]> granicus.if.org Git - postgresql/blob - src/backend/access/heap/rewriteheap.c
Flush logical mapping files with fd opened for read/write at checkpoint
[postgresql] / src / backend / access / heap / rewriteheap.c
1 /*-------------------------------------------------------------------------
2  *
3  * rewriteheap.c
4  *        Support functions to rewrite tables.
5  *
6  * These functions provide a facility to completely rewrite a heap, while
7  * preserving visibility information and update chains.
8  *
9  * INTERFACE
10  *
11  * The caller is responsible for creating the new heap, all catalog
12  * changes, supplying the tuples to be written to the new heap, and
13  * rebuilding indexes.  The caller must hold AccessExclusiveLock on the
14  * target table, because we assume no one else is writing into it.
15  *
16  * To use the facility:
17  *
18  * begin_heap_rewrite
19  * while (fetch next tuple)
20  * {
21  *         if (tuple is dead)
22  *                 rewrite_heap_dead_tuple
23  *         else
24  *         {
25  *                 // do any transformations here if required
26  *                 rewrite_heap_tuple
27  *         }
28  * }
29  * end_heap_rewrite
30  *
31  * The contents of the new relation shouldn't be relied on until after
32  * end_heap_rewrite is called.
33  *
34  *
35  * IMPLEMENTATION
36  *
37  * This would be a fairly trivial affair, except that we need to maintain
38  * the ctid chains that link versions of an updated tuple together.
39  * Since the newly stored tuples will have tids different from the original
40  * ones, if we just copied t_ctid fields to the new table the links would
41  * be wrong.  When we are required to copy a (presumably recently-dead or
42  * delete-in-progress) tuple whose ctid doesn't point to itself, we have
43  * to substitute the correct ctid instead.
44  *
45  * For each ctid reference from A -> B, we might encounter either A first
46  * or B first.  (Note that a tuple in the middle of a chain is both A and B
47  * of different pairs.)
48  *
49  * If we encounter A first, we'll store the tuple in the unresolved_tups
50  * hash table. When we later encounter B, we remove A from the hash table,
51  * fix the ctid to point to the new location of B, and insert both A and B
52  * to the new heap.
53  *
54  * If we encounter B first, we can insert B to the new heap right away.
55  * We then add an entry to the old_new_tid_map hash table showing B's
56  * original tid (in the old heap) and new tid (in the new heap).
57  * When we later encounter A, we get the new location of B from the table,
58  * and can write A immediately with the correct ctid.
59  *
60  * Entries in the hash tables can be removed as soon as the later tuple
61  * is encountered.  That helps to keep the memory usage down.  At the end,
62  * both tables are usually empty; we should have encountered both A and B
63  * of each pair.  However, it's possible for A to be RECENTLY_DEAD and B
64  * entirely DEAD according to HeapTupleSatisfiesVacuum, because the test
65  * for deadness using OldestXmin is not exact.  In such a case we might
66  * encounter B first, and skip it, and find A later.  Then A would be added
67  * to unresolved_tups, and stay there until end of the rewrite.  Since
68  * this case is very unusual, we don't worry about the memory usage.
69  *
70  * Using in-memory hash tables means that we use some memory for each live
71  * update chain in the table, from the time we find one end of the
72  * reference until we find the other end.  That shouldn't be a problem in
73  * practice, but if you do something like an UPDATE without a where-clause
74  * on a large table, and then run CLUSTER in the same transaction, you
75  * could run out of memory.  It doesn't seem worthwhile to add support for
76  * spill-to-disk, as there shouldn't be that many RECENTLY_DEAD tuples in a
77  * table under normal circumstances.  Furthermore, in the typical scenario
78  * of CLUSTERing on an unchanging key column, we'll see all the versions
79  * of a given tuple together anyway, and so the peak memory usage is only
80  * proportional to the number of RECENTLY_DEAD versions of a single row, not
81  * in the whole table.  Note that if we do fail halfway through a CLUSTER,
82  * the old table is still valid, so failure is not catastrophic.
83  *
84  * We can't use the normal heap_insert function to insert into the new
85  * heap, because heap_insert overwrites the visibility information.
86  * We use a special-purpose raw_heap_insert function instead, which
87  * is optimized for bulk inserting a lot of tuples, knowing that we have
88  * exclusive access to the heap.  raw_heap_insert builds new pages in
89  * local storage.  When a page is full, or at the end of the process,
90  * we insert it to WAL as a single record and then write it to disk
91  * directly through smgr.  Note, however, that any data sent to the new
92  * heap's TOAST table will go through the normal bufmgr.
93  *
94  *
95  * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
96  * Portions Copyright (c) 1994-5, Regents of the University of California
97  *
98  * IDENTIFICATION
99  *        src/backend/access/heap/rewriteheap.c
100  *
101  *-------------------------------------------------------------------------
102  */
103 #include "postgres.h"
104
105 #include <sys/stat.h>
106 #include <unistd.h>
107
108 #include "miscadmin.h"
109
110 #include "access/heapam.h"
111 #include "access/heapam_xlog.h"
112 #include "access/heaptoast.h"
113 #include "access/rewriteheap.h"
114 #include "access/transam.h"
115 #include "access/xact.h"
116 #include "access/xloginsert.h"
117
118 #include "catalog/catalog.h"
119
120 #include "lib/ilist.h"
121
122 #include "pgstat.h"
123
124 #include "replication/logical.h"
125 #include "replication/slot.h"
126
127 #include "storage/bufmgr.h"
128 #include "storage/fd.h"
129 #include "storage/smgr.h"
130
131 #include "utils/memutils.h"
132 #include "utils/rel.h"
133
134 #include "storage/procarray.h"
135
136 /*
137  * State associated with a rewrite operation. This is opaque to the user
138  * of the rewrite facility.
