]> granicus.if.org Git - zfs/blob - module/zfs/vdev_indirect.c
OpenZFS 9166 - zfs storage pool checkpoint
[zfs] / module / zfs / vdev_indirect.c
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15
16 /*
17  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18  */
19
20 #include <sys/zfs_context.h>
21 #include <sys/spa.h>
22 #include <sys/spa_impl.h>
23 #include <sys/vdev_impl.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zio_checksum.h>
27 #include <sys/metaslab.h>
28 #include <sys/refcount.h>
29 #include <sys/dmu.h>
30 #include <sys/vdev_indirect_mapping.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/abd.h>
35 #include <sys/zthr.h>
36
37 /*
38  * An indirect vdev corresponds to a vdev that has been removed.  Since
39  * we cannot rewrite block pointers of snapshots, etc., we keep a
40  * mapping from old location on the removed device to the new location
41  * on another device in the pool and use this mapping whenever we need
42  * to access the DVA.  Unfortunately, this mapping did not respect
43  * logical block boundaries when it was first created, and so a DVA on
44  * this indirect vdev may be "split" into multiple sections that each
45  * map to a different location.  As a consequence, not all DVAs can be
46  * translated to an equivalent new DVA.  Instead we must provide a
47  * "vdev_remap" operation that executes a callback on each contiguous
48  * segment of the new location.  This function is used in multiple ways:
49  *
50  *  - i/os to this vdev use the callback to determine where the
51  *    data is now located, and issue child i/os for each segment's new
52  *    location.
53  *
54  *  - frees and claims to this vdev use the callback to free or claim
55  *    each mapped segment.  (Note that we don't actually need to claim
56  *    log blocks on indirect vdevs, because we don't allocate to
57  *    removing vdevs.  However, zdb uses zio_claim() for its leak
58  *    detection.)
59  */
60
61 /*
62  * "Big theory statement" for how we mark blocks obsolete.
63  *
64  * When a block on an indirect vdev is freed or remapped, a section of
65  * that vdev's mapping may no longer be referenced (aka "obsolete").  We
66  * keep track of how much of each mapping entry is obsolete.  When
67  * an entry becomes completely obsolete, we can remove it, thus reducing
68  * the memory used by the mapping.  The complete picture of obsolescence
69  * is given by the following data structures, described below:
70  *  - the entry-specific obsolete count
71  *  - the vdev-specific obsolete spacemap
72  *  - the pool-specific obsolete bpobj
73  *
74  * == On disk data structures used ==
75  *
76  * We track the obsolete space for the pool using several objects.  Each
77  * of these objects is created on demand and freed when no longer
78  * needed, and is assumed to be empty if it does not exist.
79  * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
80  *
81  *  - Each vic_mapping_object (associated with an indirect vdev) can
82  *    have a vimp_counts_object.  This is an array of uint32_t's
83  *    with the same number of entries as the vic_mapping_object.  When
84  *    the mapping is condensed, entries from the vic_obsolete_sm_object
85  *    (see below) are folded into the counts.  Therefore, each
86  *    obsolete_counts entry tells us the number of bytes in the
87  *    corresponding mapping entry that were not referenced when the
88  *    mapping was last condensed.
89  *
90  *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
91  *    This is a space map containing an alloc entry for every DVA that
92  *    has been obsoleted since the last time this indirect vdev was
93  *    condensed.  We use this object in order to improve performance
94  *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
95  *    offset of the vimp_counts_object, we only need to append an entry
96  *    to the end of this object.  When a DVA becomes obsolete, it is
97  *    added to the obsolete space map.  This happens when the DVA is
98  *    freed, remapped and not referenced by a snapshot, or the last
99  *    snapshot referencing it is destroyed.
100  *
101  *  - Each dataset can have a ds_remap_deadlist object.  This is a
102  *    deadlist object containing all blocks that were remapped in this
103  *    dataset but referenced in a previous snapshot.  Blocks can *only*
104  *    appear on this list if they were remapped (dsl_dataset_block_remapped);
105  *    blocks that were killed in a head dataset are put on the normal
106  *    ds_deadlist and marked obsolete when they are freed.
107  *
108  *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
109  *    in the pool that need to be marked obsolete.  When a snapshot is
110  *    destroyed, we move some of the ds_remap_deadlist to the obsolete
111  *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
112  *    asynchronously process the obsolete bpobj, moving its entries to
113  *    the specific vdevs' obsolete space maps.
114  *
115  * == Summary of how we mark blocks as obsolete ==
116  *
117  * - When freeing a block: if any DVA is on an indirect vdev, append to
118  *   vic_obsolete_sm_object.
119  * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
120  *   references; otherwise append to vic_obsolete_sm_object).
121  * - When freeing a snapshot: move parts of ds_remap_deadlist to
122  *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
123  * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
124  *   individual vdev's vic_obsolete_sm_object.
125  */
126
127 /*
128  * "Big theory statement" for how we condense indirect vdevs.
