]> granicus.if.org Git - zfs/blob - module/zfs/vdev_removal.c
panic in removal_remap test on 4K devices
[zfs] / module / zfs / vdev_removal.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/zap.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/txg.h>
37 #include <sys/avl.h>
38 #include <sys/bpobj.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/arc.h>
43 #include <sys/zfeature.h>
44 #include <sys/vdev_indirect_births.h>
45 #include <sys/vdev_indirect_mapping.h>
46 #include <sys/abd.h>
47 #include <sys/vdev_initialize.h>
48 #include <sys/vdev_trim.h>
49 #include <sys/trace_vdev.h>
50
51 /*
52  * This file contains the necessary logic to remove vdevs from a
53  * storage pool.  Currently, the only devices that can be removed
54  * are log, cache, and spare devices; and top level vdevs from a pool
55  * w/o raidz or mirrors.  (Note that members of a mirror can be removed
56  * by the detach operation.)
57  *
58  * Log vdevs are removed by evacuating them and then turning the vdev
59  * into a hole vdev while holding spa config locks.
60  *
61  * Top level vdevs are removed and converted into an indirect vdev via
62  * a multi-step process:
63  *
64  *  - Disable allocations from this device (spa_vdev_remove_top).
65  *
66  *  - From a new thread (spa_vdev_remove_thread), copy data from
67  *    the removing vdev to a different vdev.  The copy happens in open
68  *    context (spa_vdev_copy_impl) and issues a sync task
69  *    (vdev_mapping_sync) so the sync thread can update the partial
70  *    indirect mappings in core and on disk.
71  *
72  *  - If a free happens during a removal, it is freed from the
73  *    removing vdev, and if it has already been copied, from the new
74  *    location as well (free_from_removing_vdev).
75  *
76  *  - After the removal is completed, the copy thread converts the vdev
77  *    into an indirect vdev (vdev_remove_complete) before instructing
78  *    the sync thread to destroy the space maps and finish the removal
79  *    (spa_finish_removal).
80  */
81
82 typedef struct vdev_copy_arg {
83         metaslab_t      *vca_msp;
84         uint64_t        vca_outstanding_bytes;
85         uint64_t        vca_read_error_bytes;
86         uint64_t        vca_write_error_bytes;
87         kcondvar_t      vca_cv;
88         kmutex_t        vca_lock;
89 } vdev_copy_arg_t;
90
91 /*
92  * The maximum amount of memory we can use for outstanding i/o while
93  * doing a device removal.  This determines how much i/o we can have
94  * in flight concurrently.
95  */
96 int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
97
98 /*
99  * The largest contiguous segment that we will attempt to allocate when
100  * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
101  * there is a performance problem with attempting to allocate large blocks,
102  * consider decreasing this.
103  *
104  * See also the accessor function spa_remove_max_segment().
105  */
106 int zfs_remove_max_segment = SPA_MAXBLOCKSIZE;
107
108 /*
109  * Ignore hard IO errors during device removal.  When set if a device
110  * encounters hard IO error during the removal process the removal will
111  * not be cancelled.  This can result in a normally recoverable block
112  * becoming permanently damaged and is not recommended.
113  */
114 int zfs_removal_ignore_errors = 0;
115
116 /*
117  * Allow a remap segment to span free chunks of at most this size. The main
118  * impact of a larger span is that we will read and write larger, more
119  * contiguous chunks, with more "unnecessary" data -- trading off bandwidth
120  * for iops.  The value here was chosen to align with
121  * zfs_vdev_read_gap_limit, which is a similar concept when doing regular
122  * reads (but there's no reason it has to be the same).
123  *
124  * Additionally, a higher span will have the following relatively minor
125  * effects:
126  *  - the mapping will be smaller, since one entry can cover more allocated
127  *    segments
128  *  - more of the fragmentation in the removing device will be preserved
129  *  - we'll do larger allocations, which may fail and fall back on smaller
130  *    allocations
131  */
132 int vdev_removal_max_span = 32 * 1024;
133
134 /*
135  * This is used by the test suite so that it can ensure that certain
136  * actions happen while in the middle of a removal.
137  */
138 int zfs_removal_suspend_progress = 0;
139
140 #define VDEV_REMOVAL_ZAP_OBJS   "lzap"
141
142 static void spa_vdev_remove_thread(void *arg);
143 static int spa_vdev_remove_cancel_impl(spa_t *spa);
144
145 static void
146 spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
147 {
148         VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
149             DMU_POOL_DIRECTORY_OBJECT,
150             DMU_POOL_REMOVING, sizeof (uint64_t),
151             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
152             &spa->spa_removing_phys, tx));
153 }
154
155 static nvlist_t *
156 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
157 {
158         for (int i = 0; i < count; i++) {
159                 uint64_t guid =
160                     fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
161
162                 if (guid == target_guid)
163                         return (nvpp[i]);
164         }
165
166         return (NULL);
167 }
168
169 static void
170 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
171     nvlist_t *dev_to_remove)
172 {
173         nvlist_t **newdev = NULL;
174
175         if (count > 1)
176                 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
177
178         for (int i = 0, j = 0; i < count; i++) {
179                 if (dev[i] == dev_to_remove)
180                         continue;
181                 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
182         }
183
184         VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
185         VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
186
187         for (int i = 0; i < count - 1; i++)
188                 nvlist_free(newdev[i]);
189
190         if (count > 1)
191                 kmem_free(newdev, (count - 1) * sizeof (void *));
192 }
193
194 static spa_vdev_removal_t *
195 spa_vdev_removal_create(vdev_t *vd)
196 {
197         spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
198         mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
199         cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
200         svr->svr_allocd_segs = range_tree_create(NULL, NULL);
201         svr->svr_vdev_id = vd->vdev_id;
202
203         for (int i = 0; i < TXG_SIZE; i++) {
204                 svr->svr_frees[i] = range_tree_create(NULL, NULL);
205                 list_create(&svr->svr_new_segments[i],
206                     sizeof (vdev_indirect_mapping_entry_t),
207                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
208         }
209
210         return (svr);
211 }
212
213 void
214 spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
215 {
216         for (int i = 0; i < TXG_SIZE; i++) {
217                 ASSERT0(svr->svr_bytes_done[i]);
218                 ASSERT0(svr->svr_max_offset_to_sync[i]);
219                 range_tree_destroy(svr->svr_frees[i]);
220                 list_destroy(&svr->svr_new_segments[i]);
221         }
222
223         range_tree_destroy(svr->svr_allocd_segs);
224         mutex_destroy(&svr->svr_lock);
225         cv_destroy(&svr->svr_cv);
226         kmem_free(svr, sizeof (*svr));
227 }
228
229 /*
230  * This is called as a synctask in the txg in which we will mark this vdev
231  * as removing (in the config stored in the MOS).
232  *
233  * It begins the evacuation of a toplevel vdev by:
234  * - initializing the spa_removing_phys which tracks this removal
235  * - computing the amount of space to remove for accounting purposes
236  * - dirtying all dbufs in the spa_config_object
237  * - creating the spa_vdev_removal
238  * - starting the spa_vdev_remove_thread
239  */
240 static void
241 vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
242 {
243         int vdev_id = (uintptr_t)arg;
244         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
245         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
246         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
247         objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
248         spa_vdev_removal_t *svr = NULL;
249         ASSERTV(uint64_t txg = dmu_tx_get_txg(tx));
250
251         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
252         svr = spa_vdev_removal_create(vd);
253
254         ASSERT(vd->vdev_removing);
255         ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
256
257         spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
258         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
259                 /*
260                  * By activating the OBSOLETE_COUNTS feature, we prevent
261                  * the pool from being downgraded and ensure that the
262                  * refcounts are precise.
263                  */
264                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
265                 uint64_t one = 1;
266                 VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
267                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
268                     &one, tx));
269                 ASSERTV(boolean_t are_precise);
270                 ASSERT0(vdev_obsolete_counts_are_precise(vd, &are_precise));
271                 ASSERT3B(are_precise, ==, B_TRUE);
272         }
273
274         vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
275         vd->vdev_indirect_mapping =
276             vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
277         vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
278         vd->vdev_indirect_births =
279             vdev_indirect_births_open(mos, vic->vic_births_object);
280         spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
281         spa->spa_removing_phys.sr_start_time = gethrestime_sec();
282         spa->spa_removing_phys.sr_end_time = 0;
283         spa->spa_removing_phys.sr_state = DSS_SCANNING;
284         spa->spa_removing_phys.sr_to_copy = 0;
285         spa->spa_removing_phys.sr_copied = 0;
286
287         /*
288          * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
289          * there may be space in the defer tree, which is free, but still
290          * counted in vs_alloc.
291          */
292         for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
293                 metaslab_t *ms = vd->vdev_ms[i];
294                 if (ms->ms_sm == NULL)
295                         continue;
296
297                 spa->spa_removing_phys.sr_to_copy +=
298                     metaslab_allocated_space(ms);
299
300                 /*
301                  * Space which we are freeing this txg does not need to
302                  * be copied.
303                  */
304                 spa->spa_removing_phys.sr_to_copy -=
305                     range_tree_space(ms->ms_freeing);
306
307                 ASSERT0(range_tree_space(ms->ms_freed));
308                 for (int t = 0; t < TXG_SIZE; t++)
309                         ASSERT0(range_tree_space(ms->ms_allocating[t]));
310         }
311
312         /*
313          * Sync tasks are called before metaslab_sync(), so there should
314          * be no already-synced metaslabs in the TXG_CLEAN list.
315          */
316         ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
317
318         spa_sync_removing_state(spa, tx);
319
320         /*
321          * All blocks that we need to read the most recent mapping must be
322          * stored on concrete vdevs.  Therefore, we must dirty anything that
323          * is read before spa_remove_init().  Specifically, the
324          * spa_config_object.  (Note that although we already modified the
325          * spa_config_object in spa_sync_removing_state, that may not have
326          * modified all blocks of the object.)
