]> granicus.if.org Git - zfs/blob - module/zfs/vdev_indirect.c
Fix for ARC sysctls ignored at runtime
[zfs] / module / zfs / vdev_indirect.c
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15
16 /*
17  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
19  * Copyright (c) 2014, 2019 by Delphix. All rights reserved.
20  */
21
22 #include <sys/zfs_context.h>
23 #include <sys/spa.h>
24 #include <sys/spa_impl.h>
25 #include <sys/vdev_impl.h>
26 #include <sys/fs/zfs.h>
27 #include <sys/zio.h>
28 #include <sys/zio_checksum.h>
29 #include <sys/metaslab.h>
30 #include <sys/refcount.h>
31 #include <sys/dmu.h>
32 #include <sys/vdev_indirect_mapping.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/zap.h>
36 #include <sys/abd.h>
37 #include <sys/zthr.h>
38
39 /*
40  * An indirect vdev corresponds to a vdev that has been removed.  Since
41  * we cannot rewrite block pointers of snapshots, etc., we keep a
42  * mapping from old location on the removed device to the new location
43  * on another device in the pool and use this mapping whenever we need
44  * to access the DVA.  Unfortunately, this mapping did not respect
45  * logical block boundaries when it was first created, and so a DVA on
46  * this indirect vdev may be "split" into multiple sections that each
47  * map to a different location.  As a consequence, not all DVAs can be
48  * translated to an equivalent new DVA.  Instead we must provide a
49  * "vdev_remap" operation that executes a callback on each contiguous
50  * segment of the new location.  This function is used in multiple ways:
51  *
52  *  - i/os to this vdev use the callback to determine where the
53  *    data is now located, and issue child i/os for each segment's new
54  *    location.
55  *
56  *  - frees and claims to this vdev use the callback to free or claim
57  *    each mapped segment.  (Note that we don't actually need to claim
58  *    log blocks on indirect vdevs, because we don't allocate to
59  *    removing vdevs.  However, zdb uses zio_claim() for its leak
60  *    detection.)
61  */
62
63 /*
64  * "Big theory statement" for how we mark blocks obsolete.
65  *
66  * When a block on an indirect vdev is freed or remapped, a section of
67  * that vdev's mapping may no longer be referenced (aka "obsolete").  We
68  * keep track of how much of each mapping entry is obsolete.  When
69  * an entry becomes completely obsolete, we can remove it, thus reducing
70  * the memory used by the mapping.  The complete picture of obsolescence
71  * is given by the following data structures, described below:
72  *  - the entry-specific obsolete count
73  *  - the vdev-specific obsolete spacemap
74  *  - the pool-specific obsolete bpobj
75  *
76  * == On disk data structures used ==
77  *
78  * We track the obsolete space for the pool using several objects.  Each
79  * of these objects is created on demand and freed when no longer
80  * needed, and is assumed to be empty if it does not exist.
81  * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
82  *
83  *  - Each vic_mapping_object (associated with an indirect vdev) can
84  *    have a vimp_counts_object.  This is an array of uint32_t's
85  *    with the same number of entries as the vic_mapping_object.  When
86  *    the mapping is condensed, entries from the vic_obsolete_sm_object
87  *    (see below) are folded into the counts.  Therefore, each
88  *    obsolete_counts entry tells us the number of bytes in the
89  *    corresponding mapping entry that were not referenced when the
90  *    mapping was last condensed.
91  *
92  *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
93  *    This is a space map containing an alloc entry for every DVA that
94  *    has been obsoleted since the last time this indirect vdev was
95  *    condensed.  We use this object in order to improve performance
96  *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
97  *    offset of the vimp_counts_object, we only need to append an entry
98  *    to the end of this object.  When a DVA becomes obsolete, it is
99  *    added to the obsolete space map.  This happens when the DVA is
100  *    freed, remapped and not referenced by a snapshot, or the last
101  *    snapshot referencing it is destroyed.
102  *
103  *  - Each dataset can have a ds_remap_deadlist object.  This is a
104  *    deadlist object containing all blocks that were remapped in this
105  *    dataset but referenced in a previous snapshot.  Blocks can *only*
106  *    appear on this list if they were remapped (dsl_dataset_block_remapped);
107  *    blocks that were killed in a head dataset are put on the normal
108  *    ds_deadlist and marked obsolete when they are freed.
109  *
110  *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
111  *    in the pool that need to be marked obsolete.  When a snapshot is
112  *    destroyed, we move some of the ds_remap_deadlist to the obsolete
113  *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
114  *    asynchronously process the obsolete bpobj, moving its entries to
115  *    the specific vdevs' obsolete space maps.
116  *
117  * == Summary of how we mark blocks as obsolete ==
118  *
119  * - When freeing a block: if any DVA is on an indirect vdev, append to
120  *   vic_obsolete_sm_object.
121  * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
122  *   references; otherwise append to vic_obsolete_sm_object).
123  * - When freeing a snapshot: move parts of ds_remap_deadlist to
124  *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
125  * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
126  *   individual vdev's vic_obsolete_sm_object.
127  */
128
129 /*
130  * "Big theory statement" for how we condense indirect vdevs.
131  *
132  * Condensing an indirect vdev's mapping is the process of determining
133  * the precise counts of obsolete space for each mapping entry (by
134  * integrating the obsolete spacemap into the obsolete counts) and
135  * writing out a new mapping that contains only referenced entries.
136  *
137  * We condense a vdev when we expect the mapping to shrink (see
138  * vdev_indirect_should_condense()), but only perform one condense at a
139  * time to limit the memory usage.  In addition, we use a separate
140  * open-context thread (spa_condense_indirect_thread) to incrementally
141  * create the new mapping object in a way that minimizes the impact on
142  * the rest of the system.
143  *
144  * == Generating a new mapping ==
145  *
146  * To generate a new mapping, we follow these steps:
147  *
148  * 1. Save the old obsolete space map and create a new mapping object
149  *    (see spa_condense_indirect_start_sync()).  This initializes the
150  *    spa_condensing_indirect_phys with the "previous obsolete space map",
151  *    which is now read only.  Newly obsolete DVAs will be added to a
152  *    new (initially empty) obsolete space map, and will not be
153  *    considered as part of this condense operation.
154  *
155  * 2. Construct in memory the precise counts of obsolete space for each
156  *    mapping entry, by incorporating the obsolete space map into the
157  *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
158  *
159  * 3. Iterate through each mapping entry, writing to the new mapping any
160  *    entries that are not completely obsolete (i.e. which don't have
161  *    obsolete count == mapping length).  (See
162  *    spa_condense_indirect_generate_new_mapping().)
163  *
164  * 4. Destroy the old mapping object and switch over to the new one
165  *    (spa_condense_indirect_complete_sync).
166  *
167  * == Restarting from failure ==
168  *
169  * To restart the condense when we import/open the pool, we must start
170  * at the 2nd step above: reconstruct the precise counts in memory,
171  * based on the space map + counts.  Then in the 3rd step, we start
172  * iterating where we left off: at vimp_max_offset of the new mapping
173  * object.
174  */
175
176 int zfs_condense_indirect_vdevs_enable = B_TRUE;
177
178 /*
179  * Condense if at least this percent of the bytes in the mapping is
180  * obsolete.  With the default of 25%, the amount of space mapped
181  * will be reduced to 1% of its original size after at most 16
182  * condenses.  Higher values will condense less often (causing less
183  * i/o); lower values will reduce the mapping size more quickly.
184  */
185 int zfs_indirect_condense_obsolete_pct = 25;
186
187 /*
188  * Condense if the obsolete space map takes up more than this amount of
189  * space on disk (logically).  This limits the amount of disk space
190  * consumed by the obsolete space map; the default of 1GB is small enough
191  * that we typically don't mind "wasting" it.
192  */
193 unsigned long zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
194
195 /*
196  * Don't bother condensing if the mapping uses less than this amount of
197  * memory.  The default of 128KB is considered a "trivial" amount of
198  * memory and not worth reducing.