129  *
130  * Condensing an indirect vdev's mapping is the process of determining
131  * the precise counts of obsolete space for each mapping entry (by
132  * integrating the obsolete spacemap into the obsolete counts) and
133  * writing out a new mapping that contains only referenced entries.
134  *
135  * We condense a vdev when we expect the mapping to shrink (see
136  * vdev_indirect_should_condense()), but only perform one condense at a
137  * time to limit the memory usage.  In addition, we use a separate
138  * open-context thread (spa_condense_indirect_thread) to incrementally
139  * create the new mapping object in a way that minimizes the impact on
140  * the rest of the system.
141  *
142  * == Generating a new mapping ==
143  *
144  * To generate a new mapping, we follow these steps:
145  *
146  * 1. Save the old obsolete space map and create a new mapping object
147  *    (see spa_condense_indirect_start_sync()).  This initializes the
148  *    spa_condensing_indirect_phys with the "previous obsolete space map",
149  *    which is now read only.  Newly obsolete DVAs will be added to a
150  *    new (initially empty) obsolete space map, and will not be
151  *    considered as part of this condense operation.
152  *
153  * 2. Construct in memory the precise counts of obsolete space for each
154  *    mapping entry, by incorporating the obsolete space map into the
155  *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
156  *
157  * 3. Iterate through each mapping entry, writing to the new mapping any
158  *    entries that are not completely obsolete (i.e. which don't have
159  *    obsolete count == mapping length).  (See
160  *    spa_condense_indirect_generate_new_mapping().)
161  *
162  * 4. Destroy the old mapping object and switch over to the new one
163  *    (spa_condense_indirect_complete_sync).
164  *
165  * == Restarting from failure ==
166  *
167  * To restart the condense when we import/open the pool, we must start
168  * at the 2nd step above: reconstruct the precise counts in memory,
169  * based on the space map + counts.  Then in the 3rd step, we start
170  * iterating where we left off: at vimp_max_offset of the new mapping
171  * object.
172  */
173
174 int zfs_condense_indirect_vdevs_enable = B_TRUE;
175
176 /*
177  * Condense if at least this percent of the bytes in the mapping is
178  * obsolete.  With the default of 25%, the amount of space mapped
179  * will be reduced to 1% of its original size after at most 16
180  * condenses.  Higher values will condense less often (causing less
181  * i/o); lower values will reduce the mapping size more quickly.
182  */
183 int zfs_indirect_condense_obsolete_pct = 25;
184
185 /*
186  * Condense if the obsolete space map takes up more than this amount of
187  * space on disk (logically).  This limits the amount of disk space
188  * consumed by the obsolete space map; the default of 1GB is small enough
189  * that we typically don't mind "wasting" it.
190  */
191 unsigned long zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
192
193 /*
194  * Don't bother condensing if the mapping uses less than this amount of
195  * memory.  The default of 128KB is considered a "trivial" amount of
196  * memory and not worth reducing.
197  */
198 unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
199
200 /*
201  * This is used by the test suite so that it can ensure that certain
202  * actions happen while in the middle of a condense (which might otherwise
203  * complete too quickly).  If used to reduce the performance impact of
204  * condensing in production, a maximum value of 1 should be sufficient.
205  */
206 int zfs_condense_indirect_commit_entry_delay_ms = 0;
207
208 /*
209  * If an indirect split block contains more than this many possible unique
210  * combinations when being reconstructed, consider it too computationally
211  * expensive to check them all. Instead, try at most 100 randomly-selected
212  * combinations each time the block is accessed.  This allows all segment
213  * copies to participate fairly in the reconstruction when all combinations
214  * cannot be checked and prevents repeated use of one bad copy.
215  */
216 int zfs_reconstruct_indirect_combinations_max = 100;
217
218 /*
219  * The indirect_child_t represents the vdev that we will read from, when we
220  * need to read all copies of the data (e.g. for scrub or reconstruction).
221  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
222  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
223  * ic_vdev is a child of the mirror.
224  */
225 typedef struct indirect_child {
226         abd_t *ic_data;
227         vdev_t *ic_vdev;
228
229         /*
230          * ic_duplicate is -1 when the ic_data contents are unique, when it
231          * is determined to be a duplicate it refers to the primary child.
232          */
233         int ic_duplicate;
234 } indirect_child_t;
235
236 /*
237  * The indirect_split_t represents one mapped segment of an i/o to the
238  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
239  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
240  * For split blocks, there will be several of these.
241  */
242 typedef struct indirect_split {
243         list_node_t is_node; /* link on iv_splits */
244
245         /*
246          * is_split_offset is the offset into the i/o.
247          * This is the sum of the previous splits' is_size's.
248          */
249         uint64_t is_split_offset;
250
251         vdev_t *is_vdev; /* top-level vdev */
252         uint64_t is_target_offset; /* offset on is_vdev */
253         uint64_t is_size;
254         int is_children; /* number of entries in is_child[] */
255
256         /*
257          * is_good_child is the child that we are currently using to
258          * attempt reconstruction.