139  */
140 typedef struct RewriteStateData
141 {
142         Relation        rs_old_rel;             /* source heap */
143         Relation        rs_new_rel;             /* destination heap */
144         Page            rs_buffer;              /* page currently being built */
145         BlockNumber rs_blockno;         /* block where page will go */
146         bool            rs_buffer_valid;        /* T if any tuples in buffer */
147         bool            rs_use_wal;             /* must we WAL-log inserts? */
148         bool            rs_logical_rewrite; /* do we need to do logical rewriting */
149         TransactionId rs_oldest_xmin;   /* oldest xmin used by caller to determine
150                                                                          * tuple visibility */
151         TransactionId rs_freeze_xid;    /* Xid that will be used as freeze cutoff
152                                                                          * point */
153         TransactionId rs_logical_xmin;  /* Xid that will be used as cutoff point
154                                                                          * for logical rewrites */
155         MultiXactId rs_cutoff_multi;    /* MultiXactId that will be used as cutoff
156                                                                          * point for multixacts */
157         MemoryContext rs_cxt;           /* for hash tables and entries and tuples in
158                                                                  * them */
159         XLogRecPtr      rs_begin_lsn;   /* XLogInsertLsn when starting the rewrite */
160         HTAB       *rs_unresolved_tups; /* unmatched A tuples */
161         HTAB       *rs_old_new_tid_map; /* unmatched B tuples */
162         HTAB       *rs_logical_mappings;        /* logical remapping files */
163         uint32          rs_num_rewrite_mappings;        /* # in memory mappings */
164 }                       RewriteStateData;
165
166 /*
167  * The lookup keys for the hash tables are tuple TID and xmin (we must check
168  * both to avoid false matches from dead tuples).  Beware that there is
169  * probably some padding space in this struct; it must be zeroed out for
170  * correct hashtable operation.
171  */
172 typedef struct
173 {
174         TransactionId xmin;                     /* tuple xmin */
175         ItemPointerData tid;            /* tuple location in old heap */
176 } TidHashKey;
177
178 /*
179  * Entry structures for the hash tables
180  */
181 typedef struct
182 {
183         TidHashKey      key;                    /* expected xmin/old location of B tuple */
184         ItemPointerData old_tid;        /* A's location in the old heap */
185         HeapTuple       tuple;                  /* A's tuple contents */
186 } UnresolvedTupData;
187
188 typedef UnresolvedTupData *UnresolvedTup;
189
190 typedef struct
191 {
192         TidHashKey      key;                    /* actual xmin/old location of B tuple */
193         ItemPointerData new_tid;        /* where we put it in the new heap */
194 } OldToNewMappingData;
195
196 typedef OldToNewMappingData *OldToNewMapping;
197
198 /*
199  * In-Memory data for an xid that might need logical remapping entries
200  * to be logged.
201  */
202 typedef struct RewriteMappingFile
203 {
204         TransactionId xid;                      /* xid that might need to see the row */
205         int                     vfd;                    /* fd of mappings file */
206         off_t           off;                    /* how far have we written yet */
207         uint32          num_mappings;   /* number of in-memory mappings */
208         dlist_head      mappings;               /* list of in-memory mappings */
209         char            path[MAXPGPATH];        /* path, for error messages */
210 } RewriteMappingFile;
211
212 /*
213  * A single In-Memory logical rewrite mapping, hanging off
214  * RewriteMappingFile->mappings.
215  */
216 typedef struct RewriteMappingDataEntry
217 {
218         LogicalRewriteMappingData map;  /* map between old and new location of the
219                                                                          * tuple */
220         dlist_node      node;
221 } RewriteMappingDataEntry;
222
223
224 /* prototypes for internal functions */
225 static void raw_heap_insert(RewriteState state, HeapTuple tup);
226
227 /* internal logical remapping prototypes */
228 static void logical_begin_heap_rewrite(RewriteState state);
229 static void logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid, HeapTuple new_tuple);
230 static void logical_end_heap_rewrite(RewriteState state);
231
232
233 /*
234  * Begin a rewrite of a table
235  *
236  * old_heap             old, locked heap relation tuples will be read from
237  * new_heap             new, locked heap relation to insert tuples to
238  * oldest_xmin  xid used by the caller to determine which tuples are dead
239  * freeze_xid   xid before which tuples will be frozen
240  * cutoff_multi multixact before which multis will be removed
241  * use_wal              should the inserts to the new heap be WAL-logged?
242  *
243  * Returns an opaque RewriteState, allocated in current memory context,
244  * to be used in subsequent calls to the other functions.
245  */
246 RewriteState
247 begin_heap_rewrite(Relation old_heap, Relation new_heap, TransactionId oldest_xmin,
248                                    TransactionId freeze_xid, MultiXactId cutoff_multi,
249                                    bool use_wal)
250 {
251         RewriteState state;
252         MemoryContext rw_cxt;
253         MemoryContext old_cxt;
254         HASHCTL         hash_ctl;
255
256         /*
257          * To ease cleanup, make a separate context that will contain the
258          * RewriteState struct itself plus all subsidiary data.
259          */
260         rw_cxt = AllocSetContextCreate(CurrentMemoryContext,
261                                                                    "Table rewrite",
262                                                                    ALLOCSET_DEFAULT_SIZES);
263         old_cxt = MemoryContextSwitchTo(rw_cxt);
264
265         /* Create and fill in the state struct */
266         state = palloc0(sizeof(RewriteStateData));
267
268         state->rs_old_rel = old_heap;
269         state->rs_new_rel = new_heap;
270         state->rs_buffer = (Page) palloc(BLCKSZ);
271         /* new_heap needn't be empty, just locked */
272         state->rs_blockno = RelationGetNumberOfBlocks(new_heap);
273         state->rs_buffer_valid = false;
274         state->rs_use_wal = use_wal;
275         state->rs_oldest_xmin = oldest_xmin;
276         state->rs_freeze_xid = freeze_xid;
277         state->rs_cutoff_multi = cutoff_multi;
278         state->rs_cxt = rw_cxt;
279
280         /* Initialize hash tables used to track update chains */
281         memset(&hash_ctl, 0, sizeof(hash_ctl));
282         hash_ctl.keysize = sizeof(TidHashKey);
283         hash_ctl.entrysize = sizeof(UnresolvedTupData);
284         hash_ctl.hcxt = state->rs_cxt;
285
286         state->rs_unresolved_tups =
287                 hash_create("Rewrite / Unresolved ctids",
288                                         128,            /* arbitrary initial size */
289                                         &hash_ctl,
290                                         HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
291
292         hash_ctl.entrysize = sizeof(OldToNewMappingData);
293
294         state->rs_old_new_tid_map =
295                 hash_create("Rewrite / Old to new tid map",
296                                         128,            /* arbitrary initial size */
297                                         &hash_ctl,
298                                         HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
299
300         MemoryContextSwitchTo(old_cxt);
301
302         logical_begin_heap_rewrite(state);
303
304         return state;
305 }
306
307 /*
308  * End a rewrite.
309  *
310  * state and any other resources are freed.
311  */
312 void
313 end_heap_rewrite(RewriteState state)
314 {
315         HASH_SEQ_STATUS seq_status;
316         UnresolvedTup unresolved;
317
318         /*
319          * Write any remaining tuples in the UnresolvedTups table. If we have any
320          * left, they should in fact be dead, but let's err on the safe side.