327          */
328         dmu_object_info_t doi;
329         VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
330         for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
331                 dmu_buf_t *dbuf;
332                 VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
333                     offset, FTAG, &dbuf, 0));
334                 dmu_buf_will_dirty(dbuf, tx);
335                 offset += dbuf->db_size;
336                 dmu_buf_rele(dbuf, FTAG);
337         }
338
339         /*
340          * Now that we've allocated the im_object, dirty the vdev to ensure
341          * that the object gets written to the config on disk.
342          */
343         vdev_config_dirty(vd);
344
345         zfs_dbgmsg("starting removal thread for vdev %llu (%px) in txg %llu "
346             "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
347             vic->vic_mapping_object);
348
349         spa_history_log_internal(spa, "vdev remove started", tx,
350             "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
351             (vd->vdev_path != NULL) ? vd->vdev_path : "-");
352         /*
353          * Setting spa_vdev_removal causes subsequent frees to call
354          * free_from_removing_vdev().  Note that we don't need any locking
355          * because we are the sync thread, and metaslab_free_impl() is only
356          * called from syncing context (potentially from a zio taskq thread,
357          * but in any case only when there are outstanding free i/os, which
358          * there are not).
359          */
360         ASSERT3P(spa->spa_vdev_removal, ==, NULL);
361         spa->spa_vdev_removal = svr;
362         svr->svr_thread = thread_create(NULL, 0,
363             spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
364 }
365
366 /*
367  * When we are opening a pool, we must read the mapping for each
368  * indirect vdev in order from most recently removed to least
369  * recently removed.  We do this because the blocks for the mapping
370  * of older indirect vdevs may be stored on more recently removed vdevs.
371  * In order to read each indirect mapping object, we must have
372  * initialized all more recently removed vdevs.
373  */
374 int
375 spa_remove_init(spa_t *spa)
376 {
377         int error;
378
379         error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
380             DMU_POOL_DIRECTORY_OBJECT,
381             DMU_POOL_REMOVING, sizeof (uint64_t),
382             sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
383             &spa->spa_removing_phys);
384
385         if (error == ENOENT) {
386                 spa->spa_removing_phys.sr_state = DSS_NONE;
387                 spa->spa_removing_phys.sr_removing_vdev = -1;
388                 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
389                 spa->spa_indirect_vdevs_loaded = B_TRUE;
390                 return (0);
391         } else if (error != 0) {
392                 return (error);
393         }
394
395         if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
396                 /*
397                  * We are currently removing a vdev.  Create and
398                  * initialize a spa_vdev_removal_t from the bonus
399                  * buffer of the removing vdevs vdev_im_object, and
400                  * initialize its partial mapping.
401                  */
402                 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
403                 vdev_t *vd = vdev_lookup_top(spa,
404                     spa->spa_removing_phys.sr_removing_vdev);
405
406                 if (vd == NULL) {
407                         spa_config_exit(spa, SCL_STATE, FTAG);
408                         return (EINVAL);
409                 }
410
411                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
412
413                 ASSERT(vdev_is_concrete(vd));
414                 spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
415                 ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
416                 ASSERT(vd->vdev_removing);
417
418                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
419                     spa->spa_meta_objset, vic->vic_mapping_object);
420                 vd->vdev_indirect_births = vdev_indirect_births_open(
421                     spa->spa_meta_objset, vic->vic_births_object);
422                 spa_config_exit(spa, SCL_STATE, FTAG);
423
424                 spa->spa_vdev_removal = svr;
425         }
426
427         spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
428         uint64_t indirect_vdev_id =
429             spa->spa_removing_phys.sr_prev_indirect_vdev;
430         while (indirect_vdev_id != UINT64_MAX) {
431                 vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
432                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
433
434                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
435                 vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
436                     spa->spa_meta_objset, vic->vic_mapping_object);
437                 vd->vdev_indirect_births = vdev_indirect_births_open(
438                     spa->spa_meta_objset, vic->vic_births_object);
439
440                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
441         }
442         spa_config_exit(spa, SCL_STATE, FTAG);
443
444         /*
445          * Now that we've loaded all the indirect mappings, we can allow
446          * reads from other blocks (e.g. via predictive prefetch).
447          */
448         spa->spa_indirect_vdevs_loaded = B_TRUE;
449         return (0);
450 }
451
452 void
453 spa_restart_removal(spa_t *spa)
454 {
455         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
456
457         if (svr == NULL)
458                 return;
459
460         /*
461          * In general when this function is called there is no
462          * removal thread running. The only scenario where this
463          * is not true is during spa_import() where this function
464          * is called twice [once from spa_import_impl() and
465          * spa_async_resume()]. Thus, in the scenario where we
466          * import a pool that has an ongoing removal we don't
467          * want to spawn a second thread.
468          */
469         if (svr->svr_thread != NULL)
470                 return;
471
472         if (!spa_writeable(spa))
473                 return;
474
475         zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
476         svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
477             0, &p0, TS_RUN, minclsyspri);
478 }
479
480 /*
481  * Process freeing from a device which is in the middle of being removed.
482  * We must handle this carefully so that we attempt to copy freed data,
483  * and we correctly free already-copied data.
484  */
485 void
486 free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
487 {
488         spa_t *spa = vd->vdev_spa;
489         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
490         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
491         uint64_t txg = spa_syncing_txg(spa);
492         uint64_t max_offset_yet = 0;
493
494         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
495         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
496             vdev_indirect_mapping_object(vim));
497         ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
498
499         mutex_enter(&svr->svr_lock);
500
501         /*
502          * Remove the segment from the removing vdev's spacemap.  This
503          * ensures that we will not attempt to copy this space (if the
504          * removal thread has not yet visited it), and also ensures
505          * that we know what is actually allocated on the new vdevs
506          * (needed if we cancel the removal).
507          *
508          * Note: we must do the metaslab_free_concrete() with the svr_lock
509          * held, so that the remove_thread can not load this metaslab and then
510          * visit this offset between the time that we metaslab_free_concrete()
511          * and when we check to see if it has been visited.
512          *
513          * Note: The checkpoint flag is set to false as having/taking
514          * a checkpoint and removing a device can't happen at the same
515          * time.
516          */
517         ASSERT(!spa_has_checkpoint(spa));
518         metaslab_free_concrete(vd, offset, size, B_FALSE);
519
520         uint64_t synced_size = 0;
521         uint64_t synced_offset = 0;
522         uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
523         if (offset < max_offset_synced) {
524                 /*
525                  * The mapping for this offset is already on disk.
526                  * Free from the new location.
527                  *
528                  * Note that we use svr_max_synced_offset because it is
529                  * updated atomically with respect to the in-core mapping.
530                  * By contrast, vim_max_offset is not.
531                  *
532                  * This block may be split between a synced entry and an
533                  * in-flight or unvisited entry.  Only process the synced
534                  * portion of it here.
535                  */
536                 synced_size = MIN(size, max_offset_synced - offset);
537                 synced_offset = offset;
538
539                 ASSERT3U(max_offset_yet, <=, max_offset_synced);
540                 max_offset_yet = max_offset_synced;
541
542                 DTRACE_PROBE3(remove__free__synced,
543                     spa_t *, spa,
544                     uint64_t, offset,
545                     uint64_t, synced_size);
546
547                 size -= synced_size;
548                 offset += synced_size;
549         }
550
551         /*
552          * Look at all in-flight txgs starting from the currently syncing one
553          * and see if a section of this free is being copied. By starting from
554          * this txg and iterating forward, we might find that this region
555          * was copied in two different txgs and handle it appropriately.
556          */
557         for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
558                 int txgoff = (txg + i) & TXG_MASK;
559                 if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
560                         /*
561                          * The mapping for this offset is in flight, and
562                          * will be synced in txg+i.
563                          */
564                         uint64_t inflight_size = MIN(size,
565                             svr->svr_max_offset_to_sync[txgoff] - offset);
566
567                         DTRACE_PROBE4(remove__free__inflight,
568                             spa_t *, spa,
569                             uint64_t, offset,
570                             uint64_t, inflight_size,
571                             uint64_t, txg + i);
572
573                         /*
574                          * We copy data in order of increasing offset.
575                          * Therefore the max_offset_to_sync[] must increase
576                          * (or be zero, indicating that nothing is being
577                          * copied in that txg).
578                          */
579                         if (svr->svr_max_offset_to_sync[txgoff] != 0) {
580                                 ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
581                                     >=, max_offset_yet);
582                                 max_offset_yet =
583                                     svr->svr_max_offset_to_sync[txgoff];
584                         }
585
586                         /*
587                          * We've already committed to copying this segment:
588                          * we have allocated space elsewhere in the pool for
589                          * it and have an IO outstanding to copy the data. We
590                          * cannot free the space before the copy has
591                          * completed, or else the copy IO might overwrite any
592                          * new data. To free that space, we record the
593                          * segment in the appropriate svr_frees tree and free
594                          * the mapped space later, in the txg where we have
595                          * completed the copy and synced the mapping (see
596                          * vdev_mapping_sync).
597                          */
598                         range_tree_add(svr->svr_frees[txgoff],
599                             offset, inflight_size);
600                         size -= inflight_size;
601                         offset += inflight_size;
602
603                         /*
604                          * This space is already accounted for as being
605                          * done, because it is being copied in txg+i.
606                          * However, if i!=0, then it is being copied in
607                          * a future txg.  If we crash after this txg
608                          * syncs but before txg+i syncs, then the space
609                          * will be free.  Therefore we must account
610                          * for the space being done in *this* txg
611                          * (when it is freed) rather than the future txg
612                          * (when it will be copied).
613                          */
614                         ASSERT3U(svr->svr_bytes_done[txgoff], >=,
615                             inflight_size);
616                         svr->svr_bytes_done[txgoff] -= inflight_size;
617                         svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
618                 }
619         }
620         ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
621
622         if (size > 0) {
623                 /*
624                  * The copy thread has not yet visited this offset.  Ensure
625                  * that it doesn't.
