                                                                                           slot,
1208                                                                                           erm->resname,
1209                                                                                           &datum,
1210                                                                                           &isNull))
1211                                                 elog(ERROR, "could not find junk \"%s\" column",
1212                                                          erm->resname);
1213
1214                                         /* shouldn't ever get a null result... */
1215                                         if (isNull)
1216                                                 elog(ERROR, "\"%s\" is NULL", erm->resname);
1217
1218                                         tuple.t_self = *((ItemPointer) DatumGetPointer(datum));
1219
1220                                         if (erm->forUpdate)
1221                                                 lockmode = LockTupleExclusive;
1222                                         else
1223                                                 lockmode = LockTupleShared;
1224
1225                                         test = heap_lock_tuple(erm->relation, &tuple, &buffer,
1226                                                                                    &update_ctid, &update_xmax,
1227                                                                                    estate->es_snapshot->curcid,
1228                                                                                    lockmode, erm->noWait);
1229                                         ReleaseBuffer(buffer);
1230                                         switch (test)
1231                                         {
1232                                                 case HeapTupleSelfUpdated:
1233                                                         /* treat it as deleted; do not process */
1234                                                         goto lnext;
1235
1236                                                 case HeapTupleMayBeUpdated:
1237                                                         break;
1238
1239                                                 case HeapTupleUpdated:
1240                                                         if (IsXactIsoLevelSerializable)
1241                                                                 ereport(ERROR,
1242                                                                  (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1243                                                                   errmsg("could not serialize access due to concurrent update")));
1244                                                         if (!ItemPointerEquals(&update_ctid,
1245                                                                                                    &tuple.t_self))
1246                                                         {
1247                                                                 /* updated, so look at updated version */
1248                                                                 newSlot = EvalPlanQual(estate,
1249                                                                                                            erm->rti,
1250                                                                                                            &update_ctid,
1251                                                                                                            update_xmax,
1252                                                                                                            estate->es_snapshot->curcid);
1253                                                                 if (!TupIsNull(newSlot))
1254                                                                 {
1255                                                                         slot = newSlot;
1256                                                                         estate->es_useEvalPlan = true;
1257                                                                         goto lmark;
1258                                                                 }
1259                                                         }
1260
1261                                                         /*
1262                                                          * if tuple was deleted or PlanQual failed for
1263                                                          * updated tuple - we must not return this tuple!
1264                                                          */
1265                                                         goto lnext;
1266
1267                                                 default:
1268                                                         elog(ERROR, "unrecognized heap_lock_tuple status: %u",
1269                                                                  test);
1270                                                         return NULL;
1271                                         }
1272                                 }
1273                         }
1274
1275                         /*
1276                          * Finally create a new "clean" tuple with all junk attributes
1277                          * removed
1278                          */
1279                         slot = ExecFilterJunk(junkfilter, slot);
1280                 }
1281
1282                 /*
1283                  * now that we have a tuple, do the appropriate thing with it.. either
1284                  * return it to the user, add it to a relation someplace, delete it
1285                  * from a relation, or modify some of its attributes.
1286                  */
1287                 switch (operation)
1288                 {
1289                         case CMD_SELECT:
1290                                 ExecSelect(slot,        /* slot containing tuple */
1291                                                    dest,        /* destination's tuple-receiver obj */
1292                                                    estate);
1293                                 result = slot;
1294                                 break;
1295
1296                         case CMD_INSERT:
1297                                 ExecInsert(slot, tupleid, estate);
1298                                 result = NULL;
1299                                 break;
1300
1301                         case CMD_DELETE:
1302                                 ExecDelete(slot, tupleid, estate);
1303                                 result = NULL;
1304                                 break;
1305
1306                         case CMD_UPDATE:
1307                                 ExecUpdate(slot, tupleid, estate);
1308                                 result = NULL;
1309                                 break;
1310
1311                         default:
1312                                 elog(ERROR, "unrecognized operation code: %d",
1313                                          (int) operation);
1314                                 result = NULL;
1315                                 break;
1316                 }
1317
1318                 /*
1319                  * check our tuple count.. if we've processed the proper number then
1320                  * quit, else loop again and process more tuples.  Zero numberTuples
1321                  * means no limit.
1322                  */
1323                 current_tuple_count++;
1324                 if (numberTuples && numberTuples == current_tuple_count)
1325                         break;
1326         }
1327
1328         /*
1329          * Process AFTER EACH STATEMENT triggers
1330          */
1331         switch (operation)
1332         {
1333                 case CMD_UPDATE:
1334                         ExecASUpdateTriggers(estate, estate->es_result_relation_info);
1335                         break;
1336                 case CMD_DELETE:
1337                         ExecASDeleteTriggers(estate, estate->es_result_relation_info);
1338                         break;
1339                 case CMD_INSERT:
1340                         ExecASInsertTriggers(estate, estate->es_result_relation_info);
1341                         break;
1342                 default:
1343                         /* do nothing */
1344                         break;
1345         }
1346
1347         /*
1348          * here, result is either a slot containing a tuple in the case of a
1349          * SELECT or NULL otherwise.