321          */
322         hash_seq_init(&seq_status, state->rs_unresolved_tups);
323
324         while ((unresolved = hash_seq_search(&seq_status)) != NULL)
325         {
326                 ItemPointerSetInvalid(&unresolved->tuple->t_data->t_ctid);
327                 raw_heap_insert(state, unresolved->tuple);
328         }
329
330         /* Write the last page, if any */
331         if (state->rs_buffer_valid)
332         {
333                 if (state->rs_use_wal)
334                         log_newpage(&state->rs_new_rel->rd_node,
335                                                 MAIN_FORKNUM,
336                                                 state->rs_blockno,
337                                                 state->rs_buffer,
338                                                 true);
339                 RelationOpenSmgr(state->rs_new_rel);
340
341                 PageSetChecksumInplace(state->rs_buffer, state->rs_blockno);
342
343                 smgrextend(state->rs_new_rel->rd_smgr, MAIN_FORKNUM, state->rs_blockno,
344                                    (char *) state->rs_buffer, true);
345         }
346
347         /*
348          * If the rel is WAL-logged, must fsync before commit.  We use heap_sync
349          * to ensure that the toast table gets fsync'd too.
350          *
351          * It's obvious that we must do this when not WAL-logging. It's less
352          * obvious that we have to do it even if we did WAL-log the pages. The
353          * reason is the same as in storage.c's RelationCopyStorage(): we're
354          * writing data that's not in shared buffers, and so a CHECKPOINT
355          * occurring during the rewriteheap operation won't have fsync'd data we
356          * wrote before the checkpoint.
357          */
358         if (RelationNeedsWAL(state->rs_new_rel))
359                 heap_sync(state->rs_new_rel);
360
361         logical_end_heap_rewrite(state);
362
363         /* Deleting the context frees everything */
364         MemoryContextDelete(state->rs_cxt);
365 }
366
367 /*
368  * Add a tuple to the new heap.
369  *
370  * Visibility information is copied from the original tuple, except that
371  * we "freeze" very-old tuples.  Note that since we scribble on new_tuple,
372  * it had better be temp storage not a pointer to the original tuple.
373  *
374  * state                opaque state as returned by begin_heap_rewrite
375  * old_tuple    original tuple in the old heap
376  * new_tuple    new, rewritten tuple to be inserted to new heap
377  */
378 void
379 rewrite_heap_tuple(RewriteState state,
380                                    HeapTuple old_tuple, HeapTuple new_tuple)
381 {
382         MemoryContext old_cxt;
383         ItemPointerData old_tid;
384         TidHashKey      hashkey;
385         bool            found;
386         bool            free_new;
387
388         old_cxt = MemoryContextSwitchTo(state->rs_cxt);
389
390         /*
391          * Copy the original tuple's visibility information into new_tuple.
392          *
393          * XXX we might later need to copy some t_infomask2 bits, too? Right now,
394          * we intentionally clear the HOT status bits.
395          */
396         memcpy(&new_tuple->t_data->t_choice.t_heap,
397                    &old_tuple->t_data->t_choice.t_heap,
398                    sizeof(HeapTupleFields));
399
400         new_tuple->t_data->t_infomask &= ~HEAP_XACT_MASK;
401         new_tuple->t_data->t_infomask2 &= ~HEAP2_XACT_MASK;
402         new_tuple->t_data->t_infomask |=
403                 old_tuple->t_data->t_infomask & HEAP_XACT_MASK;
404
405         /*
406          * While we have our hands on the tuple, we may as well freeze any
407          * eligible xmin or xmax, so that future VACUUM effort can be saved.
408          */
409         heap_freeze_tuple(new_tuple->t_data,
410                                           state->rs_old_rel->rd_rel->relfrozenxid,
411                                           state->rs_old_rel->rd_rel->relminmxid,
412                                           state->rs_freeze_xid,
413                                           state->rs_cutoff_multi);
414
415         /*
416          * Invalid ctid means that ctid should point to the tuple itself. We'll
417          * override it later if the tuple is part of an update chain.
418          */
419         ItemPointerSetInvalid(&new_tuple->t_data->t_ctid);
420
421         /*
422          * If the tuple has been updated, check the old-to-new mapping hash table.
423          */
424         if (!((old_tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
425                   HeapTupleHeaderIsOnlyLocked(old_tuple->t_data)) &&
426                 !HeapTupleHeaderIndicatesMovedPartitions(old_tuple->t_data) &&
427                 !(ItemPointerEquals(&(old_tuple->t_self),
428                                                         &(old_tuple->t_data->t_ctid))))
429         {
430                 OldToNewMapping mapping;
431
432                 memset(&hashkey, 0, sizeof(hashkey));
433                 hashkey.xmin = HeapTupleHeaderGetUpdateXid(old_tuple->t_data);
434                 hashkey.tid = old_tuple->t_data->t_ctid;
435
436                 mapping = (OldToNewMapping)
437                         hash_search(state->rs_old_new_tid_map, &hashkey,
438                                                 HASH_FIND, NULL);
439
440                 if (mapping != NULL)
441                 {
442                         /*
443                          * We've already copied the tuple that t_ctid points to, so we can
444                          * set the ctid of this tuple to point to the new location, and
445                          * insert it right away.
446                          */
447                         new_tuple->t_data->t_ctid = mapping->new_tid;
448
449                         /* We don't need the mapping entry anymore */
450                         hash_search(state->rs_old_new_tid_map, &hashkey,
451                                                 HASH_REMOVE, &found);
452                         Assert(found);
453                 }
454                 else
455                 {
456                         /*
457                          * We haven't seen the tuple t_ctid points to yet. Stash this
458                          * tuple into unresolved_tups to be written later.
459                          */
460                         UnresolvedTup unresolved;
461
462                         unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
463                                                                          HASH_ENTER, &found);
464                         Assert(!found);
465
466                         unresolved->old_tid = old_tuple->t_self;
467                         unresolved->tuple = heap_copytuple(new_tuple);
468
469                         /*
470                          * We can't do anything more now, since we don't know where the
471                          * tuple will be written.
472                          */
473                         MemoryContextSwitchTo(old_cxt);
474                         return;
475                 }
476         }
477
478         /*
479          * Now we will write the tuple, and then check to see if it is the B tuple
480          * in any new or known pair.  When we resolve a known pair, we will be
481          * able to write that pair's A tuple, and then we have to check if it
482          * resolves some other pair.  Hence, we need a loop here.