626                  */
627
628                 DTRACE_PROBE3(remove__free__unvisited,
629                     spa_t *, spa,
630                     uint64_t, offset,
631                     uint64_t, size);
632
633                 if (svr->svr_allocd_segs != NULL)
634                         range_tree_clear(svr->svr_allocd_segs, offset, size);
635
636                 /*
637                  * Since we now do not need to copy this data, for
638                  * accounting purposes we have done our job and can count
639                  * it as completed.
640                  */
641                 svr->svr_bytes_done[txg & TXG_MASK] += size;
642         }
643         mutex_exit(&svr->svr_lock);
644
645         /*
646          * Now that we have dropped svr_lock, process the synced portion
647          * of this free.
648          */
649         if (synced_size > 0) {
650                 vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
651
652                 /*
653                  * Note: this can only be called from syncing context,
654                  * and the vdev_indirect_mapping is only changed from the
655                  * sync thread, so we don't need svr_lock while doing
656                  * metaslab_free_impl_cb.
657                  */
658                 boolean_t checkpoint = B_FALSE;
659                 vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
660                     metaslab_free_impl_cb, &checkpoint);
661         }
662 }
663
664 /*
665  * Stop an active removal and update the spa_removing phys.
666  */
667 static void
668 spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
669 {
670         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
671         ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
672
673         /* Ensure the removal thread has completed before we free the svr. */
674         spa_vdev_remove_suspend(spa);
675
676         ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
677
678         if (state == DSS_FINISHED) {
679                 spa_removing_phys_t *srp = &spa->spa_removing_phys;
680                 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
681                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
682
683                 if (srp->sr_prev_indirect_vdev != -1) {
684                         vdev_t *pvd;
685                         pvd = vdev_lookup_top(spa,
686                             srp->sr_prev_indirect_vdev);
687                         ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
688                 }
689
690                 vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
691                 srp->sr_prev_indirect_vdev = vd->vdev_id;
692         }
693         spa->spa_removing_phys.sr_state = state;
694         spa->spa_removing_phys.sr_end_time = gethrestime_sec();
695
696         spa->spa_vdev_removal = NULL;
697         spa_vdev_removal_destroy(svr);
698
699         spa_sync_removing_state(spa, tx);
700
701         vdev_config_dirty(spa->spa_root_vdev);
702 }
703
704 static void
705 free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
706 {
707         vdev_t *vd = arg;
708         vdev_indirect_mark_obsolete(vd, offset, size);
709         boolean_t checkpoint = B_FALSE;
710         vdev_indirect_ops.vdev_op_remap(vd, offset, size,
711             metaslab_free_impl_cb, &checkpoint);
712 }
713
714 /*
715  * On behalf of the removal thread, syncs an incremental bit more of
716  * the indirect mapping to disk and updates the in-memory mapping.
717  * Called as a sync task in every txg that the removal thread makes progress.
718  */
719 static void
720 vdev_mapping_sync(void *arg, dmu_tx_t *tx)
721 {
722         spa_vdev_removal_t *svr = arg;
723         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
724         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
725         ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
726         uint64_t txg = dmu_tx_get_txg(tx);
727         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
728
729         ASSERT(vic->vic_mapping_object != 0);
730         ASSERT3U(txg, ==, spa_syncing_txg(spa));
731
732         vdev_indirect_mapping_add_entries(vim,
733             &svr->svr_new_segments[txg & TXG_MASK], tx);
734         vdev_indirect_births_add_entry(vd->vdev_indirect_births,
735             vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
736
737         /*
738          * Free the copied data for anything that was freed while the
739          * mapping entries were in flight.
740          */
741         mutex_enter(&svr->svr_lock);
742         range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
743             free_mapped_segment_cb, vd);
744         ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
745             vdev_indirect_mapping_max_offset(vim));
746         svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
747         mutex_exit(&svr->svr_lock);
748
749         spa_sync_removing_state(spa, tx);
750 }
751
752 typedef struct vdev_copy_segment_arg {
753         spa_t *vcsa_spa;
754         dva_t *vcsa_dest_dva;
755         uint64_t vcsa_txg;
756         range_tree_t *vcsa_obsolete_segs;
757 } vdev_copy_segment_arg_t;
758
759 static void
760 unalloc_seg(void *arg, uint64_t start, uint64_t size)
761 {
762         vdev_copy_segment_arg_t *vcsa = arg;
763         spa_t *spa = vcsa->vcsa_spa;
764         blkptr_t bp = { { { {0} } } };
765
766         BP_SET_BIRTH(&bp, TXG_INITIAL, TXG_INITIAL);
767         BP_SET_LSIZE(&bp, size);
768         BP_SET_PSIZE(&bp, size);
769         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
770         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_OFF);
771         BP_SET_TYPE(&bp, DMU_OT_NONE);
772         BP_SET_LEVEL(&bp, 0);
773         BP_SET_DEDUP(&bp, 0);
774         BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
775
776         DVA_SET_VDEV(&bp.blk_dva[0], DVA_GET_VDEV(vcsa->vcsa_dest_dva));
777         DVA_SET_OFFSET(&bp.blk_dva[0],
778             DVA_GET_OFFSET(vcsa->vcsa_dest_dva) + start);
779         DVA_SET_ASIZE(&bp.blk_dva[0], size);
780
781         zio_free(spa, vcsa->vcsa_txg, &bp);
782 }
783
784 /*
785  * All reads and writes associated with a call to spa_vdev_copy_segment()
786  * are done.
787  */
788 static void
789 spa_vdev_copy_segment_done(zio_t *zio)
790 {
791         vdev_copy_segment_arg_t *vcsa = zio->io_private;
792
793         range_tree_vacate(vcsa->vcsa_obsolete_segs,
794             unalloc_seg, vcsa);
795         range_tree_destroy(vcsa->vcsa_obsolete_segs);
796         kmem_free(vcsa, sizeof (*vcsa));
797
798         spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
799 }
800
801 /*
802  * The write of the new location is done.
803  */
804 static void
805 spa_vdev_copy_segment_write_done(zio_t *zio)
806 {
807         vdev_copy_arg_t *vca = zio->io_private;
808
809         abd_free(zio->io_abd);
810
811         mutex_enter(&vca->vca_lock);
812         vca->vca_outstanding_bytes -= zio->io_size;
813
814         if (zio->io_error != 0)
815                 vca->vca_write_error_bytes += zio->io_size;
816
817         cv_signal(&vca->vca_cv);
818         mutex_exit(&vca->vca_lock);
819 }
820
821 /*
822  * The read of the old location is done.  The parent zio is the write to
823  * the new location.  Allow it to start.
824  */
825 static void
826 spa_vdev_copy_segment_read_done(zio_t *zio)
827 {
828         vdev_copy_arg_t *vca = zio->io_private;
829
830         if (zio->io_error != 0) {
831                 mutex_enter(&vca->vca_lock);
832                 vca->vca_read_error_bytes += zio->io_size;
833                 mutex_exit(&vca->vca_lock);
834         }
835
836         zio_nowait(zio_unique_parent(zio));
837 }
838
839 /*
840  * If the old and new vdevs are mirrors, we will read both sides of the old
841  * mirror, and write each copy to the corresponding side of the new mirror.
842  * If the old and new vdevs have a different number of children, we will do
843  * this as best as possible.  Since we aren't verifying checksums, this
844  * ensures that as long as there's a good copy of the data, we'll have a
845  * good copy after the removal, even if there's silent damage to one side
846  * of the mirror. If we're removing a mirror that has some silent damage,
847  * we'll have exactly the same damage in the new location (assuming that
848  * the new location is also a mirror).
849  *
850  * We accomplish this by creating a tree of zio_t's, with as many writes as
851  * there are "children" of the new vdev (a non-redundant vdev counts as one
852  * child, a 2-way mirror has 2 children, etc). Each write has an associated
853  * read from a child of the old vdev. Typically there will be the same
854  * number of children of the old and new vdevs.  However, if there are more
855  * children of the new vdev, some child(ren) of the old vdev will be issued
856  * multiple reads.  If there are more children of the old vdev, some copies
857  * will be dropped.
858  *
859  * For example, the tree of zio_t's for a 2-way mirror is:
860  *
861  *                            null
862  *                           /    \
863  *    write(new vdev, child 0)      write(new vdev, child 1)
864  *      |                             |
865  *    read(old vdev, child 0)       read(old vdev, child 1)
866  *
867  * Child zio's complete before their parents complete.  However, zio's
868  * created with zio_vdev_child_io() may be issued before their children
869  * complete.  In this case we need to make sure that the children (reads)
870  * complete before the parents (writes) are *issued*.  We do this by not
871  * calling zio_nowait() on each write until its corresponding read has
872  * completed.
873  *
874  * The spa_config_lock must be held while zio's created by
875  * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
876  * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
877  * zio is needed to release the spa_config_lock after all the reads and
878  * writes complete. (Note that we can't grab the config lock for each read,
879  * because it is not reentrant - we could deadlock with a thread waiting
880  * for a write lock.)
881  */
882 static void
883 spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
884     vdev_t *source_vd, uint64_t source_offset,
885     vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
886 {
887         ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
888
889         /*
890          * If the destination child in unwritable then there is no point
891          * in issuing the source reads which cannot be written.
892          */
893         if (!vdev_writeable(dest_child_vd))
894                 return;
895
896         mutex_enter(&vca->vca_lock);
897         vca->vca_outstanding_bytes += size;
898         mutex_exit(&vca->vca_lock);
899
900         abd_t *abd = abd_alloc_for_io(size, B_FALSE);
901
902         vdev_t *source_child_vd = NULL;
903         if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
904                 /*
905                  * Source and dest are both mirrors.  Copy from the same
906                  * child id as we are copying to (wrapping around if there
907                  * are more dest children than source children).  If the
908                  * preferred source child is unreadable select another.