199  */
200 unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
201
202 /*
203  * This is used by the test suite so that it can ensure that certain
204  * actions happen while in the middle of a condense (which might otherwise
205  * complete too quickly).  If used to reduce the performance impact of
206  * condensing in production, a maximum value of 1 should be sufficient.
207  */
208 int zfs_condense_indirect_commit_entry_delay_ms = 0;
209
210 /*
211  * If an indirect split block contains more than this many possible unique
212  * combinations when being reconstructed, consider it too computationally
213  * expensive to check them all. Instead, try at most 100 randomly-selected
214  * combinations each time the block is accessed.  This allows all segment
215  * copies to participate fairly in the reconstruction when all combinations
216  * cannot be checked and prevents repeated use of one bad copy.
217  */
218 int zfs_reconstruct_indirect_combinations_max = 4096;
219
220 /*
221  * Enable to simulate damaged segments and validate reconstruction.  This
222  * is intentionally not exposed as a module parameter.
223  */
224 unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
225
226 /*
227  * The indirect_child_t represents the vdev that we will read from, when we
228  * need to read all copies of the data (e.g. for scrub or reconstruction).
229  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
230  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
231  * ic_vdev is a child of the mirror.
232  */
233 typedef struct indirect_child {
234         abd_t *ic_data;
235         vdev_t *ic_vdev;
236
237         /*
238          * ic_duplicate is NULL when the ic_data contents are unique, when it
239          * is determined to be a duplicate it references the primary child.
240          */
241         struct indirect_child *ic_duplicate;
242         list_node_t ic_node; /* node on is_unique_child */
243 } indirect_child_t;
244
245 /*
246  * The indirect_split_t represents one mapped segment of an i/o to the
247  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
248  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
249  * For split blocks, there will be several of these.
250  */
251 typedef struct indirect_split {
252         list_node_t is_node; /* link on iv_splits */
253
254         /*
255          * is_split_offset is the offset into the i/o.
256          * This is the sum of the previous splits' is_size's.
257          */
258         uint64_t is_split_offset;
259
260         vdev_t *is_vdev; /* top-level vdev */
261         uint64_t is_target_offset; /* offset on is_vdev */
262         uint64_t is_size;
263         int is_children; /* number of entries in is_child[] */
264         int is_unique_children; /* number of entries in is_unique_child */
265         list_t is_unique_child;
266
267         /*
268          * is_good_child is the child that we are currently using to
269          * attempt reconstruction.
270          */
271         indirect_child_t *is_good_child;
272
273         indirect_child_t is_child[1]; /* variable-length */
274 } indirect_split_t;
275
276 /*
277  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
278  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
279  */
280 typedef struct indirect_vsd {
281         boolean_t iv_split_block;
282         boolean_t iv_reconstruct;
283         uint64_t iv_unique_combinations;
284         uint64_t iv_attempts;
285         uint64_t iv_attempts_max;
286
287         list_t iv_splits; /* list of indirect_split_t's */
288 } indirect_vsd_t;
289
290 static void
291 vdev_indirect_map_free(zio_t *zio)
292 {
293         indirect_vsd_t *iv = zio->io_vsd;
294
295         indirect_split_t *is;
296         while ((is = list_head(&iv->iv_splits)) != NULL) {
297                 for (int c = 0; c < is->is_children; c++) {
298                         indirect_child_t *ic = &is->is_child[c];
299                         if (ic->ic_data != NULL)
300                                 abd_free(ic->ic_data);
301                 }
302                 list_remove(&iv->iv_splits, is);
303
304                 indirect_child_t *ic;
305                 while ((ic = list_head(&is->is_unique_child)) != NULL)
306                         list_remove(&is->is_unique_child, ic);
307
308                 list_destroy(&is->is_unique_child);
309
310                 kmem_free(is,
311                     offsetof(indirect_split_t, is_child[is->is_children]));
312         }
313         kmem_free(iv, sizeof (*iv));
314 }
315
316 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
317         .vsd_free = vdev_indirect_map_free,
318         .vsd_cksum_report = zio_vsd_default_cksum_report
319 };
320
321 /*
322  * Mark the given offset and size as being obsolete.
323  */
324 void
325 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
326 {
327         spa_t *spa = vd->vdev_spa;
328
329         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
330         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
331         ASSERT(size > 0);
332         VERIFY(vdev_indirect_mapping_entry_for_offset(
333             vd->vdev_indirect_mapping, offset) != NULL);
334
335         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
336                 mutex_enter(&vd->vdev_obsolete_lock);
337                 range_tree_add(vd->vdev_obsolete_segments, offset, size);
338                 mutex_exit(&vd->vdev_obsolete_lock);
339                 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
340         }
341 }
342
343 /*
344  * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
345  * wrapper is provided because the DMU does not know about vdev_t's and
346  * cannot directly call vdev_indirect_mark_obsolete.
347  */
348 void
349 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
350     uint64_t size, dmu_tx_t *tx)
351 {
352         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
353         ASSERT(dmu_tx_is_syncing(tx));
354
355         /* The DMU can only remap indirect vdevs. */
356         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
357         vdev_indirect_mark_obsolete(vd, offset, size);
358 }
359
360 static spa_condensing_indirect_t *
361 spa_condensing_indirect_create(spa_t *spa)
362 {
363         spa_condensing_indirect_phys_t *scip =
364             &spa->spa_condensing_indirect_phys;
365         spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
366         objset_t *mos = spa->spa_meta_objset;
367
368         for (int i = 0; i < TXG_SIZE; i++) {
369                 list_create(&sci->sci_new_mapping_entries[i],
370                     sizeof (vdev_indirect_mapping_entry_t),
371                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
372         }
373
374         sci->sci_new_mapping =
375             vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
376
377         return (sci);
378 }
379
380 static void
381 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
382 {
383         for (int i = 0; i < TXG_SIZE; i++)
384                 list_destroy(&sci->sci_new_mapping_entries[i]);
385
386         if (sci->sci_new_mapping != NULL)
387                 vdev_indirect_mapping_close(sci->sci_new_mapping);
388
389         kmem_free(sci, sizeof (*sci));
390 }
391
392 boolean_t
393 vdev_indirect_should_condense(vdev_t *vd)
394 {
395         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
396         spa_t *spa = vd->vdev_spa;
397
398         ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
399
400         if (!zfs_condense_indirect_vdevs_enable)
401                 return (B_FALSE);
402
403         /*
404          * We can only condense one indirect vdev at a time.
405          */
406         if (spa->spa_condensing_indirect != NULL)
407                 return (B_FALSE);
408
409         if (spa_shutting_down(spa))
410                 return (B_FALSE);
411
412         /*
413          * The mapping object size must not change while we are
414          * condensing, so we can only condense indirect vdevs
415          * (not vdevs that are still in the middle of being removed).
416          */
417         if (vd->vdev_ops != &vdev_indirect_ops)
418                 return (B_FALSE);
419
420         /*
421          * If nothing new has been marked obsolete, there is no
422          * point in condensing.
423          */
424         ASSERTV(uint64_t obsolete_sm_obj);
425         ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
426         if (vd->vdev_obsolete_sm == NULL) {
427                 ASSERT0(obsolete_sm_obj);
428                 return (B_FALSE);
429         }
430
431         ASSERT(vd->vdev_obsolete_sm != NULL);
432
433         ASSERT3U(obsolete_sm_obj, ==, space_map_object(vd->vdev_obsolete_sm));
434
435         uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
436         uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
437         uint64_t mapping_size = vdev_indirect_mapping_size(vim);
438         uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
439
440         ASSERT3U(bytes_obsolete, <=, bytes_mapped);
441
442         /*
443          * If a high percentage of the bytes that are mapped have become
444          * obsolete, condense (unless the mapping is already small enough).
445          * This has a good chance of reducing the amount of memory used
446          * by the mapping.