483          */
484         old_tid = old_tuple->t_self;
485         free_new = false;
486
487         for (;;)
488         {
489                 ItemPointerData new_tid;
490
491                 /* Insert the tuple and find out where it's put in new_heap */
492                 raw_heap_insert(state, new_tuple);
493                 new_tid = new_tuple->t_self;
494
495                 logical_rewrite_heap_tuple(state, old_tid, new_tuple);
496
497                 /*
498                  * If the tuple is the updated version of a row, and the prior version
499                  * wouldn't be DEAD yet, then we need to either resolve the prior
500                  * version (if it's waiting in rs_unresolved_tups), or make an entry
501                  * in rs_old_new_tid_map (so we can resolve it when we do see it). The
502                  * previous tuple's xmax would equal this one's xmin, so it's
503                  * RECENTLY_DEAD if and only if the xmin is not before OldestXmin.
504                  */
505                 if ((new_tuple->t_data->t_infomask & HEAP_UPDATED) &&
506                         !TransactionIdPrecedes(HeapTupleHeaderGetXmin(new_tuple->t_data),
507                                                                    state->rs_oldest_xmin))
508                 {
509                         /*
510                          * Okay, this is B in an update pair.  See if we've seen A.
511                          */
512                         UnresolvedTup unresolved;
513
514                         memset(&hashkey, 0, sizeof(hashkey));
515                         hashkey.xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
516                         hashkey.tid = old_tid;
517
518                         unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
519                                                                          HASH_FIND, NULL);
520
521                         if (unresolved != NULL)
522                         {
523                                 /*
524                                  * We have seen and memorized the previous tuple already. Now
525                                  * that we know where we inserted the tuple its t_ctid points
526                                  * to, fix its t_ctid and insert it to the new heap.
527                                  */
528                                 if (free_new)
529                                         heap_freetuple(new_tuple);
530                                 new_tuple = unresolved->tuple;
531                                 free_new = true;
532                                 old_tid = unresolved->old_tid;
533                                 new_tuple->t_data->t_ctid = new_tid;
534
535                                 /*
536                                  * We don't need the hash entry anymore, but don't free its
537                                  * tuple just yet.
538                                  */
539                                 hash_search(state->rs_unresolved_tups, &hashkey,
540                                                         HASH_REMOVE, &found);
541                                 Assert(found);
542
543                                 /* loop back to insert the previous tuple in the chain */
544                                 continue;
545                         }
546                         else
547                         {
548                                 /*
549                                  * Remember the new tid of this tuple. We'll use it to set the
550                                  * ctid when we find the previous tuple in the chain.
551                                  */
552                                 OldToNewMapping mapping;
553
554                                 mapping = hash_search(state->rs_old_new_tid_map, &hashkey,
555                                                                           HASH_ENTER, &found);
556                                 Assert(!found);
557
558                                 mapping->new_tid = new_tid;
559                         }
560                 }
561
562                 /* Done with this (chain of) tuples, for now */
563                 if (free_new)
564                         heap_freetuple(new_tuple);
565                 break;
566         }
567
568         MemoryContextSwitchTo(old_cxt);
569 }
570
571 /*
572  * Register a dead tuple with an ongoing rewrite. Dead tuples are not
573  * copied to the new table, but we still make note of them so that we
574  * can release some resources earlier.
575  *
576  * Returns true if a tuple was removed from the unresolved_tups table.
577  * This indicates that that tuple, previously thought to be "recently dead",
578  * is now known really dead and won't be written to the output.
579  */
580 bool
581 rewrite_heap_dead_tuple(RewriteState state, HeapTuple old_tuple)
582 {
583         /*
584          * If we have already seen an earlier tuple in the update chain that
585          * points to this tuple, let's forget about that earlier tuple. It's in
586          * fact dead as well, our simple xmax < OldestXmin test in
587          * HeapTupleSatisfiesVacuum just wasn't enough to detect it. It happens
588          * when xmin of a tuple is greater than xmax, which sounds
589          * counter-intuitive but is perfectly valid.
590          *
591          * We don't bother to try to detect the situation the other way round,
592          * when we encounter the dead tuple first and then the recently dead one
593          * that points to it. If that happens, we'll have some unmatched entries
594          * in the UnresolvedTups hash table at the end. That can happen anyway,
595          * because a vacuum might have removed the dead tuple in the chain before
596          * us.
597          */
598         UnresolvedTup unresolved;
599         TidHashKey      hashkey;
600         bool            found;
601
602         memset(&hashkey, 0, sizeof(hashkey));
603         hashkey.xmin = HeapTupleHeaderGetXmin(old_tuple->t_data);
604         hashkey.tid = old_tuple->t_self;
605
606         unresolved = hash_search(state->rs_unresolved_tups, &hashkey,
607                                                          HASH_FIND, NULL);
608
609         if (unresolved != NULL)
610         {
611                 /* Need to free the contained tuple as well as the hashtable entry */
612                 heap_freetuple(unresolved->tuple);
613                 hash_search(state->rs_unresolved_tups, &hashkey,
614                                         HASH_REMOVE, &found);
615                 Assert(found);
616                 return true;
617         }
618
619         return false;
620 }
621
622 /*
623  * Insert a tuple to the new relation.  This has to track heap_insert
624  * and its subsidiary functions!
625  *
626  * t_self of the tuple is set to the new TID of the tuple. If t_ctid of the
627  * tuple is invalid on entry, it's replaced with the new TID as well (in
628  * the inserted data only, not in the caller's copy).
629  */
630 static void
631 raw_heap_insert(RewriteState state, HeapTuple tup)
632 {
633         Page            page = state->rs_buffer;
634         Size            pageFreeSpace,
635                                 saveFreeSpace;
636         Size            len;
637         OffsetNumber newoff;
638         HeapTuple       heaptup;
639
640         /*
641          * If the new tuple is too big for storage or contains already toasted
642          * out-of-line attributes from some other relation, invoke the toaster.
643          *
644          * Note: below this point, heaptup is the data we actually intend to store
645          * into the relation; tup is the caller's original untoasted data.
646          */
647         if (state->rs_new_rel->rd_rel->relkind == RELKIND_TOASTVALUE)
648         {
649                 /* toast table entries should never be recursively toasted */
650                 Assert(!HeapTupleHasExternal(tup));
651                 heaptup = tup;
652         }
653         else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
654         {
655                 int                     options = HEAP_INSERT_SKIP_FSM;
656
657                 if (!state->rs_use_wal)
658                         options |= HEAP_INSERT_SKIP_WAL;
659
660                 /*
661                  * While rewriting the heap for VACUUM FULL / CLUSTER, make sure data
662                  * for the TOAST table are not logically decoded.  The main heap is
663                  * WAL-logged as XLOG FPI records, which are not logically decoded.