1350          */
1351         return result;
1352 }
1353
1354 /* ----------------------------------------------------------------
1355  *              ExecSelect
1356  *
1357  *              SELECTs are easy.. we just pass the tuple to the appropriate
1358  *              print function.  The only complexity is when we do a
1359  *              "SELECT INTO", in which case we insert the tuple into
1360  *              the appropriate relation (note: this is a newly created relation
1361  *              so we don't need to worry about indices or locks.)
1362  * ----------------------------------------------------------------
1363  */
1364 static void
1365 ExecSelect(TupleTableSlot *slot,
1366                    DestReceiver *dest,
1367                    EState *estate)
1368 {
1369         /*
1370          * insert the tuple into the "into relation"
1371          *
1372          * XXX this probably ought to be replaced by a separate destination
1373          */
1374         if (estate->es_into_relation_descriptor != NULL)
1375         {
1376                 HeapTuple       tuple;
1377
1378                 tuple = ExecCopySlotTuple(slot);
1379                 heap_insert(estate->es_into_relation_descriptor, tuple,
1380                                         estate->es_snapshot->curcid,
1381                                         estate->es_into_relation_use_wal,
1382                                         false);         /* never any point in using FSM */
1383                 /* we know there are no indexes to update */
1384                 heap_freetuple(tuple);
1385                 IncrAppended();
1386         }
1387
1388         /*
1389          * send the tuple to the destination
1390          */
1391         (*dest->receiveSlot) (slot, dest);
1392         IncrRetrieved();
1393         (estate->es_processed)++;
1394 }
1395
1396 /* ----------------------------------------------------------------
1397  *              ExecInsert
1398  *
1399  *              INSERTs are trickier.. we have to insert the tuple into
1400  *              the base relation and insert appropriate tuples into the
1401  *              index relations.
1402  * ----------------------------------------------------------------
1403  */
1404 static void
1405 ExecInsert(TupleTableSlot *slot,
1406                    ItemPointer tupleid,
1407                    EState *estate)
1408 {
1409         HeapTuple       tuple;
1410         ResultRelInfo *resultRelInfo;
1411         Relation        resultRelationDesc;
1412         Oid                     newId;
1413
1414         /*
1415          * get the heap tuple out of the tuple table slot, making sure we have a
1416          * writable copy
1417          */
1418         tuple = ExecMaterializeSlot(slot);
1419
1420         /*
1421          * get information on the (current) result relation
1422          */
1423         resultRelInfo = estate->es_result_relation_info;
1424         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1425
1426         /* BEFORE ROW INSERT Triggers */
1427         if (resultRelInfo->ri_TrigDesc &&
1428                 resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_INSERT] > 0)
1429         {
1430                 HeapTuple       newtuple;
1431
1432                 newtuple = ExecBRInsertTriggers(estate, resultRelInfo, tuple);
1433
1434                 if (newtuple == NULL)   /* "do nothing" */
1435                         return;
1436
1437                 if (newtuple != tuple)  /* modified by Trigger(s) */
1438                 {
1439                         /*
1440                          * Put the modified tuple into a slot for convenience of routines
1441                          * below.  We assume the tuple was allocated in per-tuple memory
1442                          * context, and therefore will go away by itself. The tuple table
1443                          * slot should not try to clear it.
1444                          */
1445                         TupleTableSlot *newslot = estate->es_trig_tuple_slot;
1446
1447                         if (newslot->tts_tupleDescriptor != slot->tts_tupleDescriptor)
1448                                 ExecSetSlotDescriptor(newslot, slot->tts_tupleDescriptor);
1449                         ExecStoreTuple(newtuple, newslot, InvalidBuffer, false);
1450                         slot = newslot;
1451                         tuple = newtuple;
1452                 }
1453         }
1454
1455         /*
1456          * Check the constraints of the tuple
1457          */
1458         if (resultRelationDesc->rd_att->constr)
1459                 ExecConstraints(resultRelInfo, slot, estate);
1460
1461         /*
1462          * insert the tuple
1463          *
1464          * Note: heap_insert returns the tid (location) of the new tuple in the
1465          * t_self field.
1466          */
1467         newId = heap_insert(resultRelationDesc, tuple,
1468                                                 estate->es_snapshot->curcid,
1469                                                 true, true);
1470
1471         IncrAppended();
1472         (estate->es_processed)++;
1473         estate->es_lastoid = newId;
1474         setLastTid(&(tuple->t_self));
1475
1476         /*
1477          * insert index entries for tuple
1478          */
1479         if (resultRelInfo->ri_NumIndices > 0)
1480                 ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
1481
1482         /* AFTER ROW INSERT Triggers */
1483         ExecARInsertTriggers(estate, resultRelInfo, tuple);
1484 }
1485
1486 /* ----------------------------------------------------------------
1487  *              ExecDelete
1488  *
1489  *              DELETE is like UPDATE, except that we delete the tuple and no
1490  *              index modifications are needed
1491  * ----------------------------------------------------------------
1492  */
1493 static void
1494 ExecDelete(TupleTableSlot *slot,
1495                    ItemPointer tupleid,
1496                    EState *estate)
1497 {
1498         ResultRelInfo *resultRelInfo;
1499         Relation        resultRelationDesc;
1500         HTSU_Result result;
1501         ItemPointerData update_ctid;
1502         TransactionId update_xmax;
1503
1504         /*
1505          * get information on the (current) result relation
1506          */
1507         resultRelInfo = estate->es_result_relation_info;
1508         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1509
1510         /* BEFORE ROW DELETE Triggers */
1511         if (resultRelInfo->ri_TrigDesc &&
1512                 resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_DELETE] > 0)
1513         {
1514                 bool            dodelete;
1515
1516                 dodelete = ExecBRDeleteTriggers(estate, resultRelInfo, tupleid,
1517                                                                                 estate->es_snapshot->curcid);
1518
1519                 if (!dodelete)                  /* "do nothing" */
1520                         return;
1521         }
1522
1523         /*
1524          * delete the tuple
1525          *
1526          * Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check that
1527          * the row to be deleted is visible to that snapshot, and throw a can't-
1528          * serialize error if not.      This is a special-case behavior needed for
1529          * referential integrity updates in serializable transactions.