909                  */
910                 for (int i = 0; i < source_vd->vdev_children; i++) {
911                         source_child_vd = source_vd->vdev_child[
912                             (dest_id + i) % source_vd->vdev_children];
913                         if (vdev_readable(source_child_vd))
914                                 break;
915                 }
916         } else {
917                 source_child_vd = source_vd;
918         }
919
920         /*
921          * There should always be at least one readable source child or
922          * the pool would be in a suspended state.  Somehow selecting an
923          * unreadable child would result in IO errors, the removal process
924          * being cancelled, and the pool reverting to its pre-removal state.
925          */
926         ASSERT3P(source_child_vd, !=, NULL);
927
928         zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
929             dest_child_vd, dest_offset, abd, size,
930             ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
931             ZIO_FLAG_CANFAIL,
932             spa_vdev_copy_segment_write_done, vca);
933
934         zio_nowait(zio_vdev_child_io(write_zio, NULL,
935             source_child_vd, source_offset, abd, size,
936             ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
937             ZIO_FLAG_CANFAIL,
938             spa_vdev_copy_segment_read_done, vca));
939 }
940
941 /*
942  * Allocate a new location for this segment, and create the zio_t's to
943  * read from the old location and write to the new location.
944  */
945 static int
946 spa_vdev_copy_segment(vdev_t *vd, range_tree_t *segs,
947     uint64_t maxalloc, uint64_t txg,
948     vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
949 {
950         metaslab_group_t *mg = vd->vdev_mg;
951         spa_t *spa = vd->vdev_spa;
952         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
953         vdev_indirect_mapping_entry_t *entry;
954         dva_t dst = {{ 0 }};
955         uint64_t start = range_tree_min(segs);
956         ASSERT0(P2PHASE(start, 1 << spa->spa_min_ashift));
957
958         ASSERT3U(maxalloc, <=, SPA_MAXBLOCKSIZE);
959         ASSERT0(P2PHASE(maxalloc, 1 << spa->spa_min_ashift));
960
961         uint64_t size = range_tree_span(segs);
962         if (range_tree_span(segs) > maxalloc) {
963                 /*
964                  * We can't allocate all the segments.  Prefer to end
965                  * the allocation at the end of a segment, thus avoiding
966                  * additional split blocks.
967                  */
968                 range_seg_t search;
969                 avl_index_t where;
970                 search.rs_start = start + maxalloc;
971                 search.rs_end = search.rs_start;
972                 range_seg_t *rs = avl_find(&segs->rt_root, &search, &where);
973                 if (rs == NULL) {
974                         rs = avl_nearest(&segs->rt_root, where, AVL_BEFORE);
975                 } else {
976                         rs = AVL_PREV(&segs->rt_root, rs);
977                 }
978                 if (rs != NULL) {
979                         size = rs->rs_end - start;
980                 } else {
981                         /*
982                          * There are no segments that end before maxalloc.
983                          * I.e. the first segment is larger than maxalloc,
984                          * so we must split it.
985                          */
986                         size = maxalloc;
987                 }
988         }
989         ASSERT3U(size, <=, maxalloc);
990         ASSERT0(P2PHASE(size, 1 << spa->spa_min_ashift));
991
992         /*
993          * An allocation class might not have any remaining vdevs or space
994          */
995         metaslab_class_t *mc = mg->mg_class;
996         if (mc != spa_normal_class(spa) && mc->mc_groups <= 1)
997                 mc = spa_normal_class(spa);
998         int error = metaslab_alloc_dva(spa, mc, size, &dst, 0, NULL, txg, 0,
999             zal, 0);
1000         if (error == ENOSPC && mc != spa_normal_class(spa)) {
1001                 error = metaslab_alloc_dva(spa, spa_normal_class(spa), size,
1002                     &dst, 0, NULL, txg, 0, zal, 0);
1003         }
1004         if (error != 0)
1005                 return (error);
1006
1007         /*
1008          * Determine the ranges that are not actually needed.  Offsets are
1009          * relative to the start of the range to be copied (i.e. relative to the
1010          * local variable "start").
1011          */
1012         range_tree_t *obsolete_segs = range_tree_create(NULL, NULL);
1013
1014         range_seg_t *rs = avl_first(&segs->rt_root);
1015         ASSERT3U(rs->rs_start, ==, start);
1016         uint64_t prev_seg_end = rs->rs_end;
1017         while ((rs = AVL_NEXT(&segs->rt_root, rs)) != NULL) {
1018                 if (rs->rs_start >= start + size) {
1019                         break;
1020                 } else {
1021                         range_tree_add(obsolete_segs,
1022                             prev_seg_end - start,
1023                             rs->rs_start - prev_seg_end);
1024                 }
1025                 prev_seg_end = rs->rs_end;
1026         }
1027         /* We don't end in the middle of an obsolete range */
1028         ASSERT3U(start + size, <=, prev_seg_end);
1029
1030         range_tree_clear(segs, start, size);
1031
1032         /*
1033          * We can't have any padding of the allocated size, otherwise we will
1034          * misunderstand what's allocated, and the size of the mapping. We
1035          * prevent padding by ensuring that all devices in the pool have the
1036          * same ashift, and the allocation size is a multiple of the ashift.
1037          */
1038         VERIFY3U(DVA_GET_ASIZE(&dst), ==, size);
1039
1040         entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
1041         DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
1042         entry->vime_mapping.vimep_dst = dst;
1043         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
1044                 entry->vime_obsolete_count = range_tree_space(obsolete_segs);
1045         }
1046
1047         vdev_copy_segment_arg_t *vcsa = kmem_zalloc(sizeof (*vcsa), KM_SLEEP);
1048         vcsa->vcsa_dest_dva = &entry->vime_mapping.vimep_dst;
1049         vcsa->vcsa_obsolete_segs = obsolete_segs;
1050         vcsa->vcsa_spa = spa;
1051         vcsa->vcsa_txg = txg;
1052
1053         /*
1054          * See comment before spa_vdev_copy_one_child().
1055          */
1056         spa_config_enter(spa, SCL_STATE, spa, RW_READER);
1057         zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
1058             spa_vdev_copy_segment_done, vcsa, 0);
1059         vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
1060         if (dest_vd->vdev_ops == &vdev_mirror_ops) {
1061                 for (int i = 0; i < dest_vd->vdev_children; i++) {
1062                         vdev_t *child = dest_vd->vdev_child[i];
1063                         spa_vdev_copy_one_child(vca, nzio, vd, start,
1064                             child, DVA_GET_OFFSET(&dst), i, size);
1065                 }
1066         } else {
1067                 spa_vdev_copy_one_child(vca, nzio, vd, start,
1068                     dest_vd, DVA_GET_OFFSET(&dst), -1, size);
1069         }
1070         zio_nowait(nzio);
1071
1072         list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
1073         ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
1074         vdev_dirty(vd, 0, NULL, txg);
1075
1076         return (0);
1077 }
1078
1079 /*
1080  * Complete the removal of a toplevel vdev. This is called as a
1081  * synctask in the same txg that we will sync out the new config (to the
1082  * MOS object) which indicates that this vdev is indirect.
1083  */
1084 static void
1085 vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
1086 {
1087         spa_vdev_removal_t *svr = arg;
1088         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1089         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1090
1091         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1092
1093         for (int i = 0; i < TXG_SIZE; i++) {
1094                 ASSERT0(svr->svr_bytes_done[i]);
1095         }
1096
1097         ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
1098             spa->spa_removing_phys.sr_to_copy);
1099
1100         vdev_destroy_spacemaps(vd, tx);
1101
1102         /* destroy leaf zaps, if any */
1103         ASSERT3P(svr->svr_zaplist, !=, NULL);
1104         for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
1105             pair != NULL;
1106             pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
1107                 vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
1108         }
1109         fnvlist_free(svr->svr_zaplist);
1110
1111         spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
1112         /* vd->vdev_path is not available here */
1113         spa_history_log_internal(spa, "vdev remove completed",  tx,
1114             "%s vdev %llu", spa_name(spa), vd->vdev_id);
1115 }
1116
1117 static void
1118 vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
1119 {
1120         ASSERT3P(zlist, !=, NULL);
1121         ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
1122
1123         if (vd->vdev_leaf_zap != 0) {
1124                 char zkey[32];
1125                 (void) snprintf(zkey, sizeof (zkey), "%s-%llu",
1126                     VDEV_REMOVAL_ZAP_OBJS, (u_longlong_t)vd->vdev_leaf_zap);
1127                 fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
1128         }
1129
1130         for (uint64_t id = 0; id < vd->vdev_children; id++) {
1131                 vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
1132         }
1133 }
1134
1135 static void
1136 vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
1137 {
1138         vdev_t *ivd;
1139         dmu_tx_t *tx;
1140         spa_t *spa = vd->vdev_spa;
1141         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1142
1143         /*
1144          * First, build a list of leaf zaps to be destroyed.
1145          * This is passed to the sync context thread,
1146          * which does the actual unlinking.
1147          */
1148         svr->svr_zaplist = fnvlist_alloc();
1149         vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
1150
1151         ivd = vdev_add_parent(vd, &vdev_indirect_ops);
1152         ivd->vdev_removing = 0;
1153
1154         vd->vdev_leaf_zap = 0;
1155
1156         vdev_remove_child(ivd, vd);
1157         vdev_compact_children(ivd);
1158
1159         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
1160
1161         mutex_enter(&svr->svr_lock);
1162         svr->svr_thread = NULL;
1163         cv_broadcast(&svr->svr_cv);
1164         mutex_exit(&svr->svr_lock);
1165
1166         /* After this, we can not use svr. */
1167         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1168         dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
1169             0, ZFS_SPACE_CHECK_NONE, tx);
1170         dmu_tx_commit(tx);
1171 }
1172
1173 /*
1174  * Complete the removal of a toplevel vdev. This is called in open
1175  * context by the removal thread after we have copied all vdev's data.