664                  */
665                 options |= HEAP_INSERT_NO_LOGICAL;
666
667                 heaptup = heap_toast_insert_or_update(state->rs_new_rel, tup, NULL,
668                                                                                           options);
669         }
670         else
671                 heaptup = tup;
672
673         len = MAXALIGN(heaptup->t_len); /* be conservative */
674
675         /*
676          * If we're gonna fail for oversize tuple, do it right away
677          */
678         if (len > MaxHeapTupleSize)
679                 ereport(ERROR,
680                                 (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
681                                  errmsg("row is too big: size %zu, maximum size %zu",
682                                                 len, MaxHeapTupleSize)));
683
684         /* Compute desired extra freespace due to fillfactor option */
685         saveFreeSpace = RelationGetTargetPageFreeSpace(state->rs_new_rel,
686                                                                                                    HEAP_DEFAULT_FILLFACTOR);
687
688         /* Now we can check to see if there's enough free space already. */
689         if (state->rs_buffer_valid)
690         {
691                 pageFreeSpace = PageGetHeapFreeSpace(page);
692
693                 if (len + saveFreeSpace > pageFreeSpace)
694                 {
695                         /* Doesn't fit, so write out the existing page */
696
697                         /* XLOG stuff */
698                         if (state->rs_use_wal)
699                                 log_newpage(&state->rs_new_rel->rd_node,
700                                                         MAIN_FORKNUM,
701                                                         state->rs_blockno,
702                                                         page,
703                                                         true);
704
705                         /*
706                          * Now write the page. We say isTemp = true even if it's not a
707                          * temp table, because there's no need for smgr to schedule an
708                          * fsync for this write; we'll do it ourselves in
709                          * end_heap_rewrite.
710                          */
711                         RelationOpenSmgr(state->rs_new_rel);
712
713                         PageSetChecksumInplace(page, state->rs_blockno);
714
715                         smgrextend(state->rs_new_rel->rd_smgr, MAIN_FORKNUM,
716                                            state->rs_blockno, (char *) page, true);
717
718                         state->rs_blockno++;
719                         state->rs_buffer_valid = false;
720                 }
721         }
722
723         if (!state->rs_buffer_valid)
724         {
725                 /* Initialize a new empty page */
726                 PageInit(page, BLCKSZ, 0);
727                 state->rs_buffer_valid = true;
728         }
729
730         /* And now we can insert the tuple into the page */
731         newoff = PageAddItem(page, (Item) heaptup->t_data, heaptup->t_len,
732                                                  InvalidOffsetNumber, false, true);
733         if (newoff == InvalidOffsetNumber)
734                 elog(ERROR, "failed to add tuple");
735
736         /* Update caller's t_self to the actual position where it was stored */
737         ItemPointerSet(&(tup->t_self), state->rs_blockno, newoff);
738
739         /*
740          * Insert the correct position into CTID of the stored tuple, too, if the
741          * caller didn't supply a valid CTID.
742          */
743         if (!ItemPointerIsValid(&tup->t_data->t_ctid))
744         {
745                 ItemId          newitemid;
746                 HeapTupleHeader onpage_tup;
747
748                 newitemid = PageGetItemId(page, newoff);
749                 onpage_tup = (HeapTupleHeader) PageGetItem(page, newitemid);
750
751                 onpage_tup->t_ctid = tup->t_self;
752         }
753
754         /* If heaptup is a private copy, release it. */
755         if (heaptup != tup)
756                 heap_freetuple(heaptup);
757 }
758
759 /* ------------------------------------------------------------------------
760  * Logical rewrite support
761  *
762  * When doing logical decoding - which relies on using cmin/cmax of catalog
763  * tuples, via xl_heap_new_cid records - heap rewrites have to log enough
764  * information to allow the decoding backend to updates its internal mapping
765  * of (relfilenode,ctid) => (cmin, cmax) to be correct for the rewritten heap.
766  *
767  * For that, every time we find a tuple that's been modified in a catalog
768  * relation within the xmin horizon of any decoding slot, we log a mapping
769  * from the old to the new location.
770  *
771  * To deal with rewrites that abort the filename of a mapping file contains
772  * the xid of the transaction performing the rewrite, which then can be
773  * checked before being read in.
774  *
775  * For efficiency we don't immediately spill every single map mapping for a
776  * row to disk but only do so in batches when we've collected several of them
777  * in memory or when end_heap_rewrite() has been called.
778  *
779  * Crash-Safety: This module diverts from the usual patterns of doing WAL
780  * since it cannot rely on checkpoint flushing out all buffers and thus
781  * waiting for exclusive locks on buffers. Usually the XLogInsert() covering
782  * buffer modifications is performed while the buffer(s) that are being
783  * modified are exclusively locked guaranteeing that both the WAL record and
784  * the modified heap are on either side of the checkpoint. But since the
785  * mapping files we log aren't in shared_buffers that interlock doesn't work.
786  *
787  * Instead we simply write the mapping files out to disk, *before* the
788  * XLogInsert() is performed. That guarantees that either the XLogInsert() is
789  * inserted after the checkpoint's redo pointer or that the checkpoint (via
790  * CheckPointLogicalRewriteHeap()) has flushed the (partial) mapping file to
791  * disk. That leaves the tail end that has not yet been flushed open to
792  * corruption, which is solved by including the current offset in the
793  * xl_heap_rewrite_mapping records and truncating the mapping file to it
794  * during replay. Every time a rewrite is finished all generated mapping files
795  * are synced to disk.
796  *
797  * Note that if we were only concerned about crash safety we wouldn't have to
798  * deal with WAL logging at all - an fsync() at the end of a rewrite would be
799  * sufficient for crash safety. Any mapping that hasn't been safely flushed to
800  * disk has to be by an aborted (explicitly or via a crash) transaction and is
801  * ignored by virtue of the xid in its name being subject to a
802  * TransactionDidCommit() check. But we want to support having standbys via
803  * physical replication, both for availability and to do logical decoding
804  * there.
805  * ------------------------------------------------------------------------
806  */
807
808 /*
809  * Do preparations for logging logical mappings during a rewrite if
810  * necessary. If we detect that we don't need to log anything we'll prevent
811  * any further action by the various logical rewrite functions.
812  */
813 static void
814 logical_begin_heap_rewrite(RewriteState state)
815 {
816         HASHCTL         hash_ctl;
817         TransactionId logical_xmin;
818
819         /*
820          * We only need to persist these mappings if the rewritten table can be
821          * accessed during logical decoding, if not, we can skip doing any
822          * additional work.