1530          */
1531 ldelete:;
1532         result = heap_delete(resultRelationDesc, tupleid,
1533                                                  &update_ctid, &update_xmax,
1534                                                  estate->es_snapshot->curcid,
1535                                                  estate->es_crosscheck_snapshot,
1536                                                  true /* wait for commit */ );
1537         switch (result)
1538         {
1539                 case HeapTupleSelfUpdated:
1540                         /* already deleted by self; nothing to do */
1541                         return;
1542
1543                 case HeapTupleMayBeUpdated:
1544                         break;
1545
1546                 case HeapTupleUpdated:
1547                         if (IsXactIsoLevelSerializable)
1548                                 ereport(ERROR,
1549                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1550                                                  errmsg("could not serialize access due to concurrent update")));
1551                         else if (!ItemPointerEquals(tupleid, &update_ctid))
1552                         {
1553                                 TupleTableSlot *epqslot;
1554
1555                                 epqslot = EvalPlanQual(estate,
1556                                                                            resultRelInfo->ri_RangeTableIndex,
1557                                                                            &update_ctid,
1558                                                                            update_xmax,
1559                                                                            estate->es_snapshot->curcid);
1560                                 if (!TupIsNull(epqslot))
1561                                 {
1562                                         *tupleid = update_ctid;
1563                                         goto ldelete;
1564                                 }
1565                         }
1566                         /* tuple already deleted; nothing to do */
1567                         return;
1568
1569                 default:
1570                         elog(ERROR, "unrecognized heap_delete status: %u", result);
1571                         return;
1572         }
1573
1574         IncrDeleted();
1575         (estate->es_processed)++;
1576
1577         /*
1578          * Note: Normally one would think that we have to delete index tuples
1579          * associated with the heap tuple now...
1580          *
1581          * ... but in POSTGRES, we have no need to do this because VACUUM will
1582          * take care of it later.  We can't delete index tuples immediately
1583          * anyway, since the tuple is still visible to other transactions.
1584          */
1585
1586         /* AFTER ROW DELETE Triggers */
1587         ExecARDeleteTriggers(estate, resultRelInfo, tupleid);
1588 }
1589
1590 /* ----------------------------------------------------------------
1591  *              ExecUpdate
1592  *
1593  *              note: we can't run UPDATE queries with transactions
1594  *              off because UPDATEs are actually INSERTs and our
1595  *              scan will mistakenly loop forever, updating the tuple
1596  *              it just inserted..      This should be fixed but until it
1597  *              is, we don't want to get stuck in an infinite loop
1598  *              which corrupts your database..
1599  * ----------------------------------------------------------------
1600  */
1601 static void
1602 ExecUpdate(TupleTableSlot *slot,
1603                    ItemPointer tupleid,
1604                    EState *estate)
1605 {
1606         HeapTuple       tuple;
1607         ResultRelInfo *resultRelInfo;
1608         Relation        resultRelationDesc;
1609         HTSU_Result result;
1610         ItemPointerData update_ctid;
1611         TransactionId update_xmax;
1612
1613         /*
1614          * abort the operation if not running transactions
1615          */
1616         if (IsBootstrapProcessingMode())
1617                 elog(ERROR, "cannot UPDATE during bootstrap");
1618
1619         /*
1620          * get the heap tuple out of the tuple table slot, making sure we have a
1621          * writable copy
1622          */
1623         tuple = ExecMaterializeSlot(slot);
1624
1625         /*
1626          * get information on the (current) result relation
1627          */
1628         resultRelInfo = estate->es_result_relation_info;
1629         resultRelationDesc = resultRelInfo->ri_RelationDesc;
1630
1631         /* BEFORE ROW UPDATE Triggers */
1632         if (resultRelInfo->ri_TrigDesc &&
1633                 resultRelInfo->ri_TrigDesc->n_before_row[TRIGGER_EVENT_UPDATE] > 0)
1634         {
1635                 HeapTuple       newtuple;
1636
1637                 newtuple = ExecBRUpdateTriggers(estate, resultRelInfo,
1638                                                                                 tupleid, tuple,
1639                                                                                 estate->es_snapshot->curcid);
1640
1641                 if (newtuple == NULL)   /* "do nothing" */
1642                         return;
1643
1644                 if (newtuple != tuple)  /* modified by Trigger(s) */
1645                 {
1646                         /*
1647                          * Put the modified tuple into a slot for convenience of routines
1648                          * below.  We assume the tuple was allocated in per-tuple memory
1649                          * context, and therefore will go away by itself. The tuple table
1650                          * slot should not try to clear it.