1176  */
1177 static void
1178 vdev_remove_complete(spa_t *spa)
1179 {
1180         uint64_t txg;
1181
1182         /*
1183          * Wait for any deferred frees to be synced before we call
1184          * vdev_metaslab_fini()
1185          */
1186         txg_wait_synced(spa->spa_dsl_pool, 0);
1187         txg = spa_vdev_enter(spa);
1188         vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1189         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
1190         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
1191         ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
1192
1193         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1194             ESC_ZFS_VDEV_REMOVE_DEV);
1195
1196         zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1197             vd->vdev_id, txg);
1198
1199         /*
1200          * Discard allocation state.
1201          */
1202         if (vd->vdev_mg != NULL) {
1203                 vdev_metaslab_fini(vd);
1204                 metaslab_group_destroy(vd->vdev_mg);
1205                 vd->vdev_mg = NULL;
1206         }
1207         ASSERT0(vd->vdev_stat.vs_space);
1208         ASSERT0(vd->vdev_stat.vs_dspace);
1209
1210         vdev_remove_replace_with_indirect(vd, txg);
1211
1212         /*
1213          * We now release the locks, allowing spa_sync to run and finish the
1214          * removal via vdev_remove_complete_sync in syncing context.
1215          *
1216          * Note that we hold on to the vdev_t that has been replaced.  Since
1217          * it isn't part of the vdev tree any longer, it can't be concurrently
1218          * manipulated, even while we don't have the config lock.
1219          */
1220         (void) spa_vdev_exit(spa, NULL, txg, 0);
1221
1222         /*
1223          * Top ZAP should have been transferred to the indirect vdev in
1224          * vdev_remove_replace_with_indirect.
1225          */
1226         ASSERT0(vd->vdev_top_zap);
1227
1228         /*
1229          * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1230          */
1231         ASSERT0(vd->vdev_leaf_zap);
1232
1233         txg = spa_vdev_enter(spa);
1234         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1235         /*
1236          * Request to update the config and the config cachefile.
1237          */
1238         vdev_config_dirty(spa->spa_root_vdev);
1239         (void) spa_vdev_exit(spa, vd, txg, 0);
1240
1241         if (ev != NULL)
1242                 spa_event_post(ev);
1243 }
1244
1245 /*
1246  * Evacuates a segment of size at most max_alloc from the vdev
1247  * via repeated calls to spa_vdev_copy_segment. If an allocation
1248  * fails, the pool is probably too fragmented to handle such a
1249  * large size, so decrease max_alloc so that the caller will not try
1250  * this size again this txg.
1251  */
1252 static void
1253 spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1254     uint64_t *max_alloc, dmu_tx_t *tx)
1255 {
1256         uint64_t txg = dmu_tx_get_txg(tx);
1257         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1258
1259         mutex_enter(&svr->svr_lock);
1260
1261         /*
1262          * Determine how big of a chunk to copy.  We can allocate up
1263          * to max_alloc bytes, and we can span up to vdev_removal_max_span
1264          * bytes of unallocated space at a time.  "segs" will track the
1265          * allocated segments that we are copying.  We may also be copying
1266          * free segments (of up to vdev_removal_max_span bytes).
1267          */
1268         range_tree_t *segs = range_tree_create(NULL, NULL);
1269         for (;;) {
1270                 range_seg_t *rs = range_tree_first(svr->svr_allocd_segs);
1271
1272                 if (rs == NULL)
1273                         break;
1274
1275                 uint64_t seg_length;
1276
1277                 if (range_tree_is_empty(segs)) {
1278                         /* need to truncate the first seg based on max_alloc */
1279                         seg_length =
1280                             MIN(rs->rs_end - rs->rs_start, *max_alloc);
1281                 } else {
1282                         if (rs->rs_start - range_tree_max(segs) >
1283                             vdev_removal_max_span) {
1284                                 /*
1285                                  * Including this segment would cause us to
1286                                  * copy a larger unneeded chunk than is allowed.
1287                                  */
1288                                 break;
1289                         } else if (rs->rs_end - range_tree_min(segs) >
1290                             *max_alloc) {
1291                                 /*
1292                                  * This additional segment would extend past
1293                                  * max_alloc. Rather than splitting this
1294                                  * segment, leave it for the next mapping.
1295                                  */
1296                                 break;
1297                         } else {
1298                                 seg_length = rs->rs_end - rs->rs_start;
1299                         }
1300                 }
1301
1302                 range_tree_add(segs, rs->rs_start, seg_length);
1303                 range_tree_remove(svr->svr_allocd_segs,
1304                     rs->rs_start, seg_length);
1305         }
1306
1307         if (range_tree_is_empty(segs)) {
1308                 mutex_exit(&svr->svr_lock);
1309                 range_tree_destroy(segs);
1310                 return;
1311         }
1312
1313         if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1314                 dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1315                     svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1316         }
1317
1318         svr->svr_max_offset_to_sync[txg & TXG_MASK] = range_tree_max(segs);
1319
1320         /*
1321          * Note: this is the amount of *allocated* space
1322          * that we are taking care of each txg.
1323          */
1324         svr->svr_bytes_done[txg & TXG_MASK] += range_tree_space(segs);
1325
1326         mutex_exit(&svr->svr_lock);
1327
1328         zio_alloc_list_t zal;
1329         metaslab_trace_init(&zal);
1330         uint64_t thismax = SPA_MAXBLOCKSIZE;
1331         while (!range_tree_is_empty(segs)) {
1332                 int error = spa_vdev_copy_segment(vd,
1333                     segs, thismax, txg, vca, &zal);
1334
1335                 if (error == ENOSPC) {
1336                         /*
1337                          * Cut our segment in half, and don't try this
1338                          * segment size again this txg.  Note that the
1339                          * allocation size must be aligned to the highest
1340                          * ashift in the pool, so that the allocation will
1341                          * not be padded out to a multiple of the ashift,
1342                          * which could cause us to think that this mapping
1343                          * is larger than we intended.
1344                          */
1345                         ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1346                         ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1347                         uint64_t attempted =
1348                             MIN(range_tree_span(segs), thismax);
1349                         thismax = P2ROUNDUP(attempted / 2,
1350                             1 << spa->spa_max_ashift);
1351                         /*
1352                          * The minimum-size allocation can not fail.
1353                          */
1354                         ASSERT3U(attempted, >, 1 << spa->spa_max_ashift);
1355                         *max_alloc = attempted - (1 << spa->spa_max_ashift);
1356                 } else {
1357                         ASSERT0(error);
1358
1359                         /*
1360                          * We've performed an allocation, so reset the
1361                          * alloc trace list.
1362                          */
1363                         metaslab_trace_fini(&zal);
1364                         metaslab_trace_init(&zal);
1365                 }
1366         }
1367         metaslab_trace_fini(&zal);
1368         range_tree_destroy(segs);
1369 }
1370
1371 /*
1372  * The size of each removal mapping is limited by the tunable
1373  * zfs_remove_max_segment, but we must adjust this to be a multiple of the
1374  * pool's ashift, so that we don't try to split individual sectors regardless
1375  * of the tunable value.  (Note that device removal requires that all devices
1376  * have the same ashift, so there's no difference between spa_min_ashift and
1377  * spa_max_ashift.) The raw tunable should not be used elsewhere.
1378  */
1379 uint64_t
1380 spa_remove_max_segment(spa_t *spa)
1381 {
1382         return (P2ROUNDUP(zfs_remove_max_segment, 1 << spa->spa_max_ashift));
1383 }
1384
1385 /*
1386  * The removal thread operates in open context.  It iterates over all
1387  * allocated space in the vdev, by loading each metaslab's spacemap.
1388  * For each contiguous segment of allocated space (capping the segment
1389  * size at SPA_MAXBLOCKSIZE), we:
1390  *    - Allocate space for it on another vdev.
1391  *    - Create a new mapping from the old location to the new location
1392  *      (as a record in svr_new_segments).
1393  *    - Initiate a physical read zio to get the data off the removing disk.
1394  *    - In the read zio's done callback, initiate a physical write zio to
1395  *      write it to the new vdev.
1396  * Note that all of this will take effect when a particular TXG syncs.
1397  * The sync thread ensures that all the phys reads and writes for the syncing
1398  * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1399  * (see vdev_mapping_sync()).
1400  */
1401 static void
1402 spa_vdev_remove_thread(void *arg)
1403 {
1404         spa_t *spa = arg;
1405         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1406         vdev_copy_arg_t vca;
1407         uint64_t max_alloc = spa_remove_max_segment(spa);
1408         uint64_t last_txg = 0;
1409
1410         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1411         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1412         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1413         uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1414
1415         ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1416         ASSERT(vdev_is_concrete(vd));
1417         ASSERT(vd->vdev_removing);
1418         ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1419         ASSERT(vim != NULL);
1420
1421         mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1422         cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1423         vca.vca_outstanding_bytes = 0;
1424         vca.vca_read_error_bytes = 0;
1425         vca.vca_write_error_bytes = 0;
1426
1427         mutex_enter(&svr->svr_lock);
1428
1429         /*
1430          * Start from vim_max_offset so we pick up where we left off
1431          * if we are restarting the removal after opening the pool.
1432          */
1433         uint64_t msi;
1434         for (msi = start_offset >> vd->vdev_ms_shift;
1435             msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1436                 metaslab_t *msp = vd->vdev_ms[msi];
1437                 ASSERT3U(msi, <=, vd->vdev_ms_count);
1438
1439                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1440
1441                 mutex_enter(&msp->ms_sync_lock);
1442                 mutex_enter(&msp->ms_lock);
1443
1444                 /*
1445                  * Assert nothing in flight -- ms_*tree is empty.