823          */
824         state->rs_logical_rewrite =
825                 RelationIsAccessibleInLogicalDecoding(state->rs_old_rel);
826
827         if (!state->rs_logical_rewrite)
828                 return;
829
830         ProcArrayGetReplicationSlotXmin(NULL, &logical_xmin);
831
832         /*
833          * If there are no logical slots in progress we don't need to do anything,
834          * there cannot be any remappings for relevant rows yet. The relation's
835          * lock protects us against races.
836          */
837         if (logical_xmin == InvalidTransactionId)
838         {
839                 state->rs_logical_rewrite = false;
840                 return;
841         }
842
843         state->rs_logical_xmin = logical_xmin;
844         state->rs_begin_lsn = GetXLogInsertRecPtr();
845         state->rs_num_rewrite_mappings = 0;
846
847         memset(&hash_ctl, 0, sizeof(hash_ctl));
848         hash_ctl.keysize = sizeof(TransactionId);
849         hash_ctl.entrysize = sizeof(RewriteMappingFile);
850         hash_ctl.hcxt = state->rs_cxt;
851
852         state->rs_logical_mappings =
853                 hash_create("Logical rewrite mapping",
854                                         128,            /* arbitrary initial size */
855                                         &hash_ctl,
856                                         HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
857 }
858
859 /*
860  * Flush all logical in-memory mappings to disk, but don't fsync them yet.
861  */
862 static void
863 logical_heap_rewrite_flush_mappings(RewriteState state)
864 {
865         HASH_SEQ_STATUS seq_status;
866         RewriteMappingFile *src;
867         dlist_mutable_iter iter;
868
869         Assert(state->rs_logical_rewrite);
870
871         /* no logical rewrite in progress, no need to iterate over mappings */
872         if (state->rs_num_rewrite_mappings == 0)
873                 return;
874
875         elog(DEBUG1, "flushing %u logical rewrite mapping entries",
876                  state->rs_num_rewrite_mappings);
877
878         hash_seq_init(&seq_status, state->rs_logical_mappings);
879         while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
880         {
881                 char       *waldata;
882                 char       *waldata_start;
883                 xl_heap_rewrite_mapping xlrec;
884                 Oid                     dboid;
885                 uint32          len;
886                 int                     written;
887
888                 /* this file hasn't got any new mappings */
889                 if (src->num_mappings == 0)
890                         continue;
891
892                 if (state->rs_old_rel->rd_rel->relisshared)
893                         dboid = InvalidOid;
894                 else
895                         dboid = MyDatabaseId;
896
897                 xlrec.num_mappings = src->num_mappings;
898                 xlrec.mapped_rel = RelationGetRelid(state->rs_old_rel);
899                 xlrec.mapped_xid = src->xid;
900                 xlrec.mapped_db = dboid;
901                 xlrec.offset = src->off;
902                 xlrec.start_lsn = state->rs_begin_lsn;
903
904                 /* write all mappings consecutively */
905                 len = src->num_mappings * sizeof(LogicalRewriteMappingData);
906                 waldata_start = waldata = palloc(len);
907
908                 /*
909                  * collect data we need to write out, but don't modify ondisk data yet
910                  */
911                 dlist_foreach_modify(iter, &src->mappings)
912                 {
913                         RewriteMappingDataEntry *pmap;
914
915                         pmap = dlist_container(RewriteMappingDataEntry, node, iter.cur);
916
917                         memcpy(waldata, &pmap->map, sizeof(pmap->map));
918                         waldata += sizeof(pmap->map);
919
920                         /* remove from the list and free */
921                         dlist_delete(&pmap->node);
922                         pfree(pmap);
923
924                         /* update bookkeeping */
925                         state->rs_num_rewrite_mappings--;
926                         src->num_mappings--;
927                 }
928
929                 Assert(src->num_mappings == 0);
930                 Assert(waldata == waldata_start + len);
931
932                 /*
933                  * Note that we deviate from the usual WAL coding practices here,
934                  * check the above "Logical rewrite support" comment for reasoning.
935                  */
936                 written = FileWrite(src->vfd, waldata_start, len, src->off,
937                                                         WAIT_EVENT_LOGICAL_REWRITE_WRITE);
938                 if (written != len)
939                         ereport(ERROR,
940                                         (errcode_for_file_access(),
941                                          errmsg("could not write to file \"%s\", wrote %d of %d: %m", src->path,
942                                                         written, len)));
943                 src->off += len;
944
945                 XLogBeginInsert();
946                 XLogRegisterData((char *) (&xlrec), sizeof(xlrec));
947                 XLogRegisterData(waldata_start, len);
948
949                 /* write xlog record */
950                 XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_REWRITE);
951
952                 pfree(waldata_start);
953         }
954         Assert(state->rs_num_rewrite_mappings == 0);
955 }
956
957 /*
958  * Logical remapping part of end_heap_rewrite().
959  */
960 static void
961 logical_end_heap_rewrite(RewriteState state)
962 {
963         HASH_SEQ_STATUS seq_status;
964         RewriteMappingFile *src;
965
966         /* done, no logical rewrite in progress */
967         if (!state->rs_logical_rewrite)
968                 return;
969
970         /* writeout remaining in-memory entries */
971         if (state->rs_num_rewrite_mappings > 0)
972                 logical_heap_rewrite_flush_mappings(state);
973
974         /* Iterate over all mappings we have written and fsync the files. */
975         hash_seq_init(&seq_status, state->rs_logical_mappings);
976         while ((src = (RewriteMappingFile *) hash_seq_search(&seq_status)) != NULL)
977         {
978                 if (FileSync(src->vfd, WAIT_EVENT_LOGICAL_REWRITE_SYNC) != 0)
979                         ereport(data_sync_elevel(ERROR),
980                                         (errcode_for_file_access(),
981                                          errmsg("could not fsync file \"%s\": %m", src->path)));
982                 FileClose(src->vfd);
983         }
984         /* memory context cleanup will deal with the rest */
985 }
986
987 /*
988  * Log a single (old->new) mapping for 'xid'.
989  */
990 static void
991 logical_rewrite_log_mapping(RewriteState state, TransactionId xid,
992                                                         LogicalRewriteMappingData *map)
993 {
994         RewriteMappingFile *src;
995         RewriteMappingDataEntry *pmap;
996         Oid                     relid;
997         bool            found;
998
999         relid = RelationGetRelid(state->rs_old_rel);
1000
1001         /* look for existing mappings for this 'mapped' xid */
1002         src = hash_search(state->rs_logical_mappings, &xid,
1003                                           HASH_ENTER, &found);
1004
1005         /*
1006          * We haven't yet had the need to map anything for this xid, create
1007          * per-xid data structures.