1651                          */
1652                         TupleTableSlot *newslot = estate->es_trig_tuple_slot;
1653
1654                         if (newslot->tts_tupleDescriptor != slot->tts_tupleDescriptor)
1655                                 ExecSetSlotDescriptor(newslot, slot->tts_tupleDescriptor);
1656                         ExecStoreTuple(newtuple, newslot, InvalidBuffer, false);
1657                         slot = newslot;
1658                         tuple = newtuple;
1659                 }
1660         }
1661
1662         /*
1663          * Check the constraints of the tuple
1664          *
1665          * If we generate a new candidate tuple after EvalPlanQual testing, we
1666          * must loop back here and recheck constraints.  (We don't need to redo
1667          * triggers, however.  If there are any BEFORE triggers then trigger.c
1668          * will have done heap_lock_tuple to lock the correct tuple, so there's no
1669          * need to do them again.)
1670          */
1671 lreplace:;
1672         if (resultRelationDesc->rd_att->constr)
1673                 ExecConstraints(resultRelInfo, slot, estate);
1674
1675         /*
1676          * replace the heap tuple
1677          *
1678          * Note: if es_crosscheck_snapshot isn't InvalidSnapshot, we check that
1679          * the row to be updated is visible to that snapshot, and throw a can't-
1680          * serialize error if not.      This is a special-case behavior needed for
1681          * referential integrity updates in serializable transactions.
1682          */
1683         result = heap_update(resultRelationDesc, tupleid, tuple,
1684                                                  &update_ctid, &update_xmax,
1685                                                  estate->es_snapshot->curcid,
1686                                                  estate->es_crosscheck_snapshot,
1687                                                  true /* wait for commit */ );
1688         switch (result)
1689         {
1690                 case HeapTupleSelfUpdated:
1691                         /* already deleted by self; nothing to do */
1692                         return;
1693
1694                 case HeapTupleMayBeUpdated:
1695                         break;
1696
1697                 case HeapTupleUpdated:
1698                         if (IsXactIsoLevelSerializable)
1699                                 ereport(ERROR,
1700                                                 (errcode(ERRCODE_T_R_SERIALIZATION_FAILURE),
1701                                                  errmsg("could not serialize access due to concurrent update")));
1702                         else if (!ItemPointerEquals(tupleid, &update_ctid))
1703                         {
1704                                 TupleTableSlot *epqslot;
1705
1706                                 epqslot = EvalPlanQual(estate,
1707                                                                            resultRelInfo->ri_RangeTableIndex,
1708                                                                            &update_ctid,
1709                                                                            update_xmax,
1710                                                                            estate->es_snapshot->curcid);
1711                                 if (!TupIsNull(epqslot))
1712                                 {
1713                                         *tupleid = update_ctid;
1714                                         slot = ExecFilterJunk(estate->es_junkFilter, epqslot);
1715                                         tuple = ExecMaterializeSlot(slot);
1716                                         goto lreplace;
1717                                 }
1718                         }
1719                         /* tuple already deleted; nothing to do */
1720                         return;
1721
1722                 default:
1723                         elog(ERROR, "unrecognized heap_update status: %u", result);
1724                         return;
1725         }
1726
1727         IncrReplaced();
1728         (estate->es_processed)++;
1729
1730         /*
1731          * Note: instead of having to update the old index tuples associated with
1732          * the heap tuple, all we do is form and insert new index tuples. This is
1733          * because UPDATEs are actually DELETEs and INSERTs, and index tuple
1734          * deletion is done later by VACUUM (see notes in ExecDelete).  All we do
1735          * here is insert new index tuples.  -cim 9/27/89
1736          */
1737
1738         /*
1739          * insert index entries for tuple
1740          *
1741          * Note: heap_update returns the tid (location) of the new tuple in the
1742          * t_self field.
1743          */
1744         if (resultRelInfo->ri_NumIndices > 0)
1745                 ExecInsertIndexTuples(slot, &(tuple->t_self), estate, false);
1746
1747         /* AFTER ROW UPDATE Triggers */
1748         ExecARUpdateTriggers(estate, resultRelInfo, tupleid, tuple);
1749 }
1750
1751 static const char *
1752 ExecRelCheck(ResultRelInfo *resultRelInfo,
1753                          TupleTableSlot *slot, EState *estate)
1754 {
1755         Relation        rel = resultRelInfo->ri_RelationDesc;
1756         int                     ncheck = rel->rd_att->constr->num_check;
1757         ConstrCheck *check = rel->rd_att->constr->check;
1758         ExprContext *econtext;
1759         MemoryContext oldContext;
1760         List       *qual;
1761         int                     i;
1762
1763         /*
1764          * If first time through for this result relation, build expression
1765          * nodetrees for rel's constraint expressions.  Keep them in the per-query
1766          * memory context so they'll survive throughout the query.