447          */
448         if (bytes_obsolete * 100 / bytes_mapped >=
449             zfs_indirect_condense_obsolete_pct &&
450             mapping_size > zfs_condense_min_mapping_bytes) {
451                 zfs_dbgmsg("should condense vdev %llu because obsolete "
452                     "spacemap covers %d%% of %lluMB mapping",
453                     (u_longlong_t)vd->vdev_id,
454                     (int)(bytes_obsolete * 100 / bytes_mapped),
455                     (u_longlong_t)bytes_mapped / 1024 / 1024);
456                 return (B_TRUE);
457         }
458
459         /*
460          * If the obsolete space map takes up too much space on disk,
461          * condense in order to free up this disk space.
462          */
463         if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
464                 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
465                     "length %lluMB >= max size %lluMB",
466                     (u_longlong_t)vd->vdev_id,
467                     (u_longlong_t)obsolete_sm_size / 1024 / 1024,
468                     (u_longlong_t)zfs_condense_max_obsolete_bytes /
469                     1024 / 1024);
470                 return (B_TRUE);
471         }
472
473         return (B_FALSE);
474 }
475
476 /*
477  * This sync task completes (finishes) a condense, deleting the old
478  * mapping and replacing it with the new one.
479  */
480 static void
481 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
482 {
483         spa_condensing_indirect_t *sci = arg;
484         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
485         spa_condensing_indirect_phys_t *scip =
486             &spa->spa_condensing_indirect_phys;
487         vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
488         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
489         objset_t *mos = spa->spa_meta_objset;
490         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
491         uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
492         uint64_t new_count =
493             vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
494
495         ASSERT(dmu_tx_is_syncing(tx));
496         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
497         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
498         for (int i = 0; i < TXG_SIZE; i++) {
499                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
500         }
501         ASSERT(vic->vic_mapping_object != 0);
502         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
503         ASSERT(scip->scip_next_mapping_object != 0);
504         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
505
506         /*
507          * Reset vdev_indirect_mapping to refer to the new object.
508          */
509         rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
510         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
511         vd->vdev_indirect_mapping = sci->sci_new_mapping;
512         rw_exit(&vd->vdev_indirect_rwlock);
513
514         sci->sci_new_mapping = NULL;
515         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
516         vic->vic_mapping_object = scip->scip_next_mapping_object;
517         scip->scip_next_mapping_object = 0;
518
519         space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
520         spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
521         scip->scip_prev_obsolete_sm_object = 0;
522
523         scip->scip_vdev = 0;
524
525         VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
526             DMU_POOL_CONDENSING_INDIRECT, tx));
527         spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
528         spa->spa_condensing_indirect = NULL;
529
530         zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
531             "new mapping object %llu has %llu entries "
532             "(was %llu entries)",
533             vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
534             new_count, old_count);
535
536         vdev_config_dirty(spa->spa_root_vdev);
537 }
538
539 /*
540  * This sync task appends entries to the new mapping object.
541  */
542 static void
543 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
544 {
545         spa_condensing_indirect_t *sci = arg;
546         uint64_t txg = dmu_tx_get_txg(tx);
547         ASSERTV(spa_t *spa = dmu_tx_pool(tx)->dp_spa);
548
549         ASSERT(dmu_tx_is_syncing(tx));
550         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
551
552         vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
553             &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
554         ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
555 }
556
557 /*
558  * Open-context function to add one entry to the new mapping.  The new
559  * entry will be remembered and written from syncing context.
560  */
561 static void
562 spa_condense_indirect_commit_entry(spa_t *spa,
563     vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
564 {
565         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
566
567         ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
568
569         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
570         dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
571         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
572         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
573
574         /*
575          * If we are the first entry committed this txg, kick off the sync
576          * task to write to the MOS on our behalf.
577          */
578         if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
579                 dsl_sync_task_nowait(dmu_tx_pool(tx),
580                     spa_condense_indirect_commit_sync, sci,
581                     0, ZFS_SPACE_CHECK_NONE, tx);
582         }
583
584         vdev_indirect_mapping_entry_t *vime =
585             kmem_alloc(sizeof (*vime), KM_SLEEP);
586         vime->vime_mapping = *vimep;
587         vime->vime_obsolete_count = count;
588         list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
589
590         dmu_tx_commit(tx);
591 }
592
593 static void
594 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
595     uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
596 {
597         spa_t *spa = vd->vdev_spa;
598         uint64_t mapi = start_index;
599         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
600         uint64_t old_num_entries =
601             vdev_indirect_mapping_num_entries(old_mapping);
602
603         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
604         ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
605
606         zfs_dbgmsg("starting condense of vdev %llu from index %llu",
607             (u_longlong_t)vd->vdev_id,
608             (u_longlong_t)mapi);
609
610         while (mapi < old_num_entries) {
611
612                 if (zthr_iscancelled(zthr)) {
613                         zfs_dbgmsg("pausing condense of vdev %llu "
614                             "at index %llu", (u_longlong_t)vd->vdev_id,
615                             (u_longlong_t)mapi);
616                         break;
617                 }
618
619                 vdev_indirect_mapping_entry_phys_t *entry =
620                     &old_mapping->vim_entries[mapi];
621                 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
622                 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
623                 if (obsolete_counts[mapi] < entry_size) {
624                         spa_condense_indirect_commit_entry(spa, entry,
625                             obsolete_counts[mapi]);
626
627                         /*
628                          * This delay may be requested for testing, debugging,
629                          * or performance reasons.
630                          */
631                         hrtime_t now = gethrtime();
632                         hrtime_t sleep_until = now + MSEC2NSEC(
633                             zfs_condense_indirect_commit_entry_delay_ms);
634                         zfs_sleep_until(sleep_until);
635                 }
636
637                 mapi++;
638         }
639 }
640
641 /* ARGSUSED */
642 static boolean_t
643 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
644 {
645         spa_t *spa = arg;
646
647         return (spa->spa_condensing_indirect != NULL);
648 }
649
650 /* ARGSUSED */
651 static void
652 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
653 {
654         spa_t *spa = arg;
655         vdev_t *vd;
656
657         ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
658         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
659         vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
660         ASSERT3P(vd, !=, NULL);
661         spa_config_exit(spa, SCL_VDEV, FTAG);
662
663         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
664         spa_condensing_indirect_phys_t *scip =
665             &spa->spa_condensing_indirect_phys;
666         uint32_t *counts;
667         uint64_t start_index;
668         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
669         space_map_t *prev_obsolete_sm = NULL;
670
671         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
672         ASSERT(scip->scip_next_mapping_object != 0);
673         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
674         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
675
676         for (int i = 0; i < TXG_SIZE; i++) {
677                 /*
678                  * The list must start out empty in order for the
679                  * _commit_sync() sync task to be properly registered
680                  * on the first call to _commit_entry(); so it's wise
681                  * to double check and ensure we actually are starting
682                  * with empty lists.
683                  */
684                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
685         }
686
687         VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
688             scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
689         counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
690         if (prev_obsolete_sm != NULL) {
691                 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
692                     counts, prev_obsolete_sm);
693         }
694         space_map_close(prev_obsolete_sm);
695
696         /*
697          * Generate new mapping.  Determine what index to continue from
698          * based on the max offset that we've already written in the
699          * new mapping.
700          */
701         uint64_t max_offset =
702             vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
703         if (max_offset == 0) {
704                 /* We haven't written anything to the new mapping yet. */
705                 start_index = 0;
706         } else {
707                 /*
708                  * Pick up from where we left off. _entry_for_offset()
709                  * returns a pointer into the vim_entries array. If
710                  * max_offset is greater than any of the mappings
711                  * contained in the table  NULL will be returned and
712                  * that indicates we've exhausted our iteration of the
713                  * old_mapping.
714                  */
715
716                 vdev_indirect_mapping_entry_phys_t *entry =
717                     vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
718                     max_offset);
719
720                 if (entry == NULL) {
721                         /*
722                          * We've already written the whole new mapping.
723                          * This special value will cause us to skip the
724                          * generate_new_mapping step and just do the sync
725                          * task to complete the condense.