259          */
260         int is_good_child;
261
262         indirect_child_t is_child[1]; /* variable-length */
263 } indirect_split_t;
264
265 /*
266  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
267  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
268  */
269 typedef struct indirect_vsd {
270         boolean_t iv_split_block;
271         boolean_t iv_reconstruct;
272
273         list_t iv_splits; /* list of indirect_split_t's */
274 } indirect_vsd_t;
275
276 static void
277 vdev_indirect_map_free(zio_t *zio)
278 {
279         indirect_vsd_t *iv = zio->io_vsd;
280
281         indirect_split_t *is;
282         while ((is = list_head(&iv->iv_splits)) != NULL) {
283                 for (int c = 0; c < is->is_children; c++) {
284                         indirect_child_t *ic = &is->is_child[c];
285                         if (ic->ic_data != NULL)
286                                 abd_free(ic->ic_data);
287                 }
288                 list_remove(&iv->iv_splits, is);
289                 kmem_free(is,
290                     offsetof(indirect_split_t, is_child[is->is_children]));
291         }
292         kmem_free(iv, sizeof (*iv));
293 }
294
295 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
296         .vsd_free = vdev_indirect_map_free,
297         .vsd_cksum_report = zio_vsd_default_cksum_report
298 };
299
300 /*
301  * Mark the given offset and size as being obsolete.
302  */
303 void
304 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
305 {
306         spa_t *spa = vd->vdev_spa;
307
308         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
309         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
310         ASSERT(size > 0);
311         VERIFY(vdev_indirect_mapping_entry_for_offset(
312             vd->vdev_indirect_mapping, offset) != NULL);
313
314         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
315                 mutex_enter(&vd->vdev_obsolete_lock);
316                 range_tree_add(vd->vdev_obsolete_segments, offset, size);
317                 mutex_exit(&vd->vdev_obsolete_lock);
318                 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
319         }
320 }
321
322 /*
323  * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
324  * wrapper is provided because the DMU does not know about vdev_t's and
325  * cannot directly call vdev_indirect_mark_obsolete.
326  */
327 void
328 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
329     uint64_t size, dmu_tx_t *tx)
330 {
331         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
332         ASSERT(dmu_tx_is_syncing(tx));
333
334         /* The DMU can only remap indirect vdevs. */
335         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
336         vdev_indirect_mark_obsolete(vd, offset, size);
337 }
338
339 static spa_condensing_indirect_t *
340 spa_condensing_indirect_create(spa_t *spa)
341 {
342         spa_condensing_indirect_phys_t *scip =
343             &spa->spa_condensing_indirect_phys;
344         spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
345         objset_t *mos = spa->spa_meta_objset;
346
347         for (int i = 0; i < TXG_SIZE; i++) {
348                 list_create(&sci->sci_new_mapping_entries[i],
349                     sizeof (vdev_indirect_mapping_entry_t),
350                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
351         }
352
353         sci->sci_new_mapping =
354             vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
355
356         return (sci);
357 }
358
359 static void
360 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
361 {
362         for (int i = 0; i < TXG_SIZE; i++)
363                 list_destroy(&sci->sci_new_mapping_entries[i]);
364
365         if (sci->sci_new_mapping != NULL)
366                 vdev_indirect_mapping_close(sci->sci_new_mapping);
367
368         kmem_free(sci, sizeof (*sci));
369 }
370
371 boolean_t
372 vdev_indirect_should_condense(vdev_t *vd)
373 {
374         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
375         spa_t *spa = vd->vdev_spa;
376
377         ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
378
379         if (!zfs_condense_indirect_vdevs_enable)
380                 return (B_FALSE);
381
382         /*
383          * We can only condense one indirect vdev at a time.
384          */
385         if (spa->spa_condensing_indirect != NULL)
386                 return (B_FALSE);
387
388         if (spa_shutting_down(spa))
389                 return (B_FALSE);
390
391         /*
392          * The mapping object size must not change while we are
393          * condensing, so we can only condense indirect vdevs
394          * (not vdevs that are still in the middle of being removed).
395          */
396         if (vd->vdev_ops != &vdev_indirect_ops)
397                 return (B_FALSE);
398
399         /*
400          * If nothing new has been marked obsolete, there is no
401          * point in condensing.
402          */
403         if (vd->vdev_obsolete_sm == NULL) {
404                 ASSERT0(vdev_obsolete_sm_object(vd));
405                 return (B_FALSE);
406         }
407
408         ASSERT(vd->vdev_obsolete_sm != NULL);
409
410         ASSERT3U(vdev_obsolete_sm_object(vd), ==,
411             space_map_object(vd->vdev_obsolete_sm));
412
413         uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
414         uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
415         uint64_t mapping_size = vdev_indirect_mapping_size(vim);
416         uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
417
418         ASSERT3U(bytes_obsolete, <=, bytes_mapped);
419
420         /*
421          * If a high percentage of the bytes that are mapped have become
422          * obsolete, condense (unless the mapping is already small enough).