1008          */
1009         if (!found)
1010         {
1011                 char            path[MAXPGPATH];
1012                 Oid                     dboid;
1013
1014                 if (state->rs_old_rel->rd_rel->relisshared)
1015                         dboid = InvalidOid;
1016                 else
1017                         dboid = MyDatabaseId;
1018
1019                 snprintf(path, MAXPGPATH,
1020                                  "pg_logical/mappings/" LOGICAL_REWRITE_FORMAT,
1021                                  dboid, relid,
1022                                  (uint32) (state->rs_begin_lsn >> 32),
1023                                  (uint32) state->rs_begin_lsn,
1024                                  xid, GetCurrentTransactionId());
1025
1026                 dlist_init(&src->mappings);
1027                 src->num_mappings = 0;
1028                 src->off = 0;
1029                 memcpy(src->path, path, sizeof(path));
1030                 src->vfd = PathNameOpenFile(path,
1031                                                                         O_CREAT | O_EXCL | O_WRONLY | PG_BINARY);
1032                 if (src->vfd < 0)
1033                         ereport(ERROR,
1034                                         (errcode_for_file_access(),
1035                                          errmsg("could not create file \"%s\": %m", path)));
1036         }
1037
1038         pmap = MemoryContextAlloc(state->rs_cxt,
1039                                                           sizeof(RewriteMappingDataEntry));
1040         memcpy(&pmap->map, map, sizeof(LogicalRewriteMappingData));
1041         dlist_push_tail(&src->mappings, &pmap->node);
1042         src->num_mappings++;
1043         state->rs_num_rewrite_mappings++;
1044
1045         /*
1046          * Write out buffer every time we've too many in-memory entries across all
1047          * mapping files.
1048          */
1049         if (state->rs_num_rewrite_mappings >= 1000 /* arbitrary number */ )
1050                 logical_heap_rewrite_flush_mappings(state);
1051 }
1052
1053 /*
1054  * Perform logical remapping for a tuple that's mapped from old_tid to
1055  * new_tuple->t_self by rewrite_heap_tuple() if necessary for the tuple.
1056  */
1057 static void
1058 logical_rewrite_heap_tuple(RewriteState state, ItemPointerData old_tid,
1059                                                    HeapTuple new_tuple)
1060 {
1061         ItemPointerData new_tid = new_tuple->t_self;
1062         TransactionId cutoff = state->rs_logical_xmin;
1063         TransactionId xmin;
1064         TransactionId xmax;
1065         bool            do_log_xmin = false;
1066         bool            do_log_xmax = false;
1067         LogicalRewriteMappingData map;
1068
1069         /* no logical rewrite in progress, we don't need to log anything */
1070         if (!state->rs_logical_rewrite)
1071                 return;
1072
1073         xmin = HeapTupleHeaderGetXmin(new_tuple->t_data);
1074         /* use *GetUpdateXid to correctly deal with multixacts */
1075         xmax = HeapTupleHeaderGetUpdateXid(new_tuple->t_data);
1076
1077         /*
1078          * Log the mapping iff the tuple has been created recently.
1079          */
1080         if (TransactionIdIsNormal(xmin) && !TransactionIdPrecedes(xmin, cutoff))
1081                 do_log_xmin = true;
1082
1083         if (!TransactionIdIsNormal(xmax))
1084         {
1085                 /*
1086                  * no xmax is set, can't have any permanent ones, so this check is
1087                  * sufficient
1088                  */
1089         }
1090         else if (HEAP_XMAX_IS_LOCKED_ONLY(new_tuple->t_data->t_infomask))
1091         {
1092                 /* only locked, we don't care */
1093         }
1094         else if (!TransactionIdPrecedes(xmax, cutoff))
1095         {
1096                 /* tuple has been deleted recently, log */
1097                 do_log_xmax = true;
1098         }
1099
1100         /* if neither needs to be logged, we're done */
1101         if (!do_log_xmin && !do_log_xmax)
1102                 return;
1103
1104         /* fill out mapping information */
1105         map.old_node = state->rs_old_rel->rd_node;
1106         map.old_tid = old_tid;
1107         map.new_node = state->rs_new_rel->rd_node;
1108         map.new_tid = new_tid;
1109
1110         /* ---
1111          * Now persist the mapping for the individual xids that are affected. We
1112          * need to log for both xmin and xmax if they aren't the same transaction
1113          * since the mapping files are per "affected" xid.
1114          * We don't muster all that much effort detecting whether xmin and xmax
1115          * are actually the same transaction, we just check whether the xid is the
1116          * same disregarding subtransactions. Logging too much is relatively
1117          * harmless and we could never do the check fully since subtransaction
1118          * data is thrown away during restarts.
1119          * ---
1120          */
1121         if (do_log_xmin)
1122                 logical_rewrite_log_mapping(state, xmin, &map);
1123         /* separately log mapping for xmax unless it'd be redundant */
1124         if (do_log_xmax && !TransactionIdEquals(xmin, xmax))
1125                 logical_rewrite_log_mapping(state, xmax, &map);
1126 }
1127
1128 /*
1129  * Replay XLOG_HEAP2_REWRITE records
1130  */
1131 void
1132 heap_xlog_logical_rewrite(XLogReaderState *r)
1133 {
1134         char            path[MAXPGPATH];
1135         int                     fd;
1136         xl_heap_rewrite_mapping *xlrec;
1137         uint32          len;
1138         char       *data;
1139
1140         xlrec = (xl_heap_rewrite_mapping *) XLogRecGetData(r);
1141
1142         snprintf(path, MAXPGPATH,
1143                          "pg_logical/mappings/" LOGICAL_REWRITE_FORMAT,
1144                          xlrec->mapped_db, xlrec->mapped_rel,
1145                          (uint32) (xlrec->start_lsn >> 32),
1146                          (uint32) xlrec->start_lsn,
1147                          xlrec->mapped_xid, XLogRecGetXid(r));
1148
1149         fd = OpenTransientFile(path,
1150                                                    O_CREAT | O_WRONLY | PG_BINARY);
1151         if (fd < 0)
1152                 ereport(ERROR,
1153                                 (errcode_for_file_access(),
1154                                  errmsg("could not create file \"%s\": %m", path)));
1155
1156         /*
1157          * Truncate all data that's not guaranteed to have been safely fsynced (by
1158          * previous record or by the last checkpoint).