726                          */
727                         start_index = UINT64_MAX;
728                 } else {
729                         start_index = entry - old_mapping->vim_entries;
730                         ASSERT3U(start_index, <,
731                             vdev_indirect_mapping_num_entries(old_mapping));
732                 }
733         }
734
735         spa_condense_indirect_generate_new_mapping(vd, counts,
736             start_index, zthr);
737
738         vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
739
740         /*
741          * If the zthr has received a cancellation signal while running
742          * in generate_new_mapping() or at any point after that, then bail
743          * early. We don't want to complete the condense if the spa is
744          * shutting down.
745          */
746         if (zthr_iscancelled(zthr))
747                 return;
748
749         VERIFY0(dsl_sync_task(spa_name(spa), NULL,
750             spa_condense_indirect_complete_sync, sci, 0,
751             ZFS_SPACE_CHECK_EXTRA_RESERVED));
752 }
753
754 /*
755  * Sync task to begin the condensing process.
756  */
757 void
758 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
759 {
760         spa_t *spa = vd->vdev_spa;
761         spa_condensing_indirect_phys_t *scip =
762             &spa->spa_condensing_indirect_phys;
763
764         ASSERT0(scip->scip_next_mapping_object);
765         ASSERT0(scip->scip_prev_obsolete_sm_object);
766         ASSERT0(scip->scip_vdev);
767         ASSERT(dmu_tx_is_syncing(tx));
768         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
769         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
770         ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
771
772         uint64_t obsolete_sm_obj;
773         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
774         ASSERT3U(obsolete_sm_obj, !=, 0);
775
776         scip->scip_vdev = vd->vdev_id;
777         scip->scip_next_mapping_object =
778             vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
779
780         scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
781
782         /*
783          * We don't need to allocate a new space map object, since
784          * vdev_indirect_sync_obsolete will allocate one when needed.
785          */
786         space_map_close(vd->vdev_obsolete_sm);
787         vd->vdev_obsolete_sm = NULL;
788         VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
789             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
790
791         VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
792             DMU_POOL_DIRECTORY_OBJECT,
793             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
794             sizeof (*scip) / sizeof (uint64_t), scip, tx));
795
796         ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
797         spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
798
799         zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
800             "posm=%llu nm=%llu",
801             vd->vdev_id, dmu_tx_get_txg(tx),
802             (u_longlong_t)scip->scip_prev_obsolete_sm_object,
803             (u_longlong_t)scip->scip_next_mapping_object);
804
805         zthr_wakeup(spa->spa_condense_zthr);
806 }
807
808 /*
809  * Sync to the given vdev's obsolete space map any segments that are no longer
810  * referenced as of the given txg.
811  *
812  * If the obsolete space map doesn't exist yet, create and open it.
813  */
814 void
815 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
816 {
817         spa_t *spa = vd->vdev_spa;
818         ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
819
820         ASSERT3U(vic->vic_mapping_object, !=, 0);
821         ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
822         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
823         ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
824
825         uint64_t obsolete_sm_object;
826         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
827         if (obsolete_sm_object == 0) {
828                 obsolete_sm_object = space_map_alloc(spa->spa_meta_objset,
829                     zfs_vdev_standard_sm_blksz, tx);
830
831                 ASSERT(vd->vdev_top_zap != 0);
832                 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
833                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
834                     sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
835                 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
836                 ASSERT3U(obsolete_sm_object, !=, 0);
837
838                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
839                 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
840                     spa->spa_meta_objset, obsolete_sm_object,
841                     0, vd->vdev_asize, 0));
842         }
843
844         ASSERT(vd->vdev_obsolete_sm != NULL);
845         ASSERT3U(obsolete_sm_object, ==,
846             space_map_object(vd->vdev_obsolete_sm));
847
848         space_map_write(vd->vdev_obsolete_sm,
849             vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
850         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
851 }
852
853 int
854 spa_condense_init(spa_t *spa)
855 {
856         int error = zap_lookup(spa->spa_meta_objset,
857             DMU_POOL_DIRECTORY_OBJECT,
858             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
859             sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
860             &spa->spa_condensing_indirect_phys);
861         if (error == 0) {
862                 if (spa_writeable(spa)) {
863                         spa->spa_condensing_indirect =
864                             spa_condensing_indirect_create(spa);
865                 }
866                 return (0);
867         } else if (error == ENOENT) {
868                 return (0);
869         } else {
870                 return (error);
871         }
872 }
873
874 void
875 spa_condense_fini(spa_t *spa)
876 {
877         if (spa->spa_condensing_indirect != NULL) {
878                 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
879                 spa->spa_condensing_indirect = NULL;
880         }
881 }
882
883 void
884 spa_start_indirect_condensing_thread(spa_t *spa)
885 {
886         ASSERT3P(spa->spa_condense_zthr, ==, NULL);
887         spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
888             spa_condense_indirect_thread, spa);
889 }
890
891 /*
892  * Gets the obsolete spacemap object from the vdev's ZAP.  On success sm_obj
893  * will contain either the obsolete spacemap object or zero if none exists.
894  * All other errors are returned to the caller.
895  */
896 int
897 vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj)
898 {
899         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
900
901         if (vd->vdev_top_zap == 0) {
902                 *sm_obj = 0;
903                 return (0);
904         }
905
906         int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
907             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (uint64_t), 1, sm_obj);
908         if (error == ENOENT) {
909                 *sm_obj = 0;
910                 error = 0;
911         }
912
913         return (error);
914 }
915
916 /*
917  * Gets the obsolete count are precise spacemap object from the vdev's ZAP.
918  * On success are_precise will be set to reflect if the counts are precise.
919  * All other errors are returned to the caller.
920  */
921 int
922 vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise)
923 {
924         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
925
926         if (vd->vdev_top_zap == 0) {
927                 *are_precise = B_FALSE;
928                 return (0);
929         }
930
931         uint64_t val = 0;
932         int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
933             VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
934         if (error == 0) {
935                 *are_precise = (val != 0);
936         } else if (error == ENOENT) {
937                 *are_precise = B_FALSE;
938                 error = 0;
939         }
940
941         return (error);
942 }
943
944 /* ARGSUSED */
945 static void
946 vdev_indirect_close(vdev_t *vd)
947 {
948 }
949
950 /* ARGSUSED */
951 static int
952 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
953     uint64_t *ashift)
954 {
955         *psize = *max_psize = vd->vdev_asize +
956             VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
957         *ashift = vd->vdev_ashift;
958         return (0);
959 }
960
961 typedef struct remap_segment {
962         vdev_t *rs_vd;
963         uint64_t rs_offset;
964         uint64_t rs_asize;
965         uint64_t rs_split_offset;
966         list_node_t rs_node;
967 } remap_segment_t;
968
969 remap_segment_t *
970 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
971 {
972         remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
973         rs->rs_vd = vd;
974         rs->rs_offset = offset;
975         rs->rs_asize = asize;
976         rs->rs_split_offset = split_offset;
977         return (rs);
978 }
979
980 /*
981  * Given an indirect vdev and an extent on that vdev, it duplicates the
982  * physical entries of the indirect mapping that correspond to the extent
983  * to a new array and returns a pointer to it. In addition, copied_entries
984  * is populated with the number of mapping entries that were duplicated.
985  *
986  * Note that the function assumes that the caller holds vdev_indirect_rwlock.
987  * This ensures that the mapping won't change due to condensing as we
988  * copy over its contents.
989  *
990  * Finally, since we are doing an allocation, it is up to the caller to
991  * free the array allocated in this function.