423          * This has a good chance of reducing the amount of memory used
424          * by the mapping.
425          */
426         if (bytes_obsolete * 100 / bytes_mapped >=
427             zfs_indirect_condense_obsolete_pct &&
428             mapping_size > zfs_condense_min_mapping_bytes) {
429                 zfs_dbgmsg("should condense vdev %llu because obsolete "
430                     "spacemap covers %d%% of %lluMB mapping",
431                     (u_longlong_t)vd->vdev_id,
432                     (int)(bytes_obsolete * 100 / bytes_mapped),
433                     (u_longlong_t)bytes_mapped / 1024 / 1024);
434                 return (B_TRUE);
435         }
436
437         /*
438          * If the obsolete space map takes up too much space on disk,
439          * condense in order to free up this disk space.
440          */
441         if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
442                 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
443                     "length %lluMB >= max size %lluMB",
444                     (u_longlong_t)vd->vdev_id,
445                     (u_longlong_t)obsolete_sm_size / 1024 / 1024,
446                     (u_longlong_t)zfs_condense_max_obsolete_bytes /
447                     1024 / 1024);
448                 return (B_TRUE);
449         }
450
451         return (B_FALSE);
452 }
453
454 /*
455  * This sync task completes (finishes) a condense, deleting the old
456  * mapping and replacing it with the new one.
457  */
458 static void
459 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
460 {
461         spa_condensing_indirect_t *sci = arg;
462         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
463         spa_condensing_indirect_phys_t *scip =
464             &spa->spa_condensing_indirect_phys;
465         vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
466         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
467         objset_t *mos = spa->spa_meta_objset;
468         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
469         uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
470         uint64_t new_count =
471             vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
472
473         ASSERT(dmu_tx_is_syncing(tx));
474         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
475         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
476         for (int i = 0; i < TXG_SIZE; i++) {
477                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
478         }
479         ASSERT(vic->vic_mapping_object != 0);
480         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
481         ASSERT(scip->scip_next_mapping_object != 0);
482         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
483
484         /*
485          * Reset vdev_indirect_mapping to refer to the new object.
486          */
487         rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
488         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
489         vd->vdev_indirect_mapping = sci->sci_new_mapping;
490         rw_exit(&vd->vdev_indirect_rwlock);
491
492         sci->sci_new_mapping = NULL;
493         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
494         vic->vic_mapping_object = scip->scip_next_mapping_object;
495         scip->scip_next_mapping_object = 0;
496
497         space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
498         spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
499         scip->scip_prev_obsolete_sm_object = 0;
500
501         scip->scip_vdev = 0;
502
503         VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
504             DMU_POOL_CONDENSING_INDIRECT, tx));
505         spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
506         spa->spa_condensing_indirect = NULL;
507
508         zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
509             "new mapping object %llu has %llu entries "
510             "(was %llu entries)",
511             vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
512             new_count, old_count);
513
514         vdev_config_dirty(spa->spa_root_vdev);
515 }
516
517 /*
518  * This sync task appends entries to the new mapping object.
519  */
520 static void
521 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
522 {
523         spa_condensing_indirect_t *sci = arg;
524         uint64_t txg = dmu_tx_get_txg(tx);
525         ASSERTV(spa_t *spa = dmu_tx_pool(tx)->dp_spa);
526
527         ASSERT(dmu_tx_is_syncing(tx));
528         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
529
530         vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
531             &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
532         ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
533 }
534
535 /*
536  * Open-context function to add one entry to the new mapping.  The new
537  * entry will be remembered and written from syncing context.
538  */
539 static void
540 spa_condense_indirect_commit_entry(spa_t *spa,
541     vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
542 {
543         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
544
545         ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
546
547         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
548         dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
549         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
550         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
551
552         /*
553          * If we are the first entry committed this txg, kick off the sync
554          * task to write to the MOS on our behalf.
555          */
556         if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
557                 dsl_sync_task_nowait(dmu_tx_pool(tx),
558                     spa_condense_indirect_commit_sync, sci,
559                     0, ZFS_SPACE_CHECK_NONE, tx);
560         }
561
562         vdev_indirect_mapping_entry_t *vime =
563             kmem_alloc(sizeof (*vime), KM_SLEEP);
564         vime->vime_mapping = *vimep;
565         vime->vime_obsolete_count = count;
566         list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
567
568         dmu_tx_commit(tx);
569 }
570
571 static void
572 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
573     uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
574 {
575         spa_t *spa = vd->vdev_spa;
576         uint64_t mapi = start_index;
577         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
578         uint64_t old_num_entries =
579             vdev_indirect_mapping_num_entries(old_mapping);
580
581         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
582         ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
583
584         zfs_dbgmsg("starting condense of vdev %llu from index %llu",
585             (u_longlong_t)vd->vdev_id,
586             (u_longlong_t)mapi);
587
588         while (mapi < old_num_entries) {
589
590                 if (zthr_iscancelled(zthr)) {
591                         zfs_dbgmsg("pausing condense of vdev %llu "
592                             "at index %llu", (u_longlong_t)vd->vdev_id,
593                             (u_longlong_t)mapi);
594                         break;
595                 }
596
597                 vdev_indirect_mapping_entry_phys_t *entry =
598                     &old_mapping->vim_entries[mapi];
599                 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
600                 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
601                 if (obsolete_counts[mapi] < entry_size) {
602                         spa_condense_indirect_commit_entry(spa, entry,
603                             obsolete_counts[mapi]);
604
605                         /*
606                          * This delay may be requested for testing, debugging,
607                          * or performance reasons.