1767          */
1768         if (resultRelInfo->ri_ConstraintExprs == NULL)
1769         {
1770                 oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
1771                 resultRelInfo->ri_ConstraintExprs =
1772                         (List **) palloc(ncheck * sizeof(List *));
1773                 for (i = 0; i < ncheck; i++)
1774                 {
1775                         /* ExecQual wants implicit-AND form */
1776                         qual = make_ands_implicit(stringToNode(check[i].ccbin));
1777                         resultRelInfo->ri_ConstraintExprs[i] = (List *)
1778                                 ExecPrepareExpr((Expr *) qual, estate);
1779                 }
1780                 MemoryContextSwitchTo(oldContext);
1781         }
1782
1783         /*
1784          * We will use the EState's per-tuple context for evaluating constraint
1785          * expressions (creating it if it's not already there).
1786          */
1787         econtext = GetPerTupleExprContext(estate);
1788
1789         /* Arrange for econtext's scan tuple to be the tuple under test */
1790         econtext->ecxt_scantuple = slot;
1791
1792         /* And evaluate the constraints */
1793         for (i = 0; i < ncheck; i++)
1794         {
1795                 qual = resultRelInfo->ri_ConstraintExprs[i];
1796
1797                 /*
1798                  * NOTE: SQL92 specifies that a NULL result from a constraint
1799                  * expression is not to be treated as a failure.  Therefore, tell
1800                  * ExecQual to return TRUE for NULL.
1801                  */
1802                 if (!ExecQual(qual, econtext, true))
1803                         return check[i].ccname;
1804         }
1805
1806         /* NULL result means no error */
1807         return NULL;
1808 }
1809
1810 void
1811 ExecConstraints(ResultRelInfo *resultRelInfo,
1812                                 TupleTableSlot *slot, EState *estate)
1813 {
1814         Relation        rel = resultRelInfo->ri_RelationDesc;
1815         TupleConstr *constr = rel->rd_att->constr;
1816
1817         Assert(constr);
1818
1819         if (constr->has_not_null)
1820         {
1821                 int                     natts = rel->rd_att->natts;
1822                 int                     attrChk;
1823
1824                 for (attrChk = 1; attrChk <= natts; attrChk++)
1825                 {
1826                         if (rel->rd_att->attrs[attrChk - 1]->attnotnull &&
1827                                 slot_attisnull(slot, attrChk))
1828                                 ereport(ERROR,
1829                                                 (errcode(ERRCODE_NOT_NULL_VIOLATION),
1830                                                  errmsg("null value in column \"%s\" violates not-null constraint",
1831                                                 NameStr(rel->rd_att->attrs[attrChk - 1]->attname))));
1832                 }
1833         }
1834
1835         if (constr->num_check > 0)
1836         {
1837                 const char *failed;
1838
1839                 if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
1840                         ereport(ERROR,
1841                                         (errcode(ERRCODE_CHECK_VIOLATION),
1842                                          errmsg("new row for relation \"%s\" violates check constraint \"%s\"",
1843                                                         RelationGetRelationName(rel), failed)));
1844         }
1845 }
1846
1847 /*
1848  * Check a modified tuple to see if we want to process its updated version
1849  * under READ COMMITTED rules.
1850  *
1851  * See backend/executor/README for some info about how this works.
1852  *
1853  *      estate - executor state data
1854  *      rti - rangetable index of table containing tuple
1855  *      *tid - t_ctid from the outdated tuple (ie, next updated version)
1856  *      priorXmax - t_xmax from the outdated tuple
1857  *      curCid - command ID of current command of my transaction
1858  *
1859  * *tid is also an output parameter: it's modified to hold the TID of the
1860  * latest version of the tuple (note this may be changed even on failure)
1861  *
1862  * Returns a slot containing the new candidate update/delete tuple, or
1863  * NULL if we determine we shouldn't process the row.
1864  */
1865 TupleTableSlot *
1866 EvalPlanQual(EState *estate, Index rti,
1867                          ItemPointer tid, TransactionId priorXmax, CommandId curCid)
1868 {
1869         evalPlanQual *epq;
1870         EState     *epqstate;
1871         Relation        relation;
1872         HeapTupleData tuple;
1873         HeapTuple       copyTuple = NULL;
1874         bool            endNode;
1875
1876         Assert(rti != 0);
1877
1878         /*
1879          * find relation containing target tuple
1880          */
1881         if (estate->es_result_relation_info != NULL &&
1882                 estate->es_result_relation_info->ri_RangeTableIndex == rti)
1883                 relation = estate->es_result_relation_info->ri_RelationDesc;
1884         else
1885         {
1886                 ListCell   *l;
1887
1888                 relation = NULL;
1889                 foreach(l, estate->es_rowMarks)
1890                 {
1891                         if (((ExecRowMark *) lfirst(l))->rti == rti)
1892                         {
1893                                 relation = ((ExecRowMark *) lfirst(l))->relation;
1894                                 break;
1895                         }
1896                 }
1897                 if (relation == NULL)
1898                         elog(ERROR, "could not find RowMark for RT index %u", rti);
1899         }
1900
1901         /*
1902          * fetch tid tuple
1903          *
1904          * Loop here to deal with updated or busy tuples
1905          */
1906         tuple.t_self = *tid;
1907         for (;;)
1908         {
1909                 Buffer          buffer;
1910
1911                 if (heap_fetch(relation, SnapshotDirty, &tuple, &buffer, true, NULL))
1912                 {
1913                         /*
1914                          * If xmin isn't what we're expecting, the slot must have been
1915                          * recycled and reused for an unrelated tuple.  This implies that
1916                          * the latest version of the row was deleted, so we need do
1917                          * nothing.  (Should be safe to examine xmin without getting
1918                          * buffer's content lock, since xmin never changes in an existing
1919                          * tuple.)