992  */
993 vdev_indirect_mapping_entry_phys_t *
994 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
995     uint64_t asize, uint64_t *copied_entries)
996 {
997         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
998         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
999         uint64_t entries = 0;
1000
1001         ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
1002
1003         vdev_indirect_mapping_entry_phys_t *first_mapping =
1004             vdev_indirect_mapping_entry_for_offset(vim, offset);
1005         ASSERT3P(first_mapping, !=, NULL);
1006
1007         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
1008         while (asize > 0) {
1009                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1010
1011                 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
1012                 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1013
1014                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
1015                 uint64_t inner_size = MIN(asize, size - inner_offset);
1016
1017                 offset += inner_size;
1018                 asize -= inner_size;
1019                 entries++;
1020                 m++;
1021         }
1022
1023         size_t copy_length = entries * sizeof (*first_mapping);
1024         duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1025         bcopy(first_mapping, duplicate_mappings, copy_length);
1026         *copied_entries = entries;
1027
1028         return (duplicate_mappings);
1029 }
1030
1031 /*
1032  * Goes through the relevant indirect mappings until it hits a concrete vdev
1033  * and issues the callback. On the way to the concrete vdev, if any other
1034  * indirect vdevs are encountered, then the callback will also be called on
1035  * each of those indirect vdevs. For example, if the segment is mapped to
1036  * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1037  * mapped to segment B on concrete vdev 2, then the callback will be called on
1038  * both vdev 1 and vdev 2.
1039  *
1040  * While the callback passed to vdev_indirect_remap() is called on every vdev
1041  * the function encounters, certain callbacks only care about concrete vdevs.
1042  * These types of callbacks should return immediately and explicitly when they
1043  * are called on an indirect vdev.
1044  *
1045  * Because there is a possibility that a DVA section in the indirect device
1046  * has been split into multiple sections in our mapping, we keep track
1047  * of the relevant contiguous segments of the new location (remap_segment_t)
1048  * in a stack. This way we can call the callback for each of the new sections
1049  * created by a single section of the indirect device. Note though, that in
1050  * this scenario the callbacks in each split block won't occur in-order in
1051  * terms of offset, so callers should not make any assumptions about that.
1052  *
1053  * For callbacks that don't handle split blocks and immediately return when
1054  * they encounter them (as is the case for remap_blkptr_cb), the caller can
1055  * assume that its callback will be applied from the first indirect vdev
1056  * encountered to the last one and then the concrete vdev, in that order.
1057  */
1058 static void
1059 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1060     void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1061 {
1062         list_t stack;
1063         spa_t *spa = vd->vdev_spa;
1064
1065         list_create(&stack, sizeof (remap_segment_t),
1066             offsetof(remap_segment_t, rs_node));
1067
1068         for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1069             rs != NULL; rs = list_remove_head(&stack)) {
1070                 vdev_t *v = rs->rs_vd;
1071                 uint64_t num_entries = 0;
1072
1073                 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1074                 ASSERT(rs->rs_asize > 0);
1075
1076                 /*
1077                  * Note: As this function can be called from open context
1078                  * (e.g. zio_read()), we need the following rwlock to
1079                  * prevent the mapping from being changed by condensing.
1080                  *
1081                  * So we grab the lock and we make a copy of the entries
1082                  * that are relevant to the extent that we are working on.
1083                  * Once that is done, we drop the lock and iterate over
1084                  * our copy of the mapping. Once we are done with the with
1085                  * the remap segment and we free it, we also free our copy
1086                  * of the indirect mapping entries that are relevant to it.
1087                  *
1088                  * This way we don't need to wait until the function is
1089                  * finished with a segment, to condense it. In addition, we
1090                  * don't need a recursive rwlock for the case that a call to
1091                  * vdev_indirect_remap() needs to call itself (through the
1092                  * codepath of its callback) for the same vdev in the middle
1093                  * of its execution.
1094                  */
1095                 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1096                 ASSERT3P(v->vdev_indirect_mapping, !=, NULL);
1097
1098                 vdev_indirect_mapping_entry_phys_t *mapping =
1099                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
1100                     rs->rs_offset, rs->rs_asize, &num_entries);
1101                 ASSERT3P(mapping, !=, NULL);
1102                 ASSERT3U(num_entries, >, 0);
1103                 rw_exit(&v->vdev_indirect_rwlock);
1104
1105                 for (uint64_t i = 0; i < num_entries; i++) {
1106                         /*
1107                          * Note: the vdev_indirect_mapping can not change
1108                          * while we are running.  It only changes while the
1109                          * removal is in progress, and then only from syncing
1110                          * context. While a removal is in progress, this
1111                          * function is only called for frees, which also only
1112                          * happen from syncing context.
1113                          */
1114                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1115
1116                         ASSERT3P(m, !=, NULL);
1117                         ASSERT3U(rs->rs_asize, >, 0);
1118
1119                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1120                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1121                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1122
1123                         ASSERT3U(rs->rs_offset, >=,
1124                             DVA_MAPPING_GET_SRC_OFFSET(m));
1125                         ASSERT3U(rs->rs_offset, <,
1126                             DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1127                         ASSERT3U(dst_vdev, !=, v->vdev_id);
1128
1129                         uint64_t inner_offset = rs->rs_offset -
1130                             DVA_MAPPING_GET_SRC_OFFSET(m);
1131                         uint64_t inner_size =
1132                             MIN(rs->rs_asize, size - inner_offset);
1133
1134                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1135                         ASSERT3P(dst_v, !=, NULL);
1136
1137                         if (dst_v->vdev_ops == &vdev_indirect_ops) {
1138                                 list_insert_head(&stack,
1139                                     rs_alloc(dst_v, dst_offset + inner_offset,
1140                                     inner_size, rs->rs_split_offset));
1141
1142                         }
1143
1144                         if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1145                             IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1146                                 /*
1147                                  * Note: This clause exists only solely for
1148                                  * testing purposes. We use it to ensure that
1149                                  * split blocks work and that the callbacks
1150                                  * using them yield the same result if issued
1151                                  * in reverse order.
1152                                  */
1153                                 uint64_t inner_half = inner_size / 2;
1154
1155                                 func(rs->rs_split_offset + inner_half, dst_v,
1156                                     dst_offset + inner_offset + inner_half,
1157                                     inner_half, arg);
1158
1159                                 func(rs->rs_split_offset, dst_v,
1160                                     dst_offset + inner_offset,
1161                                     inner_half, arg);
1162                         } else {
1163                                 func(rs->rs_split_offset, dst_v,
1164                                     dst_offset + inner_offset,
1165                                     inner_size, arg);
1166                         }
1167
1168                         rs->rs_offset += inner_size;
1169                         rs->rs_asize -= inner_size;
1170                         rs->rs_split_offset += inner_size;
1171                 }
1172                 VERIFY0(rs->rs_asize);
1173
1174                 kmem_free(mapping, num_entries * sizeof (*mapping));
1175                 kmem_free(rs, sizeof (remap_segment_t));
1176         }
1177         list_destroy(&stack);
1178 }
1179
1180 static void
1181 vdev_indirect_child_io_done(zio_t *zio)
1182 {
1183         zio_t *pio = zio->io_private;
1184
1185         mutex_enter(&pio->io_lock);
1186         pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1187         mutex_exit(&pio->io_lock);
1188
1189         abd_put(zio->io_abd);
1190 }
1191
1192 /*
1193  * This is a callback for vdev_indirect_remap() which allocates an
1194  * indirect_split_t for each split segment and adds it to iv_splits.
1195  */
1196 static void
1197 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1198     uint64_t size, void *arg)
1199 {
1200         zio_t *zio = arg;
1201         indirect_vsd_t *iv = zio->io_vsd;
1202
1203         ASSERT3P(vd, !=, NULL);
1204
1205         if (vd->vdev_ops == &vdev_indirect_ops)
1206                 return;
1207
1208         int n = 1;
1209         if (vd->vdev_ops == &vdev_mirror_ops)
1210                 n = vd->vdev_children;
1211
1212         indirect_split_t *is =
1213             kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1214
1215         is->is_children = n;
1216         is->is_size = size;
1217         is->is_split_offset = split_offset;
1218         is->is_target_offset = offset;
1219         is->is_vdev = vd;
1220         list_create(&is->is_unique_child, sizeof (indirect_child_t),
1221             offsetof(indirect_child_t, ic_node));
1222
1223         /*
1224          * Note that we only consider multiple copies of the data for
1225          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
1226          * though they use the same ops as mirror, because there's only one
1227          * "good" copy under the replacing/spare.