608                          */
609                         hrtime_t now = gethrtime();
610                         hrtime_t sleep_until = now + MSEC2NSEC(
611                             zfs_condense_indirect_commit_entry_delay_ms);
612                         zfs_sleep_until(sleep_until);
613                 }
614
615                 mapi++;
616         }
617 }
618
619 /* ARGSUSED */
620 static boolean_t
621 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
622 {
623         spa_t *spa = arg;
624
625         return (spa->spa_condensing_indirect != NULL);
626 }
627
628 /* ARGSUSED */
629 static int
630 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
631 {
632         spa_t *spa = arg;
633         vdev_t *vd;
634
635         ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
636         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
637         vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
638         ASSERT3P(vd, !=, NULL);
639         spa_config_exit(spa, SCL_VDEV, FTAG);
640
641         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
642         spa_condensing_indirect_phys_t *scip =
643             &spa->spa_condensing_indirect_phys;
644         uint32_t *counts;
645         uint64_t start_index;
646         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
647         space_map_t *prev_obsolete_sm = NULL;
648
649         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
650         ASSERT(scip->scip_next_mapping_object != 0);
651         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
652         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
653
654         for (int i = 0; i < TXG_SIZE; i++) {
655                 /*
656                  * The list must start out empty in order for the
657                  * _commit_sync() sync task to be properly registered
658                  * on the first call to _commit_entry(); so it's wise
659                  * to double check and ensure we actually are starting
660                  * with empty lists.
661                  */
662                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
663         }
664
665         VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
666             scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
667         space_map_update(prev_obsolete_sm);
668         counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
669         if (prev_obsolete_sm != NULL) {
670                 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
671                     counts, prev_obsolete_sm);
672         }
673         space_map_close(prev_obsolete_sm);
674
675         /*
676          * Generate new mapping.  Determine what index to continue from
677          * based on the max offset that we've already written in the
678          * new mapping.
679          */
680         uint64_t max_offset =
681             vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
682         if (max_offset == 0) {
683                 /* We haven't written anything to the new mapping yet. */
684                 start_index = 0;
685         } else {
686                 /*
687                  * Pick up from where we left off. _entry_for_offset()
688                  * returns a pointer into the vim_entries array. If
689                  * max_offset is greater than any of the mappings
690                  * contained in the table  NULL will be returned and
691                  * that indicates we've exhausted our iteration of the
692                  * old_mapping.
693                  */
694
695                 vdev_indirect_mapping_entry_phys_t *entry =
696                     vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
697                     max_offset);
698
699                 if (entry == NULL) {
700                         /*
701                          * We've already written the whole new mapping.
702                          * This special value will cause us to skip the
703                          * generate_new_mapping step and just do the sync
704                          * task to complete the condense.
705                          */
706                         start_index = UINT64_MAX;
707                 } else {
708                         start_index = entry - old_mapping->vim_entries;
709                         ASSERT3U(start_index, <,
710                             vdev_indirect_mapping_num_entries(old_mapping));
711                 }
712         }
713
714         spa_condense_indirect_generate_new_mapping(vd, counts,
715             start_index, zthr);
716
717         vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
718
719         /*
720          * If the zthr has received a cancellation signal while running
721          * in generate_new_mapping() or at any point after that, then bail
722          * early. We don't want to complete the condense if the spa is
723          * shutting down.
724          */
725         if (zthr_iscancelled(zthr))
726                 return (0);
727
728         VERIFY0(dsl_sync_task(spa_name(spa), NULL,
729             spa_condense_indirect_complete_sync, sci, 0,
730             ZFS_SPACE_CHECK_EXTRA_RESERVED));
731
732         return (0);
733 }
734
735 /*
736  * Sync task to begin the condensing process.
737  */
738 void
739 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
740 {
741         spa_t *spa = vd->vdev_spa;
742         spa_condensing_indirect_phys_t *scip =
743             &spa->spa_condensing_indirect_phys;
744
745         ASSERT0(scip->scip_next_mapping_object);
746         ASSERT0(scip->scip_prev_obsolete_sm_object);
747         ASSERT0(scip->scip_vdev);
748         ASSERT(dmu_tx_is_syncing(tx));
749         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
750         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
751         ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
752
753         uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
754         ASSERT(obsolete_sm_obj != 0);
755
756         scip->scip_vdev = vd->vdev_id;
757         scip->scip_next_mapping_object =
758             vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
759
760         scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
761
762         /*
763          * We don't need to allocate a new space map object, since
764          * vdev_indirect_sync_obsolete will allocate one when needed.