1446                  */
1447                 for (int i = 0; i < TXG_SIZE; i++) {
1448                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1449                 }
1450
1451                 /*
1452                  * If the metaslab has ever been allocated from (ms_sm!=NULL),
1453                  * read the allocated segments from the space map object
1454                  * into svr_allocd_segs. Since we do this while holding
1455                  * svr_lock and ms_sync_lock, concurrent frees (which
1456                  * would have modified the space map) will wait for us
1457                  * to finish loading the spacemap, and then take the
1458                  * appropriate action (see free_from_removing_vdev()).
1459                  */
1460                 if (msp->ms_sm != NULL) {
1461                         VERIFY0(space_map_load(msp->ms_sm,
1462                             svr->svr_allocd_segs, SM_ALLOC));
1463
1464                         range_tree_walk(msp->ms_freeing,
1465                             range_tree_remove, svr->svr_allocd_segs);
1466
1467                         /*
1468                          * When we are resuming from a paused removal (i.e.
1469                          * when importing a pool with a removal in progress),
1470                          * discard any state that we have already processed.
1471                          */
1472                         range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1473                 }
1474                 mutex_exit(&msp->ms_lock);
1475                 mutex_exit(&msp->ms_sync_lock);
1476
1477                 vca.vca_msp = msp;
1478                 zfs_dbgmsg("copying %llu segments for metaslab %llu",
1479                     avl_numnodes(&svr->svr_allocd_segs->rt_root),
1480                     msp->ms_id);
1481
1482                 while (!svr->svr_thread_exit &&
1483                     !range_tree_is_empty(svr->svr_allocd_segs)) {
1484
1485                         mutex_exit(&svr->svr_lock);
1486
1487                         /*
1488                          * We need to periodically drop the config lock so that
1489                          * writers can get in.  Additionally, we can't wait
1490                          * for a txg to sync while holding a config lock
1491                          * (since a waiting writer could cause a 3-way deadlock
1492                          * with the sync thread, which also gets a config
1493                          * lock for reader).  So we can't hold the config lock
1494                          * while calling dmu_tx_assign().
1495                          */
1496                         spa_config_exit(spa, SCL_CONFIG, FTAG);
1497
1498                         /*
1499                          * This delay will pause the removal around the point
1500                          * specified by zfs_removal_suspend_progress. We do this
1501                          * solely from the test suite or during debugging.
1502                          */
1503                         uint64_t bytes_copied =
1504                             spa->spa_removing_phys.sr_copied;
1505                         for (int i = 0; i < TXG_SIZE; i++)
1506                                 bytes_copied += svr->svr_bytes_done[i];
1507                         while (zfs_removal_suspend_progress &&
1508                             !svr->svr_thread_exit)
1509                                 delay(hz);
1510
1511                         mutex_enter(&vca.vca_lock);
1512                         while (vca.vca_outstanding_bytes >
1513                             zfs_remove_max_copy_bytes) {
1514                                 cv_wait(&vca.vca_cv, &vca.vca_lock);
1515                         }
1516                         mutex_exit(&vca.vca_lock);
1517
1518                         dmu_tx_t *tx =
1519                             dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1520
1521                         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1522                         uint64_t txg = dmu_tx_get_txg(tx);
1523
1524                         /*
1525                          * Reacquire the vdev_config lock.  The vdev_t
1526                          * that we're removing may have changed, e.g. due
1527                          * to a vdev_attach or vdev_detach.
1528                          */
1529                         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1530                         vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1531
1532                         if (txg != last_txg)
1533                                 max_alloc = spa_remove_max_segment(spa);
1534                         last_txg = txg;
1535
1536                         spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1537
1538                         dmu_tx_commit(tx);
1539                         mutex_enter(&svr->svr_lock);
1540                 }
1541
1542                 mutex_enter(&vca.vca_lock);
1543                 if (zfs_removal_ignore_errors == 0 &&
1544                     (vca.vca_read_error_bytes > 0 ||
1545                     vca.vca_write_error_bytes > 0)) {
1546                         svr->svr_thread_exit = B_TRUE;
1547                 }
1548                 mutex_exit(&vca.vca_lock);
1549         }
1550
1551         mutex_exit(&svr->svr_lock);
1552
1553         spa_config_exit(spa, SCL_CONFIG, FTAG);
1554
1555         /*
1556          * Wait for all copies to finish before cleaning up the vca.
1557          */
1558         txg_wait_synced(spa->spa_dsl_pool, 0);
1559         ASSERT0(vca.vca_outstanding_bytes);
1560
1561         mutex_destroy(&vca.vca_lock);
1562         cv_destroy(&vca.vca_cv);
1563
1564         if (svr->svr_thread_exit) {
1565                 mutex_enter(&svr->svr_lock);
1566                 range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1567                 svr->svr_thread = NULL;
1568                 cv_broadcast(&svr->svr_cv);
1569                 mutex_exit(&svr->svr_lock);
1570
1571                 /*
1572                  * During the removal process an unrecoverable read or write
1573                  * error was encountered.  The removal process must be
1574                  * cancelled or this damage may become permanent.
1575                  */
1576                 if (zfs_removal_ignore_errors == 0 &&
1577                     (vca.vca_read_error_bytes > 0 ||
1578                     vca.vca_write_error_bytes > 0)) {
1579                         zfs_dbgmsg("canceling removal due to IO errors: "
1580                             "[read_error_bytes=%llu] [write_error_bytes=%llu]",
1581                             vca.vca_read_error_bytes,
1582                             vca.vca_write_error_bytes);
1583                         spa_vdev_remove_cancel_impl(spa);
1584                 }
1585         } else {
1586                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1587                 vdev_remove_complete(spa);
1588         }
1589 }
1590
1591 void
1592 spa_vdev_remove_suspend(spa_t *spa)
1593 {
1594         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1595
1596         if (svr == NULL)
1597                 return;
1598
1599         mutex_enter(&svr->svr_lock);
1600         svr->svr_thread_exit = B_TRUE;
1601         while (svr->svr_thread != NULL)
1602                 cv_wait(&svr->svr_cv, &svr->svr_lock);
1603         svr->svr_thread_exit = B_FALSE;
1604         mutex_exit(&svr->svr_lock);
1605 }
1606
1607 /* ARGSUSED */
1608 static int
1609 spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1610 {
1611         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1612
1613         if (spa->spa_vdev_removal == NULL)
1614                 return (ENOTACTIVE);
1615         return (0);
1616 }
1617
1618 /*
1619  * Cancel a removal by freeing all entries from the partial mapping
1620  * and marking the vdev as no longer being removing.
1621  */
1622 /* ARGSUSED */
1623 static void
1624 spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1625 {
1626         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1627         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1628         vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1629         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1630         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1631         objset_t *mos = spa->spa_meta_objset;
1632
1633         ASSERT3P(svr->svr_thread, ==, NULL);
1634
1635         spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1636
1637         boolean_t are_precise;
1638         VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
1639         if (are_precise) {
1640                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1641                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1642                     VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1643         }
1644
1645         uint64_t obsolete_sm_object;
1646         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1647         if (obsolete_sm_object != 0) {
1648                 ASSERT(vd->vdev_obsolete_sm != NULL);
1649                 ASSERT3U(obsolete_sm_object, ==,
1650                     space_map_object(vd->vdev_obsolete_sm));
1651
1652                 space_map_free(vd->vdev_obsolete_sm, tx);
1653                 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1654                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1655                 space_map_close(vd->vdev_obsolete_sm);
1656                 vd->vdev_obsolete_sm = NULL;
1657                 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1658         }
1659         for (int i = 0; i < TXG_SIZE; i++) {
1660                 ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1661                 ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1662                     vdev_indirect_mapping_max_offset(vim));
1663         }
1664
1665         for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1666                 metaslab_t *msp = vd->vdev_ms[msi];
1667
1668                 if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1669                         break;
1670
1671                 ASSERT0(range_tree_space(svr->svr_allocd_segs));
1672
1673                 mutex_enter(&msp->ms_lock);
1674
1675                 /*
1676                  * Assert nothing in flight -- ms_*tree is empty.
1677                  */
1678                 for (int i = 0; i < TXG_SIZE; i++)
1679                         ASSERT0(range_tree_space(msp->ms_allocating[i]));
1680                 for (int i = 0; i < TXG_DEFER_SIZE; i++)
1681                         ASSERT0(range_tree_space(msp->ms_defer[i]));
1682                 ASSERT0(range_tree_space(msp->ms_freed));
1683
1684                 if (msp->ms_sm != NULL) {
1685                         mutex_enter(&svr->svr_lock);
1686                         VERIFY0(space_map_load(msp->ms_sm,
1687                             svr->svr_allocd_segs, SM_ALLOC));
1688                         range_tree_walk(msp->ms_freeing,
1689                             range_tree_remove, svr->svr_allocd_segs);
1690
1691                         /*
1692                          * Clear everything past what has been synced,
1693                          * because we have not allocated mappings for it yet.
1694                          */
1695                         uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1696                         uint64_t sm_end = msp->ms_sm->sm_start +
1697                             msp->ms_sm->sm_size;
1698                         if (sm_end > syncd)
1699                                 range_tree_clear(svr->svr_allocd_segs,
1700                                     syncd, sm_end - syncd);
1701
1702                         mutex_exit(&svr->svr_lock);
1703                 }
1704                 mutex_exit(&msp->ms_lock);
1705
1706                 mutex_enter(&svr->svr_lock);
1707                 range_tree_vacate(svr->svr_allocd_segs,
1708                     free_mapped_segment_cb, vd);
1709                 mutex_exit(&svr->svr_lock);
1710         }
1711
1712         /*
1713          * Note: this must happen after we invoke free_mapped_segment_cb,
1714          * because it adds to the obsolete_segments.