1228          */
1229         if (vd->vdev_ops == &vdev_mirror_ops) {
1230                 for (int i = 0; i < n; i++) {
1231                         is->is_child[i].ic_vdev = vd->vdev_child[i];
1232                         list_link_init(&is->is_child[i].ic_node);
1233                 }
1234         } else {
1235                 is->is_child[0].ic_vdev = vd;
1236         }
1237
1238         list_insert_tail(&iv->iv_splits, is);
1239 }
1240
1241 static void
1242 vdev_indirect_read_split_done(zio_t *zio)
1243 {
1244         indirect_child_t *ic = zio->io_private;
1245
1246         if (zio->io_error != 0) {
1247                 /*
1248                  * Clear ic_data to indicate that we do not have data for this
1249                  * child.
1250                  */
1251                 abd_free(ic->ic_data);
1252                 ic->ic_data = NULL;
1253         }
1254 }
1255
1256 /*
1257  * Issue reads for all copies (mirror children) of all splits.
1258  */
1259 static void
1260 vdev_indirect_read_all(zio_t *zio)
1261 {
1262         indirect_vsd_t *iv = zio->io_vsd;
1263
1264         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1265
1266         for (indirect_split_t *is = list_head(&iv->iv_splits);
1267             is != NULL; is = list_next(&iv->iv_splits, is)) {
1268                 for (int i = 0; i < is->is_children; i++) {
1269                         indirect_child_t *ic = &is->is_child[i];
1270
1271                         if (!vdev_readable(ic->ic_vdev))
1272                                 continue;
1273
1274                         /*
1275                          * Note, we may read from a child whose DTL
1276                          * indicates that the data may not be present here.
1277                          * While this might result in a few i/os that will
1278                          * likely return incorrect data, it simplifies the
1279                          * code since we can treat scrub and resilver
1280                          * identically.  (The incorrect data will be
1281                          * detected and ignored when we verify the
1282                          * checksum.)
1283                          */
1284
1285                         ic->ic_data = abd_alloc_sametype(zio->io_abd,
1286                             is->is_size);
1287                         ic->ic_duplicate = NULL;
1288
1289                         zio_nowait(zio_vdev_child_io(zio, NULL,
1290                             ic->ic_vdev, is->is_target_offset, ic->ic_data,
1291                             is->is_size, zio->io_type, zio->io_priority, 0,
1292                             vdev_indirect_read_split_done, ic));
1293                 }
1294         }
1295         iv->iv_reconstruct = B_TRUE;
1296 }
1297
1298 static void
1299 vdev_indirect_io_start(zio_t *zio)
1300 {
1301         ASSERTV(spa_t *spa = zio->io_spa);
1302         indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1303         list_create(&iv->iv_splits,
1304             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1305
1306         zio->io_vsd = iv;
1307         zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1308
1309         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1310         if (zio->io_type != ZIO_TYPE_READ) {
1311                 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1312                 /*
1313                  * Note: this code can handle other kinds of writes,
1314                  * but we don't expect them.
1315                  */
1316                 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1317                     ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1318         }
1319
1320         vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1321             vdev_indirect_gather_splits, zio);
1322
1323         indirect_split_t *first = list_head(&iv->iv_splits);
1324         if (first->is_size == zio->io_size) {
1325                 /*
1326                  * This is not a split block; we are pointing to the entire
1327                  * data, which will checksum the same as the original data.
1328                  * Pass the BP down so that the child i/o can verify the
1329                  * checksum, and try a different location if available
1330                  * (e.g. on a mirror).
1331                  *
1332                  * While this special case could be handled the same as the
1333                  * general (split block) case, doing it this way ensures
1334                  * that the vast majority of blocks on indirect vdevs
1335                  * (which are not split) are handled identically to blocks
1336                  * on non-indirect vdevs.  This allows us to be less strict
1337                  * about performance in the general (but rare) case.
1338                  */
1339                 ASSERT0(first->is_split_offset);
1340                 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1341                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1342                     first->is_vdev, first->is_target_offset,
1343                     abd_get_offset(zio->io_abd, 0),
1344                     zio->io_size, zio->io_type, zio->io_priority, 0,
1345                     vdev_indirect_child_io_done, zio));
1346         } else {
1347                 iv->iv_split_block = B_TRUE;
1348                 if (zio->io_type == ZIO_TYPE_READ &&
1349                     zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1350                         /*
1351                          * Read all copies.  Note that for simplicity,
1352                          * we don't bother consulting the DTL in the
1353                          * resilver case.
1354                          */
1355                         vdev_indirect_read_all(zio);
1356                 } else {
1357                         /*
1358                          * If this is a read zio, we read one copy of each
1359                          * split segment, from the top-level vdev.  Since
1360                          * we don't know the checksum of each split
1361                          * individually, the child zio can't ensure that
1362                          * we get the right data. E.g. if it's a mirror,
1363                          * it will just read from a random (healthy) leaf
1364                          * vdev. We have to verify the checksum in
1365                          * vdev_indirect_io_done().
1366                          *
1367                          * For write zios, the vdev code will ensure we write
1368                          * to all children.
1369                          */
1370                         for (indirect_split_t *is = list_head(&iv->iv_splits);
1371                             is != NULL; is = list_next(&iv->iv_splits, is)) {
1372                                 zio_nowait(zio_vdev_child_io(zio, NULL,
1373                                     is->is_vdev, is->is_target_offset,
1374                                     abd_get_offset(zio->io_abd,
1375                                     is->is_split_offset), is->is_size,
1376                                     zio->io_type, zio->io_priority, 0,
1377                                     vdev_indirect_child_io_done, zio));
1378                         }
1379
1380                 }
1381         }
1382
1383         zio_execute(zio);
1384 }
1385
1386 /*
1387  * Report a checksum error for a child.
1388  */
1389 static void
1390 vdev_indirect_checksum_error(zio_t *zio,
1391     indirect_split_t *is, indirect_child_t *ic)
1392 {
1393         vdev_t *vd = ic->ic_vdev;
1394
1395         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1396                 return;
1397
1398         mutex_enter(&vd->vdev_stat_lock);
1399         vd->vdev_stat.vs_checksum_errors++;
1400         mutex_exit(&vd->vdev_stat_lock);
1401
1402         zio_bad_cksum_t zbc = {{{ 0 }}};
1403         abd_t *bad_abd = ic->ic_data;
1404         abd_t *good_abd = is->is_good_child->ic_data;
1405         zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1406             is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1407 }
1408
1409 /*
1410  * Issue repair i/os for any incorrect copies.  We do this by comparing
1411  * each split segment's correct data (is_good_child's ic_data) with each
1412  * other copy of the data.  If they differ, then we overwrite the bad data
1413  * with the good copy.  Note that we do this without regard for the DTL's,
1414  * which simplifies this code and also issues the optimal number of writes
1415  * (based on which copies actually read bad data, as opposed to which we
1416  * think might be wrong).  For the same reason, we always use
1417  * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1418  */
1419 static void
1420 vdev_indirect_repair(zio_t *zio)
1421 {
1422         indirect_vsd_t *iv = zio->io_vsd;
1423
1424         enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1425
1426         if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1427                 flags |= ZIO_FLAG_SELF_HEAL;
1428
1429         if (!spa_writeable(zio->io_spa))
1430                 return;
1431
1432         for (indirect_split_t *is = list_head(&iv->iv_splits);
1433             is != NULL; is = list_next(&iv->iv_splits, is)) {
1434                 for (int c = 0; c < is->is_children; c++) {
1435                         indirect_child_t *ic = &is->is_child[c];
1436                         if (ic == is->is_good_child)
1437                                 continue;
1438                         if (ic->ic_data == NULL)
1439                                 continue;
1440                         if (ic->ic_duplicate == is->is_good_child)
1441                                 continue;
1442
1443                         zio_nowait(zio_vdev_child_io(zio, NULL,
1444                             ic->ic_vdev, is->is_target_offset,
1445                             is->is_good_child->ic_data, is->is_size,
1446                             ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1447                             ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1448                             NULL, NULL));
1449
1450                         vdev_indirect_checksum_error(zio, is, ic);
1451                 }
1452         }
1453 }
1454
1455 /*
1456  * Report checksum errors on all children that we read from.