765          */
766         space_map_close(vd->vdev_obsolete_sm);
767         vd->vdev_obsolete_sm = NULL;
768         VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
769             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
770
771         VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
772             DMU_POOL_DIRECTORY_OBJECT,
773             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
774             sizeof (*scip) / sizeof (uint64_t), scip, tx));
775
776         ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
777         spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
778
779         zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
780             "posm=%llu nm=%llu",
781             vd->vdev_id, dmu_tx_get_txg(tx),
782             (u_longlong_t)scip->scip_prev_obsolete_sm_object,
783             (u_longlong_t)scip->scip_next_mapping_object);
784
785         zthr_wakeup(spa->spa_condense_zthr);
786 }
787
788 /*
789  * Sync to the given vdev's obsolete space map any segments that are no longer
790  * referenced as of the given txg.
791  *
792  * If the obsolete space map doesn't exist yet, create and open it.
793  */
794 void
795 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
796 {
797         spa_t *spa = vd->vdev_spa;
798         ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
799
800         ASSERT3U(vic->vic_mapping_object, !=, 0);
801         ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
802         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
803         ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
804
805         if (vdev_obsolete_sm_object(vd) == 0) {
806                 uint64_t obsolete_sm_object =
807                     space_map_alloc(spa->spa_meta_objset,
808                     vdev_standard_sm_blksz, tx);
809
810                 ASSERT(vd->vdev_top_zap != 0);
811                 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
812                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
813                     sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
814                 ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
815
816                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
817                 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
818                     spa->spa_meta_objset, obsolete_sm_object,
819                     0, vd->vdev_asize, 0));
820                 space_map_update(vd->vdev_obsolete_sm);
821         }
822
823         ASSERT(vd->vdev_obsolete_sm != NULL);
824         ASSERT3U(vdev_obsolete_sm_object(vd), ==,
825             space_map_object(vd->vdev_obsolete_sm));
826
827         space_map_write(vd->vdev_obsolete_sm,
828             vd->vdev_obsolete_segments, SM_ALLOC, tx);
829         space_map_update(vd->vdev_obsolete_sm);
830         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
831 }
832
833 int
834 spa_condense_init(spa_t *spa)
835 {
836         int error = zap_lookup(spa->spa_meta_objset,
837             DMU_POOL_DIRECTORY_OBJECT,
838             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
839             sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
840             &spa->spa_condensing_indirect_phys);
841         if (error == 0) {
842                 if (spa_writeable(spa)) {
843                         spa->spa_condensing_indirect =
844                             spa_condensing_indirect_create(spa);
845                 }
846                 return (0);
847         } else if (error == ENOENT) {
848                 return (0);
849         } else {
850                 return (error);
851         }
852 }
853
854 void
855 spa_condense_fini(spa_t *spa)
856 {
857         if (spa->spa_condensing_indirect != NULL) {
858                 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
859                 spa->spa_condensing_indirect = NULL;
860         }
861 }
862
863 void
864 spa_start_indirect_condensing_thread(spa_t *spa)
865 {
866         ASSERT3P(spa->spa_condense_zthr, ==, NULL);
867         spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
868             spa_condense_indirect_thread, spa);
869 }
870
871 /*
872  * Gets the obsolete spacemap object from the vdev's ZAP.
873  * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
874  * exist yet.
875  */
876 int
877 vdev_obsolete_sm_object(vdev_t *vd)
878 {
879         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
880         if (vd->vdev_top_zap == 0) {
881                 return (0);
882         }
883
884         uint64_t sm_obj = 0;
885         int err;
886         err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
887             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
888
889         ASSERT(err == 0 || err == ENOENT);
890
891         return (sm_obj);
892 }
893
894 boolean_t
895 vdev_obsolete_counts_are_precise(vdev_t *vd)
896 {
897         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
898         if (vd->vdev_top_zap == 0) {
899                 return (B_FALSE);
900         }
901
902         uint64_t val = 0;
903         int err;
904         err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
905             VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
906
907         ASSERT(err == 0 || err == ENOENT);
908
909         return (val != 0);
910 }
911
912 /* ARGSUSED */
913 static void
914 vdev_indirect_close(vdev_t *vd)
915 {
916 }
917
918 /* ARGSUSED */
919 static int
920 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
921     uint64_t *ashift)
922 {
923         *psize = *max_psize = vd->vdev_asize +
924             VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
925         *ashift = vd->vdev_ashift;
926         return (0);
927 }
928
929 typedef struct remap_segment {
930         vdev_t *rs_vd;
931         uint64_t rs_offset;
932         uint64_t rs_asize;
933         uint64_t rs_split_offset;
934         list_node_t rs_node;
935 } remap_segment_t;
936
937 remap_segment_t *
938 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
939 {
940         remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
941         rs->rs_vd = vd;
942         rs->rs_offset = offset;
943         rs->rs_asize = asize;
944         rs->rs_split_offset = split_offset;
945         return (rs);
946 }
947
948 /*
949  * Given an indirect vdev and an extent on that vdev, it duplicates the
950  * physical entries of the indirect mapping that correspond to the extent
951  * to a new array and returns a pointer to it. In addition, copied_entries
952  * is populated with the number of mapping entries that were duplicated.