1715          */
1716         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1717
1718         ASSERT3U(vic->vic_mapping_object, ==,
1719             vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1720         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1721         vd->vdev_indirect_mapping = NULL;
1722         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1723         vic->vic_mapping_object = 0;
1724
1725         ASSERT3U(vic->vic_births_object, ==,
1726             vdev_indirect_births_object(vd->vdev_indirect_births));
1727         vdev_indirect_births_close(vd->vdev_indirect_births);
1728         vd->vdev_indirect_births = NULL;
1729         vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1730         vic->vic_births_object = 0;
1731
1732         /*
1733          * We may have processed some frees from the removing vdev in this
1734          * txg, thus increasing svr_bytes_done; discard that here to
1735          * satisfy the assertions in spa_vdev_removal_destroy().
1736          * Note that future txg's can not have any bytes_done, because
1737          * future TXG's are only modified from open context, and we have
1738          * already shut down the copying thread.
1739          */
1740         svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1741         spa_finish_removal(spa, DSS_CANCELED, tx);
1742
1743         vd->vdev_removing = B_FALSE;
1744         vdev_config_dirty(vd);
1745
1746         zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1747             vd->vdev_id, dmu_tx_get_txg(tx));
1748         spa_history_log_internal(spa, "vdev remove canceled", tx,
1749             "%s vdev %llu %s", spa_name(spa),
1750             vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1751 }
1752
1753 static int
1754 spa_vdev_remove_cancel_impl(spa_t *spa)
1755 {
1756         uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1757
1758         int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1759             spa_vdev_remove_cancel_sync, NULL, 0,
1760             ZFS_SPACE_CHECK_EXTRA_RESERVED);
1761
1762         if (error == 0) {
1763                 spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1764                 vdev_t *vd = vdev_lookup_top(spa, vdid);
1765                 metaslab_group_activate(vd->vdev_mg);
1766                 spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1767         }
1768
1769         return (error);
1770 }
1771
1772 int
1773 spa_vdev_remove_cancel(spa_t *spa)
1774 {
1775         spa_vdev_remove_suspend(spa);
1776
1777         if (spa->spa_vdev_removal == NULL)
1778                 return (ENOTACTIVE);
1779
1780         return (spa_vdev_remove_cancel_impl(spa));
1781 }
1782
1783 void
1784 svr_sync(spa_t *spa, dmu_tx_t *tx)
1785 {
1786         spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1787         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1788
1789         if (svr == NULL)
1790                 return;
1791
1792         /*
1793          * This check is necessary so that we do not dirty the
1794          * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1795          * is nothing to do.  Dirtying it every time would prevent us
1796          * from syncing-to-convergence.
1797          */
1798         if (svr->svr_bytes_done[txgoff] == 0)
1799                 return;
1800
1801         /*
1802          * Update progress accounting.
1803          */
1804         spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1805         svr->svr_bytes_done[txgoff] = 0;
1806
1807         spa_sync_removing_state(spa, tx);
1808 }
1809
1810 static void
1811 vdev_remove_make_hole_and_free(vdev_t *vd)
1812 {
1813         uint64_t id = vd->vdev_id;
1814         spa_t *spa = vd->vdev_spa;
1815         vdev_t *rvd = spa->spa_root_vdev;
1816         boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1817
1818         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1819         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1820
1821         vdev_free(vd);
1822
1823         if (last_vdev) {
1824                 vdev_compact_children(rvd);
1825         } else {
1826                 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1827                 vdev_add_child(rvd, vd);
1828         }
1829         vdev_config_dirty(rvd);
1830
1831         /*
1832          * Reassess the health of our root vdev.
1833          */
1834         vdev_reopen(rvd);
1835 }
1836
1837 /*
1838  * Remove a log device.  The config lock is held for the specified TXG.
1839  */
1840 static int
1841 spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1842 {
1843         metaslab_group_t *mg = vd->vdev_mg;
1844         spa_t *spa = vd->vdev_spa;
1845         int error = 0;
1846
1847         ASSERT(vd->vdev_islog);
1848         ASSERT(vd == vd->vdev_top);
1849         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1850
1851         /*
1852          * Stop allocating from this vdev.
1853          */
1854         metaslab_group_passivate(mg);
1855
1856         /*
1857          * Wait for the youngest allocations and frees to sync,
1858          * and then wait for the deferral of those frees to finish.
1859          */
1860         spa_vdev_config_exit(spa, NULL,
1861             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1862
1863         /*
1864          * Evacuate the device.  We don't hold the config lock as
1865          * writer since we need to do I/O but we do keep the
1866          * spa_namespace_lock held.  Once this completes the device
1867          * should no longer have any blocks allocated on it.
1868          */
1869         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1870         if (vd->vdev_stat.vs_alloc != 0)
1871                 error = spa_reset_logs(spa);
1872
1873         *txg = spa_vdev_config_enter(spa);
1874
1875         if (error != 0) {
1876                 metaslab_group_activate(mg);
1877                 return (error);
1878         }
1879         ASSERT0(vd->vdev_stat.vs_alloc);
1880
1881         /*
1882          * The evacuation succeeded.  Remove any remaining MOS metadata
1883          * associated with this vdev, and wait for these changes to sync.
1884          */
1885         vd->vdev_removing = B_TRUE;
1886
1887         vdev_dirty_leaves(vd, VDD_DTL, *txg);
1888         vdev_config_dirty(vd);
1889
1890         vdev_metaslab_fini(vd);
1891
1892         spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1893
1894         /* Stop initializing and TRIM */
1895         vdev_initialize_stop_all(vd, VDEV_INITIALIZE_CANCELED);
1896         vdev_trim_stop_all(vd, VDEV_TRIM_CANCELED);
1897         vdev_autotrim_stop_wait(vd);
1898
1899         *txg = spa_vdev_config_enter(spa);
1900
1901         sysevent_t *ev = spa_event_create(spa, vd, NULL,
1902             ESC_ZFS_VDEV_REMOVE_DEV);
1903         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1904         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1905
1906         /* The top ZAP should have been destroyed by vdev_remove_empty. */
1907         ASSERT0(vd->vdev_top_zap);
1908         /* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1909         ASSERT0(vd->vdev_leaf_zap);
1910
1911         (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1912
1913         if (list_link_active(&vd->vdev_state_dirty_node))
1914                 vdev_state_clean(vd);
1915         if (list_link_active(&vd->vdev_config_dirty_node))
1916                 vdev_config_clean(vd);
1917
1918         ASSERT0(vd->vdev_stat.vs_alloc);
1919
1920         /*
1921          * Clean up the vdev namespace.
1922          */
1923         vdev_remove_make_hole_and_free(vd);
1924
1925         if (ev != NULL)
1926                 spa_event_post(ev);
1927
1928         return (0);
1929 }
1930
1931 static int
1932 spa_vdev_remove_top_check(vdev_t *vd)
1933 {
1934         spa_t *spa = vd->vdev_spa;
1935
1936         if (vd != vd->vdev_top)
1937                 return (SET_ERROR(ENOTSUP));
1938
1939         if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1940                 return (SET_ERROR(ENOTSUP));
1941
1942         /* available space in the pool's normal class */
1943         uint64_t available = dsl_dir_space_available(
1944             spa->spa_dsl_pool->dp_root_dir, NULL, 0, B_TRUE);
1945
1946         metaslab_class_t *mc = vd->vdev_mg->mg_class;
1947
1948         /*
1949          * When removing a vdev from an allocation class that has
1950          * remaining vdevs, include available space from the class.
1951          */
1952         if (mc != spa_normal_class(spa) && mc->mc_groups > 1) {
1953                 uint64_t class_avail = metaslab_class_get_space(mc) -
1954                     metaslab_class_get_alloc(mc);
1955
1956                 /* add class space, adjusted for overhead */
1957                 available += (class_avail * 94) / 100;
1958         }
1959
1960         /*
1961          * There has to be enough free space to remove the
1962          * device and leave double the "slop" space (i.e. we
1963          * must leave at least 3% of the pool free, in addition to
1964          * the normal slop space).
1965          */
1966         if (available < vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1967                 return (SET_ERROR(ENOSPC));
1968         }
1969
1970         /*
1971          * There can not be a removal in progress.
1972          */
1973         if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1974                 return (SET_ERROR(EBUSY));
1975
1976         /*
1977          * The device must have all its data.
1978          */
1979         if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1980             !vdev_dtl_empty(vd, DTL_OUTAGE))
1981                 return (SET_ERROR(EBUSY));
1982
1983         /*
1984          * The device must be healthy.
1985          */
1986         if (!vdev_readable(vd))
1987                 return (SET_ERROR(EIO));
1988
1989         /*
1990          * All vdevs in normal class must have the same ashift.
1991          */
1992         if (spa->spa_max_ashift != spa->spa_min_ashift) {
1993                 return (SET_ERROR(EINVAL));
1994         }
1995
1996         /*
1997          * All vdevs in normal class must have the same ashift
1998          * and not be raidz.
1999          */
2000         vdev_t *rvd = spa->spa_root_vdev;
2001         int num_indirect = 0;
2002         for (uint64_t id = 0; id < rvd->vdev_children; id++) {
2003                 vdev_t *cvd = rvd->vdev_child[id];
2004                 if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
2005                         ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
2006                 if (cvd->vdev_ops == &vdev_indirect_ops)
2007                         num_indirect++;
2008                 if (!vdev_is_concrete(cvd))
2009                         continue;
2010                 if (cvd->vdev_ops == &vdev_raidz_ops)
2011                         return (SET_ERROR(EINVAL));
2012                 /*
2013                  * Need the mirror to be mirror of leaf vdevs only
2014                  */
2015                 if (cvd->vdev_ops == &vdev_mirror_ops) {
2016                         for (uint64_t cid = 0;
2017                             cid < cvd->vdev_children; cid++) {
2018                                 if (!cvd->vdev_child[cid]->vdev_ops->
2019                                     vdev_op_leaf)
2020                                         return (SET_ERROR(EINVAL));
2021                         }
2022                 }
2023         }
2024
2025         return (0);
2026 }
2027
2028 /*
2029  * Initiate removal of a top-level vdev, reducing the total space in the pool.