1457  */
1458 static void
1459 vdev_indirect_all_checksum_errors(zio_t *zio)
1460 {
1461         indirect_vsd_t *iv = zio->io_vsd;
1462
1463         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1464                 return;
1465
1466         for (indirect_split_t *is = list_head(&iv->iv_splits);
1467             is != NULL; is = list_next(&iv->iv_splits, is)) {
1468                 for (int c = 0; c < is->is_children; c++) {
1469                         indirect_child_t *ic = &is->is_child[c];
1470
1471                         if (ic->ic_data == NULL)
1472                                 continue;
1473
1474                         vdev_t *vd = ic->ic_vdev;
1475
1476                         mutex_enter(&vd->vdev_stat_lock);
1477                         vd->vdev_stat.vs_checksum_errors++;
1478                         mutex_exit(&vd->vdev_stat_lock);
1479
1480                         zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1481                             is->is_target_offset, is->is_size,
1482                             NULL, NULL, NULL);
1483                 }
1484         }
1485 }
1486
1487 /*
1488  * Copy data from all the splits to a main zio then validate the checksum.
1489  * If then checksum is successfully validated return success.
1490  */
1491 static int
1492 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1493 {
1494         zio_bad_cksum_t zbc;
1495
1496         for (indirect_split_t *is = list_head(&iv->iv_splits);
1497             is != NULL; is = list_next(&iv->iv_splits, is)) {
1498
1499                 ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1500                 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1501
1502                 abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1503                     is->is_split_offset, 0, is->is_size);
1504         }
1505
1506         return (zio_checksum_error(zio, &zbc));
1507 }
1508
1509 /*
1510  * There are relatively few possible combinations making it feasible to
1511  * deterministically check them all.  We do this by setting the good_child
1512  * to the next unique split version.  If we reach the end of the list then
1513  * "carry over" to the next unique split version (like counting in base
1514  * is_unique_children, but each digit can have a different base).
1515  */
1516 static int
1517 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1518 {
1519         boolean_t more = B_TRUE;
1520
1521         iv->iv_attempts = 0;
1522
1523         for (indirect_split_t *is = list_head(&iv->iv_splits);
1524             is != NULL; is = list_next(&iv->iv_splits, is))
1525                 is->is_good_child = list_head(&is->is_unique_child);
1526
1527         while (more == B_TRUE) {
1528                 iv->iv_attempts++;
1529                 more = B_FALSE;
1530
1531                 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1532                         return (0);
1533
1534                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1535                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1536                         is->is_good_child = list_next(&is->is_unique_child,
1537                             is->is_good_child);
1538                         if (is->is_good_child != NULL) {
1539                                 more = B_TRUE;
1540                                 break;
1541                         }
1542
1543                         is->is_good_child = list_head(&is->is_unique_child);
1544                 }
1545         }
1546
1547         ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1548
1549         return (SET_ERROR(ECKSUM));
1550 }
1551
1552 /*
1553  * There are too many combinations to try all of them in a reasonable amount
1554  * of time.  So try a fixed number of random combinations from the unique
1555  * split versions, after which we'll consider the block unrecoverable.
1556  */
1557 static int
1558 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1559 {
1560         iv->iv_attempts = 0;
1561
1562         while (iv->iv_attempts < iv->iv_attempts_max) {
1563                 iv->iv_attempts++;
1564
1565                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1566                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1567                         indirect_child_t *ic = list_head(&is->is_unique_child);
1568                         int children = is->is_unique_children;
1569
1570                         for (int i = spa_get_random(children); i > 0; i--)
1571                                 ic = list_next(&is->is_unique_child, ic);
1572
1573                         ASSERT3P(ic, !=, NULL);
1574                         is->is_good_child = ic;
1575                 }
1576
1577                 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1578                         return (0);
1579         }
1580
1581         return (SET_ERROR(ECKSUM));
1582 }
1583
1584 /*
1585  * This is a validation function for reconstruction.  It randomly selects
1586  * a good combination, if one can be found, and then it intentionally
1587  * damages all other segment copes by zeroing them.  This forces the
1588  * reconstruction algorithm to locate the one remaining known good copy.
1589  */
1590 static int
1591 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1592 {
1593         int error;
1594
1595         /* Presume all the copies are unique for initial selection. */
1596         for (indirect_split_t *is = list_head(&iv->iv_splits);
1597             is != NULL; is = list_next(&iv->iv_splits, is)) {
1598                 is->is_unique_children = 0;
1599
1600                 for (int i = 0; i < is->is_children; i++) {
1601                         indirect_child_t *ic = &is->is_child[i];
1602                         if (ic->ic_data != NULL) {
1603                                 is->is_unique_children++;
1604                                 list_insert_tail(&is->is_unique_child, ic);
1605                         }
1606                 }
1607
1608                 if (list_is_empty(&is->is_unique_child)) {
1609                         error = SET_ERROR(EIO);
1610                         goto out;
1611                 }
1612         }
1613
1614         /*
1615          * Set each is_good_child to a randomly-selected child which
1616          * is known to contain validated data.
1617          */
1618         error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1619         if (error)
1620                 goto out;
1621
1622         /*
1623          * Damage all but the known good copy by zeroing it.  This will
1624          * result in two or less unique copies per indirect_child_t.
1625          * Both may need to be checked in order to reconstruct the block.
1626          * Set iv->iv_attempts_max such that all unique combinations will
1627          * enumerated, but limit the damage to at most 12 indirect splits.
1628          */
1629         iv->iv_attempts_max = 1;
1630
1631         for (indirect_split_t *is = list_head(&iv->iv_splits);
1632             is != NULL; is = list_next(&iv->iv_splits, is)) {
1633                 for (int c = 0; c < is->is_children; c++) {
1634                         indirect_child_t *ic = &is->is_child[c];
1635
1636                         if (ic == is->is_good_child)
1637                                 continue;
1638                         if (ic->ic_data == NULL)
1639                                 continue;
1640
1641                         abd_zero(ic->ic_data, ic->ic_data->abd_size);
1642                 }
1643
1644                 iv->iv_attempts_max *= 2;
1645                 if (iv->iv_attempts_max >= (1ULL << 12)) {
1646                         iv->iv_attempts_max = UINT64_MAX;
1647                         break;
1648                 }
1649         }
1650
1651 out:
1652         /* Empty the unique children lists so they can be reconstructed. */
1653         for (indirect_split_t *is = list_head(&iv->iv_splits);
1654             is != NULL; is = list_next(&iv->iv_splits, is)) {
1655                 indirect_child_t *ic;
1656                 while ((ic = list_head(&is->is_unique_child)) != NULL)
1657                         list_remove(&is->is_unique_child, ic);
1658
1659                 is->is_unique_children = 0;
1660         }
1661
1662         return (error);
1663 }
1664
1665 /*
1666  * This function is called when we have read all copies of the data and need
1667  * to try to find a combination of copies that gives us the right checksum.
1668  *
1669  * If we pointed to any mirror vdevs, this effectively does the job of the
1670  * mirror.  The mirror vdev code can't do its own job because we don't know
1671  * the checksum of each split segment individually.
1672  *
1673  * We have to try every unique combination of copies of split segments, until
1674  * we find one that checksums correctly.  Duplicate segment copies are first
1675  * identified and latter skipped during reconstruction.  This optimization
1676  * reduces the search space and ensures that of the remaining combinations
1677  * at most one is correct.
1678  *
1679  * When the total number of combinations is small they can all be checked.
1680  * For example, if we have 3 segments in the split, and each points to a
1681  * 2-way mirror with unique copies, we will have the following pieces of data:
1682  *
1683  *       |     mirror child
1684  * split |     [0]        [1]
1685  * ======|=====================
1686  *   A   |  data_A_0   data_A_1
1687  *   B   |  data_B_0   data_B_1
1688  *   C   |  data_C_0   data_C_1
1689  *
1690  * We will try the following (mirror children)^(number of splits) (2^3=8)
1691  * combinations, which is similar to bitwise-little-endian counting in
1692  * binary.  In general each "digit" corresponds to a split segment, and the
1693  * base of each digit is is_children, which can be different for each
1694  * digit.