1920                          */
1921                         if (!TransactionIdEquals(HeapTupleHeaderGetXmin(tuple.t_data),
1922                                                                          priorXmax))
1923                         {
1924                                 ReleaseBuffer(buffer);
1925                                 return NULL;
1926                         }
1927
1928                         /* otherwise xmin should not be dirty... */
1929                         if (TransactionIdIsValid(SnapshotDirty->xmin))
1930                                 elog(ERROR, "t_xmin is uncommitted in tuple to be updated");
1931
1932                         /*
1933                          * If tuple is being updated by other transaction then we have to
1934                          * wait for its commit/abort.
1935                          */
1936                         if (TransactionIdIsValid(SnapshotDirty->xmax))
1937                         {
1938                                 ReleaseBuffer(buffer);
1939                                 XactLockTableWait(SnapshotDirty->xmax);
1940                                 continue;               /* loop back to repeat heap_fetch */
1941                         }
1942
1943                         /*
1944                          * If tuple was inserted by our own transaction, we have to check
1945                          * cmin against curCid: cmin >= curCid means our command cannot
1946                          * see the tuple, so we should ignore it.  Without this we are
1947                          * open to the "Halloween problem" of indefinitely re-updating
1948                          * the same tuple.  (We need not check cmax because
1949                          * HeapTupleSatisfiesDirty will consider a tuple deleted by
1950                          * our transaction dead, regardless of cmax.)  We just checked
1951                          * that priorXmax == xmin, so we can test that variable instead
1952                          * of doing HeapTupleHeaderGetXmin again.
1953                          */
1954                         if (TransactionIdIsCurrentTransactionId(priorXmax) &&
1955                                 HeapTupleHeaderGetCmin(tuple.t_data) >= curCid)
1956                         {
1957                                 ReleaseBuffer(buffer);
1958                                 return NULL;
1959                         }
1960
1961                         /*
1962                          * We got tuple - now copy it for use by recheck query.
1963                          */
1964                         copyTuple = heap_copytuple(&tuple);
1965                         ReleaseBuffer(buffer);
1966                         break;
1967                 }
1968
1969                 /*
1970                  * If the referenced slot was actually empty, the latest version of
1971                  * the row must have been deleted, so we need do nothing.
1972                  */
1973                 if (tuple.t_data == NULL)
1974                 {
1975                         ReleaseBuffer(buffer);
1976                         return NULL;
1977                 }
1978
1979                 /*
1980                  * As above, if xmin isn't what we're expecting, do nothing.
1981                  */
1982                 if (!TransactionIdEquals(HeapTupleHeaderGetXmin(tuple.t_data),
1983                                                                  priorXmax))
1984                 {
1985                         ReleaseBuffer(buffer);
1986                         return NULL;
1987                 }
1988
1989                 /*
1990                  * If we get here, the tuple was found but failed SnapshotDirty.
1991                  * Assuming the xmin is either a committed xact or our own xact (as it
1992                  * certainly should be if we're trying to modify the tuple), this must
1993                  * mean that the row was updated or deleted by either a committed xact
1994                  * or our own xact.  If it was deleted, we can ignore it; if it was
1995                  * updated then chain up to the next version and repeat the whole
1996                  * test.
1997                  *
1998                  * As above, it should be safe to examine xmax and t_ctid without the
1999                  * buffer content lock, because they can't be changing.
2000                  */
2001                 if (ItemPointerEquals(&tuple.t_self, &tuple.t_data->t_ctid))
2002                 {
2003                         /* deleted, so forget about it */
2004                         ReleaseBuffer(buffer);
2005                         return NULL;
2006                 }
2007
2008                 /* updated, so look at the updated row */
2009                 tuple.t_self = tuple.t_data->t_ctid;
2010                 /* updated row should have xmin matching this xmax */
2011                 priorXmax = HeapTupleHeaderGetXmax(tuple.t_data);
2012                 ReleaseBuffer(buffer);
2013                 /* loop back to fetch next in chain */
2014         }
2015
2016         /*
2017          * For UPDATE/DELETE we have to return tid of actual row we're executing
2018          * PQ for.
2019          */
2020         *tid = tuple.t_self;
2021
2022         /*
2023          * Need to run a recheck subquery.      Find or create a PQ stack entry.
2024          */
2025         epq = estate->es_evalPlanQual;
2026         endNode = true;
2027
2028         if (epq != NULL && epq->rti == 0)
2029         {
2030                 /* Top PQ stack entry is idle, so re-use it */
2031                 Assert(!(estate->es_useEvalPlan) && epq->next == NULL);
2032                 epq->rti = rti;
2033                 endNode = false;
2034         }
2035
2036         /*
2037          * If this is request for another RTE - Ra, - then we have to check wasn't
2038          * PlanQual requested for Ra already and if so then Ra' row was updated
2039          * again and we have to re-start old execution for Ra and forget all what
2040          * we done after Ra was suspended. Cool? -:))
2041          */
2042         if (epq != NULL && epq->rti != rti &&
2043                 epq->estate->es_evTuple[rti - 1] != NULL)
2044         {
2045                 do
2046                 {
2047                         evalPlanQual *oldepq;
2048
2049                         /* stop execution */
2050                         EvalPlanQualStop(epq);
2051                         /* pop previous PlanQual from the stack */
2052                         oldepq = epq->next;
2053                         Assert(oldepq && oldepq->rti != 0);
2054                         /* push current PQ to freePQ stack */
2055                         oldepq->free = epq;
2056                         epq = oldepq;
2057                         estate->es_evalPlanQual = epq;
2058                 } while (epq->rti != rti);
2059         }
2060
2061         /*
2062          * If we are requested for another RTE then we have to suspend execution
2063          * of current PlanQual and start execution for new one.