2030  * The config lock is held for the specified TXG.  Once initiated,
2031  * evacuation of all allocated space (copying it to other vdevs) happens
2032  * in the background (see spa_vdev_remove_thread()), and can be canceled
2033  * (see spa_vdev_remove_cancel()).  If successful, the vdev will
2034  * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
2035  */
2036 static int
2037 spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
2038 {
2039         spa_t *spa = vd->vdev_spa;
2040         int error;
2041
2042         /*
2043          * Check for errors up-front, so that we don't waste time
2044          * passivating the metaslab group and clearing the ZIL if there
2045          * are errors.
2046          */
2047         error = spa_vdev_remove_top_check(vd);
2048         if (error != 0)
2049                 return (error);
2050
2051         /*
2052          * Stop allocating from this vdev.  Note that we must check
2053          * that this is not the only device in the pool before
2054          * passivating, otherwise we will not be able to make
2055          * progress because we can't allocate from any vdevs.
2056          * The above check for sufficient free space serves this
2057          * purpose.
2058          */
2059         metaslab_group_t *mg = vd->vdev_mg;
2060         metaslab_group_passivate(mg);
2061
2062         /*
2063          * Wait for the youngest allocations and frees to sync,
2064          * and then wait for the deferral of those frees to finish.
2065          */
2066         spa_vdev_config_exit(spa, NULL,
2067             *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
2068
2069         /*
2070          * We must ensure that no "stubby" log blocks are allocated
2071          * on the device to be removed.  These blocks could be
2072          * written at any time, including while we are in the middle
2073          * of copying them.
2074          */
2075         error = spa_reset_logs(spa);
2076
2077         /*
2078          * We stop any initializing and TRIM that is currently in progress
2079          * but leave the state as "active". This will allow the process to
2080          * resume if the removal is canceled sometime later.
2081          */
2082         vdev_initialize_stop_all(vd, VDEV_INITIALIZE_ACTIVE);
2083         vdev_trim_stop_all(vd, VDEV_TRIM_ACTIVE);
2084         vdev_autotrim_stop_wait(vd);
2085
2086         *txg = spa_vdev_config_enter(spa);
2087
2088         /*
2089          * Things might have changed while the config lock was dropped
2090          * (e.g. space usage).  Check for errors again.
2091          */
2092         if (error == 0)
2093                 error = spa_vdev_remove_top_check(vd);
2094
2095         if (error != 0) {
2096                 metaslab_group_activate(mg);
2097                 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
2098                 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
2099                 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
2100                 return (error);
2101         }
2102
2103         vd->vdev_removing = B_TRUE;
2104
2105         vdev_dirty_leaves(vd, VDD_DTL, *txg);
2106         vdev_config_dirty(vd);
2107         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
2108         dsl_sync_task_nowait(spa->spa_dsl_pool,
2109             vdev_remove_initiate_sync,
2110             (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
2111         dmu_tx_commit(tx);
2112
2113         return (0);
2114 }
2115
2116 /*
2117  * Remove a device from the pool.
2118  *
2119  * Removing a device from the vdev namespace requires several steps
2120  * and can take a significant amount of time.  As a result we use
2121  * the spa_vdev_config_[enter/exit] functions which allow us to
2122  * grab and release the spa_config_lock while still holding the namespace
2123  * lock.  During each step the configuration is synced out.
2124  */
2125 int
2126 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2127 {
2128         vdev_t *vd;
2129         nvlist_t **spares, **l2cache, *nv;
2130         uint64_t txg = 0;
2131         uint_t nspares, nl2cache;
2132         int error = 0, error_log;
2133         boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
2134         sysevent_t *ev = NULL;
2135         char *vd_type = NULL, *vd_path = NULL, *vd_path_log = NULL;
2136
2137         ASSERT(spa_writeable(spa));
2138
2139         if (!locked)
2140                 txg = spa_vdev_enter(spa);
2141
2142         ASSERT(MUTEX_HELD(&spa_namespace_lock));
2143         if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
2144                 error = (spa_has_checkpoint(spa)) ?
2145                     ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
2146
2147                 if (!locked)
2148                         return (spa_vdev_exit(spa, NULL, txg, error));
2149
2150                 return (error);
2151         }
2152
2153         vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2154
2155         if (spa->spa_spares.sav_vdevs != NULL &&
2156             nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2157             ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
2158             (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
2159                 /*
2160                  * Only remove the hot spare if it's not currently in use
2161                  * in this pool.
2162                  */
2163                 if (vd == NULL || unspare) {
2164                         if (vd == NULL)
2165                                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2166                         ev = spa_event_create(spa, vd, NULL,
2167                             ESC_ZFS_VDEV_REMOVE_AUX);
2168
2169                         vd_type = VDEV_TYPE_SPARE;
2170                         vd_path = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2171                         spa_vdev_remove_aux(spa->spa_spares.sav_config,
2172                             ZPOOL_CONFIG_SPARES, spares, nspares, nv);
2173                         spa_load_spares(spa);
2174                         spa->spa_spares.sav_sync = B_TRUE;
2175                 } else {
2176                         error = SET_ERROR(EBUSY);
2177                 }
2178         } else if (spa->spa_l2cache.sav_vdevs != NULL &&
2179             nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2180             ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
2181             (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
2182                 vd_type = VDEV_TYPE_L2CACHE;
2183                 vd_path = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
2184                 /*
2185                  * Cache devices can always be removed.
2186                  */
2187                 vd = spa_lookup_by_guid(spa, guid, B_TRUE);
2188                 ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
2189                 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
2190                     ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
2191                 spa_load_l2cache(spa);
2192                 spa->spa_l2cache.sav_sync = B_TRUE;
2193         } else if (vd != NULL && vd->vdev_islog) {
2194                 ASSERT(!locked);
2195                 vd_type = VDEV_TYPE_LOG;
2196                 vd_path = (vd->vdev_path != NULL) ? vd->vdev_path : "-";
2197                 error = spa_vdev_remove_log(vd, &txg);
2198         } else if (vd != NULL) {
2199                 ASSERT(!locked);
2200                 error = spa_vdev_remove_top(vd, &txg);
2201         } else {
2202                 /*
2203                  * There is no vdev of any kind with the specified guid.
2204                  */
2205                 error = SET_ERROR(ENOENT);
2206         }
2207
2208         if (vd_path != NULL)
2209                 vd_path_log = spa_strdup(vd_path);
2210
2211         error_log = error;
2212
2213         if (!locked)
2214                 error = spa_vdev_exit(spa, NULL, txg, error);
2215
2216         /*
2217          * Logging must be done outside the spa config lock. Otherwise,
2218          * this code path could end up holding the spa config lock while
2219          * waiting for a txg_sync so it can write to the internal log.
2220          * Doing that would prevent the txg sync from actually happening,
2221          * causing a deadlock.
2222          */
2223         if (error_log == 0 && vd_type != NULL && vd_path_log != NULL) {
2224                 spa_history_log_internal(spa, "vdev remove", NULL,
2225                     "%s vdev (%s) %s", spa_name(spa), vd_type, vd_path_log);
2226         }
2227         if (vd_path_log != NULL)
2228                 spa_strfree(vd_path_log);
2229
2230         if (ev != NULL)
2231                 spa_event_post(ev);
2232
2233         return (error);
2234 }
2235
2236 int
2237 spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
2238 {
2239         prs->prs_state = spa->spa_removing_phys.sr_state;
2240
2241         if (prs->prs_state == DSS_NONE)
2242                 return (SET_ERROR(ENOENT));
2243
2244         prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
2245         prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
2246         prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
2247         prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
2248         prs->prs_copied = spa->spa_removing_phys.sr_copied;
2249
2250         prs->prs_mapping_memory = 0;
2251         uint64_t indirect_vdev_id =
2252             spa->spa_removing_phys.sr_prev_indirect_vdev;
2253         while (indirect_vdev_id != -1) {
2254                 vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
2255                 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
2256                 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
2257
2258                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2259                 prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
2260                 indirect_vdev_id = vic->vic_prev_indirect_vdev;
2261         }
2262
2263         return (0);
2264 }
2265
2266 #if defined(_KERNEL)
2267 module_param(zfs_removal_ignore_errors, int, 0644);
2268 MODULE_PARM_DESC(zfs_removal_ignore_errors,
2269         "Ignore hard IO errors when removing device");
2270
2271 module_param(zfs_remove_max_segment, int, 0644);
2272 MODULE_PARM_DESC(zfs_remove_max_segment,
2273         "Largest contiguous segment to allocate when removing device");
2274
2275 module_param(vdev_removal_max_span, int, 0644);
2276 MODULE_PARM_DESC(vdev_removal_max_span,
2277         "Largest span of free chunks a remap segment can span");
2278
2279 /* BEGIN CSTYLED */
2280 module_param(zfs_removal_suspend_progress, int, 0644);
2281 MODULE_PARM_DESC(zfs_removal_suspend_progress,
2282         "Pause device removal after this many bytes are copied "
2283         "(debug use only - causes removal to hang)");
2284 /* END CSTYLED */
2285
2286 EXPORT_SYMBOL(free_from_removing_vdev);
2287 EXPORT_SYMBOL(spa_removal_get_stats);
2288 EXPORT_SYMBOL(spa_remove_init);
2289 EXPORT_SYMBOL(spa_restart_removal);
2290 EXPORT_SYMBOL(spa_vdev_removal_destroy);
2291 EXPORT_SYMBOL(spa_vdev_remove);
2292 EXPORT_SYMBOL(spa_vdev_remove_cancel);
2293 EXPORT_SYMBOL(spa_vdev_remove_suspend);
2294 EXPORT_SYMBOL(svr_sync);
2295 #endif