1695  *
1696  * "low bit"        "high bit"
1697  *        v                 v
1698  * data_A_0 data_B_0 data_C_0
1699  * data_A_1 data_B_0 data_C_0
1700  * data_A_0 data_B_1 data_C_0
1701  * data_A_1 data_B_1 data_C_0
1702  * data_A_0 data_B_0 data_C_1
1703  * data_A_1 data_B_0 data_C_1
1704  * data_A_0 data_B_1 data_C_1
1705  * data_A_1 data_B_1 data_C_1
1706  *
1707  * Note that the split segments may be on the same or different top-level
1708  * vdevs. In either case, we may need to try lots of combinations (see
1709  * zfs_reconstruct_indirect_combinations_max).  This ensures that if a mirror
1710  * has small silent errors on all of its children, we can still reconstruct
1711  * the correct data, as long as those errors are at sufficiently-separated
1712  * offsets (specifically, separated by the largest block size - default of
1713  * 128KB, but up to 16MB).
1714  */
1715 static void
1716 vdev_indirect_reconstruct_io_done(zio_t *zio)
1717 {
1718         indirect_vsd_t *iv = zio->io_vsd;
1719         boolean_t known_good = B_FALSE;
1720         int error;
1721
1722         iv->iv_unique_combinations = 1;
1723         iv->iv_attempts_max = UINT64_MAX;
1724
1725         if (zfs_reconstruct_indirect_combinations_max > 0)
1726                 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1727
1728         /*
1729          * If nonzero, every 1/x blocks will be damaged, in order to validate
1730          * reconstruction when there are split segments with damaged copies.
1731          * Known_good will be TRUE when reconstruction is known to be possible.
1732          */
1733         if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1734             spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0)
1735                 known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
1736
1737         /*
1738          * Determine the unique children for a split segment and add them
1739          * to the is_unique_child list.  By restricting reconstruction
1740          * to these children, only unique combinations will be considered.
1741          * This can vastly reduce the search space when there are a large
1742          * number of indirect splits.
1743          */
1744         for (indirect_split_t *is = list_head(&iv->iv_splits);
1745             is != NULL; is = list_next(&iv->iv_splits, is)) {
1746                 is->is_unique_children = 0;
1747
1748                 for (int i = 0; i < is->is_children; i++) {
1749                         indirect_child_t *ic_i = &is->is_child[i];
1750
1751                         if (ic_i->ic_data == NULL ||
1752                             ic_i->ic_duplicate != NULL)
1753                                 continue;
1754
1755                         for (int j = i + 1; j < is->is_children; j++) {
1756                                 indirect_child_t *ic_j = &is->is_child[j];
1757
1758                                 if (ic_j->ic_data == NULL ||
1759                                     ic_j->ic_duplicate != NULL)
1760                                         continue;
1761
1762                                 if (abd_cmp(ic_i->ic_data, ic_j->ic_data) == 0)
1763                                         ic_j->ic_duplicate = ic_i;
1764                         }
1765
1766                         is->is_unique_children++;
1767                         list_insert_tail(&is->is_unique_child, ic_i);
1768                 }
1769
1770                 /* Reconstruction is impossible, no valid children */
1771                 EQUIV(list_is_empty(&is->is_unique_child),
1772                     is->is_unique_children == 0);
1773                 if (list_is_empty(&is->is_unique_child)) {
1774                         zio->io_error = EIO;
1775                         vdev_indirect_all_checksum_errors(zio);
1776                         zio_checksum_verified(zio);
1777                         return;
1778                 }
1779
1780                 iv->iv_unique_combinations *= is->is_unique_children;
1781         }
1782
1783         if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1784                 error = vdev_indirect_splits_enumerate_all(iv, zio);
1785         else
1786                 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1787
1788         if (error != 0) {
1789                 /* All attempted combinations failed. */
1790                 ASSERT3B(known_good, ==, B_FALSE);
1791                 zio->io_error = error;
1792                 vdev_indirect_all_checksum_errors(zio);
1793         } else {
1794                 /*
1795                  * The checksum has been successfully validated.  Issue
1796                  * repair I/Os to any copies of splits which don't match
1797                  * the validated version.
1798                  */
1799                 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1800                 vdev_indirect_repair(zio);
1801                 zio_checksum_verified(zio);
1802         }
1803 }
1804
1805 static void
1806 vdev_indirect_io_done(zio_t *zio)
1807 {
1808         indirect_vsd_t *iv = zio->io_vsd;
1809
1810         if (iv->iv_reconstruct) {
1811                 /*
1812                  * We have read all copies of the data (e.g. from mirrors),
1813                  * either because this was a scrub/resilver, or because the
1814                  * one-copy read didn't checksum correctly.
1815                  */
1816                 vdev_indirect_reconstruct_io_done(zio);
1817                 return;
1818         }
1819
1820         if (!iv->iv_split_block) {
1821                 /*
1822                  * This was not a split block, so we passed the BP down,
1823                  * and the checksum was handled by the (one) child zio.
1824                  */
1825                 return;
1826         }
1827
1828         zio_bad_cksum_t zbc;
1829         int ret = zio_checksum_error(zio, &zbc);
1830         if (ret == 0) {
1831                 zio_checksum_verified(zio);
1832                 return;
1833         }
1834
1835         /*
1836          * The checksum didn't match.  Read all copies of all splits, and
1837          * then we will try to reconstruct.  The next time
1838          * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1839          */
1840         vdev_indirect_read_all(zio);
1841
1842         zio_vdev_io_redone(zio);
1843 }
1844
1845 vdev_ops_t vdev_indirect_ops = {
1846         .vdev_op_open = vdev_indirect_open,
1847         .vdev_op_close = vdev_indirect_close,
1848         .vdev_op_asize = vdev_default_asize,
1849         .vdev_op_io_start = vdev_indirect_io_start,
1850         .vdev_op_io_done = vdev_indirect_io_done,
1851         .vdev_op_state_change = NULL,
1852         .vdev_op_need_resilver = NULL,
1853         .vdev_op_hold = NULL,
1854         .vdev_op_rele = NULL,
1855         .vdev_op_remap = vdev_indirect_remap,
1856         .vdev_op_xlate = NULL,
1857         .vdev_op_type = VDEV_TYPE_INDIRECT,     /* name of this vdev type */
1858         .vdev_op_leaf = B_FALSE                 /* leaf vdev */
1859 };
1860
1861 EXPORT_SYMBOL(rs_alloc);
1862 EXPORT_SYMBOL(spa_condense_fini);
1863 EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
1864 EXPORT_SYMBOL(spa_condense_indirect_start_sync);
1865 EXPORT_SYMBOL(spa_condense_init);
1866 EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
1867 EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
1868 EXPORT_SYMBOL(vdev_indirect_should_condense);
1869 EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
1870 EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
1871 EXPORT_SYMBOL(vdev_obsolete_sm_object);
1872
1873 /* BEGIN CSTYLED */
1874 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_vdevs_enable, INT, ZMOD_RW,
1875         "Whether to attempt condensing indirect vdev mappings");
1876
1877 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, min_mapping_bytes, ULONG, ZMOD_RW,
1878         "Don't bother condensing if the mapping uses less than this amount of "
1879         "memory");
1880
1881 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, max_obsolete_bytes, ULONG, ZMOD_RW,
1882         "Minimum size obsolete spacemap to attempt condensing");
1883
1884 ZFS_MODULE_PARAM(zfs_condense, zfs_condense_, indirect_commit_entry_delay_ms, INT, ZMOD_RW,
1885         "Used by tests to ensure certain actions happen in the middle of a "
1886         "condense. A maximum value of 1 should be sufficient.");
1887
1888 ZFS_MODULE_PARAM(zfs_reconstruct, zfs_reconstruct_, indirect_combinations_max, INT, ZMOD_RW,
1889         "Maximum number of combinations when reconstructing split segments");
1890 /* END CSTYLED */