2064          */
2065         if (epq == NULL || epq->rti != rti)
2066         {
2067                 /* try to reuse plan used previously */
2068                 evalPlanQual *newepq = (epq != NULL) ? epq->free : NULL;
2069
2070                 if (newepq == NULL)             /* first call or freePQ stack is empty */
2071                 {
2072                         newepq = (evalPlanQual *) palloc0(sizeof(evalPlanQual));
2073                         newepq->free = NULL;
2074                         newepq->estate = NULL;
2075                         newepq->planstate = NULL;
2076                 }
2077                 else
2078                 {
2079                         /* recycle previously used PlanQual */
2080                         Assert(newepq->estate == NULL);
2081                         epq->free = NULL;
2082                 }
2083                 /* push current PQ to the stack */
2084                 newepq->next = epq;
2085                 epq = newepq;
2086                 estate->es_evalPlanQual = epq;
2087                 epq->rti = rti;
2088                 endNode = false;
2089         }
2090
2091         Assert(epq->rti == rti);
2092
2093         /*
2094          * Ok - we're requested for the same RTE.  Unfortunately we still have to
2095          * end and restart execution of the plan, because ExecReScan wouldn't
2096          * ensure that upper plan nodes would reset themselves.  We could make
2097          * that work if insertion of the target tuple were integrated with the
2098          * Param mechanism somehow, so that the upper plan nodes know that their
2099          * children's outputs have changed.
2100          *
2101          * Note that the stack of free evalPlanQual nodes is quite useless at the
2102          * moment, since it only saves us from pallocing/releasing the
2103          * evalPlanQual nodes themselves.  But it will be useful once we implement
2104          * ReScan instead of end/restart for re-using PlanQual nodes.
2105          */
2106         if (endNode)
2107         {
2108                 /* stop execution */
2109                 EvalPlanQualStop(epq);
2110         }
2111
2112         /*
2113          * Initialize new recheck query.
2114          *
2115          * Note: if we were re-using PlanQual plans via ExecReScan, we'd need to
2116          * instead copy down changeable state from the top plan (including
2117          * es_result_relation_info, es_junkFilter) and reset locally changeable
2118          * state in the epq (including es_param_exec_vals, es_evTupleNull).
2119          */
2120         EvalPlanQualStart(epq, estate, epq->next);
2121
2122         /*
2123          * free old RTE' tuple, if any, and store target tuple where relation's
2124          * scan node will see it
2125          */
2126         epqstate = epq->estate;
2127         if (epqstate->es_evTuple[rti - 1] != NULL)
2128                 heap_freetuple(epqstate->es_evTuple[rti - 1]);
2129         epqstate->es_evTuple[rti - 1] = copyTuple;
2130
2131         return EvalPlanQualNext(estate);
2132 }
2133
2134 static TupleTableSlot *
2135 EvalPlanQualNext(EState *estate)
2136 {
2137         evalPlanQual *epq = estate->es_evalPlanQual;
2138         MemoryContext oldcontext;
2139         TupleTableSlot *slot;
2140
2141         Assert(epq->rti != 0);
2142
2143 lpqnext:;
2144         oldcontext = MemoryContextSwitchTo(epq->estate->es_query_cxt);
2145         slot = ExecProcNode(epq->planstate);
2146         MemoryContextSwitchTo(oldcontext);
2147
2148         /*
2149          * No more tuples for this PQ. Continue previous one.
2150          */
2151         if (TupIsNull(slot))
2152         {
2153                 evalPlanQual *oldepq;
2154
2155                 /* stop execution */
2156                 EvalPlanQualStop(epq);
2157                 /* pop old PQ from the stack */
2158                 oldepq = epq->next;
2159                 if (oldepq == NULL)
2160                 {
2161                         /* this is the first (oldest) PQ - mark as free */
2162                         epq->rti = 0;
2163                         estate->es_useEvalPlan = false;
2164                         /* and continue Query execution */
2165                         return NULL;
2166                 }
2167                 Assert(oldepq->rti != 0);
2168                 /* push current PQ to freePQ stack */
2169                 oldepq->free = epq;
2170                 epq = oldepq;
2171                 estate->es_evalPlanQual = epq;
2172                 goto lpqnext;
2173         }
2174
2175         return slot;
2176 }
2177
2178 static void
2179 EndEvalPlanQual(EState *estate)
2180 {
2181         evalPlanQual *epq = estate->es_evalPlanQual;
2182
2183         if (epq->rti == 0)                      /* plans already shutdowned */
2184         {
2185                 Assert(epq->next == NULL);
2186                 return;
2187         }
2188
2189         for (;;)
2190         {
2191                 evalPlanQual *oldepq;
2192
2193                 /* stop execution */
2194                 EvalPlanQualStop(epq);
2195                 /* pop old PQ from the stack */
2196                 oldepq = epq->next;
2197                 if (oldepq == NULL)
2198                 {
2199                         /* this is the first (oldest) PQ - mark as free */
2200                         epq->rti = 0;
2201                         estate->es_useEvalPlan = false;
2202                         break;
2203                 }
2204                 Assert(oldepq->rti != 0);
2205                 /* push current PQ to freePQ stack */
2206                 oldepq->free = epq;
2207                 epq = oldepq;
2208                 estate->es_evalPlanQual = epq;
2209         }
2210 }
2211
2212 /*
2213  * Start execution of one level of PlanQual.