1159          */
1160         pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_TRUNCATE);
1161         if (ftruncate(fd, xlrec->offset) != 0)
1162                 ereport(ERROR,
1163                                 (errcode_for_file_access(),
1164                                  errmsg("could not truncate file \"%s\" to %u: %m",
1165                                                 path, (uint32) xlrec->offset)));
1166         pgstat_report_wait_end();
1167
1168         /* now seek to the position we want to write our data to */
1169         if (lseek(fd, xlrec->offset, SEEK_SET) != xlrec->offset)
1170                 ereport(ERROR,
1171                                 (errcode_for_file_access(),
1172                                  errmsg("could not seek to end of file \"%s\": %m",
1173                                                 path)));
1174
1175         data = XLogRecGetData(r) + sizeof(*xlrec);
1176
1177         len = xlrec->num_mappings * sizeof(LogicalRewriteMappingData);
1178
1179         /* write out tail end of mapping file (again) */
1180         errno = 0;
1181         pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_WRITE);
1182         if (write(fd, data, len) != len)
1183         {
1184                 /* if write didn't set errno, assume problem is no disk space */
1185                 if (errno == 0)
1186                         errno = ENOSPC;
1187                 ereport(ERROR,
1188                                 (errcode_for_file_access(),
1189                                  errmsg("could not write to file \"%s\": %m", path)));
1190         }
1191         pgstat_report_wait_end();
1192
1193         /*
1194          * Now fsync all previously written data. We could improve things and only
1195          * do this for the last write to a file, but the required bookkeeping
1196          * doesn't seem worth the trouble.
1197          */
1198         pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_MAPPING_SYNC);
1199         if (pg_fsync(fd) != 0)
1200                 ereport(data_sync_elevel(ERROR),
1201                                 (errcode_for_file_access(),
1202                                  errmsg("could not fsync file \"%s\": %m", path)));
1203         pgstat_report_wait_end();
1204
1205         if (CloseTransientFile(fd) != 0)
1206                 ereport(ERROR,
1207                                 (errcode_for_file_access(),
1208                                  errmsg("could not close file \"%s\": %m", path)));
1209 }
1210
1211 /* ---
1212  * Perform a checkpoint for logical rewrite mappings
1213  *
1214  * This serves two tasks:
1215  * 1) Remove all mappings not needed anymore based on the logical restart LSN
1216  * 2) Flush all remaining mappings to disk, so that replay after a checkpoint
1217  *        only has to deal with the parts of a mapping that have been written out
1218  *        after the checkpoint started.
1219  * ---
1220  */
1221 void
1222 CheckPointLogicalRewriteHeap(void)
1223 {
1224         XLogRecPtr      cutoff;
1225         XLogRecPtr      redo;
1226         DIR                *mappings_dir;
1227         struct dirent *mapping_de;
1228         char            path[MAXPGPATH + 20];
1229
1230         /*
1231          * We start of with a minimum of the last redo pointer. No new decoding
1232          * slot will start before that, so that's a safe upper bound for removal.
1233          */
1234         redo = GetRedoRecPtr();
1235
1236         /* now check for the restart ptrs from existing slots */
1237         cutoff = ReplicationSlotsComputeLogicalRestartLSN();
1238
1239         /* don't start earlier than the restart lsn */
1240         if (cutoff != InvalidXLogRecPtr && redo < cutoff)
1241                 cutoff = redo;
1242
1243         mappings_dir = AllocateDir("pg_logical/mappings");
1244         while ((mapping_de = ReadDir(mappings_dir, "pg_logical/mappings")) != NULL)
1245         {
1246                 struct stat statbuf;
1247                 Oid                     dboid;
1248                 Oid                     relid;
1249                 XLogRecPtr      lsn;
1250                 TransactionId rewrite_xid;
1251                 TransactionId create_xid;
1252                 uint32          hi,
1253                                         lo;
1254
1255                 if (strcmp(mapping_de->d_name, ".") == 0 ||
1256                         strcmp(mapping_de->d_name, "..") == 0)
1257                         continue;
1258
1259                 snprintf(path, sizeof(path), "pg_logical/mappings/%s", mapping_de->d_name);
1260                 if (lstat(path, &statbuf) == 0 && !S_ISREG(statbuf.st_mode))
1261                         continue;
1262
1263                 /* Skip over files that cannot be ours. */
1264                 if (strncmp(mapping_de->d_name, "map-", 4) != 0)
1265                         continue;
1266
1267                 if (sscanf(mapping_de->d_name, LOGICAL_REWRITE_FORMAT,
1268                                    &dboid, &relid, &hi, &lo, &rewrite_xid, &create_xid) != 6)
1269                         elog(ERROR, "could not parse filename \"%s\"", mapping_de->d_name);
1270
1271                 lsn = ((uint64) hi) << 32 | lo;
1272
1273                 if (lsn < cutoff || cutoff == InvalidXLogRecPtr)
1274                 {
1275                         elog(DEBUG1, "removing logical rewrite file \"%s\"", path);
1276                         if (unlink(path) < 0)
1277                                 ereport(ERROR,
1278                                                 (errcode_for_file_access(),
1279                                                  errmsg("could not remove file \"%s\": %m", path)));
1280                 }
1281                 else
1282                 {
1283                         /* on some operating systems fsyncing a file requires O_RDWR */
1284                         int                     fd = OpenTransientFile(path, O_RDWR | PG_BINARY);
1285
1286                         /*
1287                          * The file cannot vanish due to concurrency since this function
1288                          * is the only one removing logical mappings and it's run while
1289                          * CheckpointLock is held exclusively.
1290                          */
1291                         if (fd < 0)
1292                                 ereport(ERROR,
1293                                                 (errcode_for_file_access(),
1294                                                  errmsg("could not open file \"%s\": %m", path)));
1295
1296                         /*
1297                          * We could try to avoid fsyncing files that either haven't
1298                          * changed or have only been created since the checkpoint's start,
1299                          * but it's currently not deemed worth the effort.
1300                          */
1301                         pgstat_report_wait_start(WAIT_EVENT_LOGICAL_REWRITE_CHECKPOINT_SYNC);
1302                         if (pg_fsync(fd) != 0)
1303                                 ereport(data_sync_elevel(ERROR),
1304                                                 (errcode_for_file_access(),
1305                                                  errmsg("could not fsync file \"%s\": %m", path)));
1306                         pgstat_report_wait_end();
1307
1308                         if (CloseTransientFile(fd) != 0)
1309                                 ereport(ERROR,
1310                                                 (errcode_for_file_access(),
1311                                                  errmsg("could not close file \"%s\": %m", path)));
1312                 }
1313         }
1314         FreeDir(mappings_dir);
1315 }