953  *
954  * Note that the function assumes that the caller holds vdev_indirect_rwlock.
955  * This ensures that the mapping won't change due to condensing as we
956  * copy over its contents.
957  *
958  * Finally, since we are doing an allocation, it is up to the caller to
959  * free the array allocated in this function.
960  */
961 vdev_indirect_mapping_entry_phys_t *
962 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
963     uint64_t asize, uint64_t *copied_entries)
964 {
965         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
966         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
967         uint64_t entries = 0;
968
969         ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
970
971         vdev_indirect_mapping_entry_phys_t *first_mapping =
972             vdev_indirect_mapping_entry_for_offset(vim, offset);
973         ASSERT3P(first_mapping, !=, NULL);
974
975         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
976         while (asize > 0) {
977                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
978
979                 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
980                 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
981
982                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
983                 uint64_t inner_size = MIN(asize, size - inner_offset);
984
985                 offset += inner_size;
986                 asize -= inner_size;
987                 entries++;
988                 m++;
989         }
990
991         size_t copy_length = entries * sizeof (*first_mapping);
992         duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
993         bcopy(first_mapping, duplicate_mappings, copy_length);
994         *copied_entries = entries;
995
996         return (duplicate_mappings);
997 }
998
999 /*
1000  * Goes through the relevant indirect mappings until it hits a concrete vdev
1001  * and issues the callback. On the way to the concrete vdev, if any other
1002  * indirect vdevs are encountered, then the callback will also be called on
1003  * each of those indirect vdevs. For example, if the segment is mapped to
1004  * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1005  * mapped to segment B on concrete vdev 2, then the callback will be called on
1006  * both vdev 1 and vdev 2.
1007  *
1008  * While the callback passed to vdev_indirect_remap() is called on every vdev
1009  * the function encounters, certain callbacks only care about concrete vdevs.
1010  * These types of callbacks should return immediately and explicitly when they
1011  * are called on an indirect vdev.
1012  *
1013  * Because there is a possibility that a DVA section in the indirect device
1014  * has been split into multiple sections in our mapping, we keep track
1015  * of the relevant contiguous segments of the new location (remap_segment_t)
1016  * in a stack. This way we can call the callback for each of the new sections
1017  * created by a single section of the indirect device. Note though, that in
1018  * this scenario the callbacks in each split block won't occur in-order in
1019  * terms of offset, so callers should not make any assumptions about that.
1020  *
1021  * For callbacks that don't handle split blocks and immediately return when
1022  * they encounter them (as is the case for remap_blkptr_cb), the caller can
1023  * assume that its callback will be applied from the first indirect vdev
1024  * encountered to the last one and then the concrete vdev, in that order.
1025  */
1026 static void
1027 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1028     void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1029 {
1030         list_t stack;
1031         spa_t *spa = vd->vdev_spa;
1032
1033         list_create(&stack, sizeof (remap_segment_t),
1034             offsetof(remap_segment_t, rs_node));
1035
1036         for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1037             rs != NULL; rs = list_remove_head(&stack)) {
1038                 vdev_t *v = rs->rs_vd;
1039                 uint64_t num_entries = 0;
1040
1041                 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1042                 ASSERT(rs->rs_asize > 0);
1043
1044                 /*
1045                  * Note: As this function can be called from open context
1046                  * (e.g. zio_read()), we need the following rwlock to
1047                  * prevent the mapping from being changed by condensing.
1048                  *
1049                  * So we grab the lock and we make a copy of the entries
1050                  * that are relevant to the extent that we are working on.
1051                  * Once that is done, we drop the lock and iterate over
1052                  * our copy of the mapping. Once we are done with the with
1053                  * the remap segment and we free it, we also free our copy
1054                  * of the indirect mapping entries that are relevant to it.
1055                  *
1056                  * This way we don't need to wait until the function is
1057                  * finished with a segment, to condense it. In addition, we
1058                  * don't need a recursive rwlock for the case that a call to
1059                  * vdev_indirect_remap() needs to call itself (through the
1060                  * codepath of its callback) for the same vdev in the middle
1061                  * of its execution.