2214  *
2215  * This is a cut-down version of ExecutorStart(): we copy some state from
2216  * the top-level estate rather than initializing it fresh.
2217  */
2218 static void
2219 EvalPlanQualStart(evalPlanQual *epq, EState *estate, evalPlanQual *priorepq)
2220 {
2221         EState     *epqstate;
2222         int                     rtsize;
2223         MemoryContext oldcontext;
2224
2225         rtsize = list_length(estate->es_range_table);
2226
2227         epq->estate = epqstate = CreateExecutorState();
2228
2229         oldcontext = MemoryContextSwitchTo(epqstate->es_query_cxt);
2230
2231         /*
2232          * The epqstates share the top query's copy of unchanging state such as
2233          * the snapshot, rangetable, result-rel info, and external Param info.
2234          * They need their own copies of local state, including a tuple table,
2235          * es_param_exec_vals, etc.
2236          */
2237         epqstate->es_direction = ForwardScanDirection;
2238         epqstate->es_snapshot = estate->es_snapshot;
2239         epqstate->es_crosscheck_snapshot = estate->es_crosscheck_snapshot;
2240         epqstate->es_range_table = estate->es_range_table;
2241         epqstate->es_result_relations = estate->es_result_relations;
2242         epqstate->es_num_result_relations = estate->es_num_result_relations;
2243         epqstate->es_result_relation_info = estate->es_result_relation_info;
2244         epqstate->es_junkFilter = estate->es_junkFilter;
2245         epqstate->es_into_relation_descriptor = estate->es_into_relation_descriptor;
2246         epqstate->es_into_relation_use_wal = estate->es_into_relation_use_wal;
2247         epqstate->es_param_list_info = estate->es_param_list_info;
2248         if (estate->es_topPlan->nParamExec > 0)
2249                 epqstate->es_param_exec_vals = (ParamExecData *)
2250                         palloc0(estate->es_topPlan->nParamExec * sizeof(ParamExecData));
2251         epqstate->es_rowMarks = estate->es_rowMarks;
2252         epqstate->es_instrument = estate->es_instrument;
2253         epqstate->es_select_into = estate->es_select_into;
2254         epqstate->es_into_oids = estate->es_into_oids;
2255         epqstate->es_topPlan = estate->es_topPlan;
2256
2257         /*
2258          * Each epqstate must have its own es_evTupleNull state, but all the stack
2259          * entries share es_evTuple state.      This allows sub-rechecks to inherit
2260          * the value being examined by an outer recheck.
2261          */
2262         epqstate->es_evTupleNull = (bool *) palloc0(rtsize * sizeof(bool));
2263         if (priorepq == NULL)
2264                 /* first PQ stack entry */
2265                 epqstate->es_evTuple = (HeapTuple *)
2266                         palloc0(rtsize * sizeof(HeapTuple));
2267         else
2268                 /* later stack entries share the same storage */
2269                 epqstate->es_evTuple = priorepq->estate->es_evTuple;
2270
2271         epqstate->es_tupleTable =
2272                 ExecCreateTupleTable(estate->es_tupleTable->size);
2273
2274         epq->planstate = ExecInitNode(estate->es_topPlan, epqstate, 0);
2275
2276         MemoryContextSwitchTo(oldcontext);
2277 }
2278
2279 /*
2280  * End execution of one level of PlanQual.
2281  *
2282  * This is a cut-down version of ExecutorEnd(); basically we want to do most
2283  * of the normal cleanup, but *not* close result relations (which we are
2284  * just sharing from the outer query).
2285  */
2286 static void
2287 EvalPlanQualStop(evalPlanQual *epq)
2288 {
2289         EState     *epqstate = epq->estate;
2290         MemoryContext oldcontext;
2291
2292         oldcontext = MemoryContextSwitchTo(epqstate->es_query_cxt);
2293
2294         ExecEndNode(epq->planstate);
2295
2296         ExecDropTupleTable(epqstate->es_tupleTable, true);
2297         epqstate->es_tupleTable = NULL;
2298
2299         if (epqstate->es_evTuple[epq->rti - 1] != NULL)
2300         {
2301                 heap_freetuple(epqstate->es_evTuple[epq->rti - 1]);
2302                 epqstate->es_evTuple[epq->rti - 1] = NULL;
2303         }
2304
2305         MemoryContextSwitchTo(oldcontext);
2306
2307         FreeExecutorState(epqstate);
2308
2309         epq->estate = NULL;
2310         epq->planstate = NULL;
2311 }