1062                  */
1063                 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1064                 ASSERT3P(v->vdev_indirect_mapping, !=, NULL);
1065
1066                 vdev_indirect_mapping_entry_phys_t *mapping =
1067                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
1068                     rs->rs_offset, rs->rs_asize, &num_entries);
1069                 ASSERT3P(mapping, !=, NULL);
1070                 ASSERT3U(num_entries, >, 0);
1071                 rw_exit(&v->vdev_indirect_rwlock);
1072
1073                 for (uint64_t i = 0; i < num_entries; i++) {
1074                         /*
1075                          * Note: the vdev_indirect_mapping can not change
1076                          * while we are running.  It only changes while the
1077                          * removal is in progress, and then only from syncing
1078                          * context. While a removal is in progress, this
1079                          * function is only called for frees, which also only
1080                          * happen from syncing context.
1081                          */
1082                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1083
1084                         ASSERT3P(m, !=, NULL);
1085                         ASSERT3U(rs->rs_asize, >, 0);
1086
1087                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1088                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1089                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1090
1091                         ASSERT3U(rs->rs_offset, >=,
1092                             DVA_MAPPING_GET_SRC_OFFSET(m));
1093                         ASSERT3U(rs->rs_offset, <,
1094                             DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1095                         ASSERT3U(dst_vdev, !=, v->vdev_id);
1096
1097                         uint64_t inner_offset = rs->rs_offset -
1098                             DVA_MAPPING_GET_SRC_OFFSET(m);
1099                         uint64_t inner_size =
1100                             MIN(rs->rs_asize, size - inner_offset);
1101
1102                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1103                         ASSERT3P(dst_v, !=, NULL);
1104
1105                         if (dst_v->vdev_ops == &vdev_indirect_ops) {
1106                                 list_insert_head(&stack,
1107                                     rs_alloc(dst_v, dst_offset + inner_offset,
1108                                     inner_size, rs->rs_split_offset));
1109
1110                         }
1111
1112                         if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1113                             IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1114                                 /*
1115                                  * Note: This clause exists only solely for
1116                                  * testing purposes. We use it to ensure that
1117                                  * split blocks work and that the callbacks
1118                                  * using them yield the same result if issued
1119                                  * in reverse order.
1120                                  */
1121                                 uint64_t inner_half = inner_size / 2;
1122
1123                                 func(rs->rs_split_offset + inner_half, dst_v,
1124                                     dst_offset + inner_offset + inner_half,
1125                                     inner_half, arg);
1126
1127                                 func(rs->rs_split_offset, dst_v,
1128                                     dst_offset + inner_offset,
1129                                     inner_half, arg);
1130                         } else {
1131                                 func(rs->rs_split_offset, dst_v,
1132                                     dst_offset + inner_offset,
1133                                     inner_size, arg);
1134                         }
1135
1136                         rs->rs_offset += inner_size;
1137                         rs->rs_asize -= inner_size;
1138                         rs->rs_split_offset += inner_size;
1139                 }
1140                 VERIFY0(rs->rs_asize);
1141
1142                 kmem_free(mapping, num_entries * sizeof (*mapping));
1143                 kmem_free(rs, sizeof (remap_segment_t));
1144         }
1145         list_destroy(&stack);
1146 }
1147
1148 static void
1149 vdev_indirect_child_io_done(zio_t *zio)
1150 {
1151         zio_t *pio = zio->io_private;
1152
1153         mutex_enter(&pio->io_lock);
1154         pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1155         mutex_exit(&pio->io_lock);
1156
1157         abd_put(zio->io_abd);
1158 }
1159
1160 /*
1161  * This is a callback for vdev_indirect_remap() which allocates an
1162  * indirect_split_t for each split segment and adds it to iv_splits.
1163  */
1164 static void
1165 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1166     uint64_t size, void *arg)
1167 {
1168         zio_t *zio = arg;
1169         indirect_vsd_t *iv = zio->io_vsd;
1170
1171         ASSERT3P(vd, !=, NULL);
1172
1173         if (vd->vdev_ops == &vdev_indirect_ops)
1174                 return;
1175
1176         int n = 1;
1177         if (vd->vdev_ops == &vdev_mirror_ops)
1178                 n = vd->vdev_children;
1179
1180         indirect_split_t *is =
1181             kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1182
1183         is->is_children = n;
1184         is->is_size = size;
1185         is->is_split_offset = split_offset;
1186         is->is_target_offset = offset;
1187         is->is_vdev = vd;
1188
1189         /*
1190          * Note that we only consider multiple copies of the data for
1191          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
1192          * though they use the same ops as mirror, because there's only one
1193          * "good" copy under the replacing/spare.
1194          */
1195         if (vd->vdev_ops == &vdev_mirror_ops) {
1196                 for (int i = 0; i < n; i++) {
1197                         is->is_child[i].ic_vdev = vd->vdev_child[i];
1198                 }
1199         } else {
1200                 is->is_child[0].ic_vdev = vd;
1201         }
1202
1203         list_insert_tail(&iv->iv_splits, is);
1204 }
1205
1206 static void
1207 vdev_indirect_read_split_done(zio_t *zio)
1208 {
1209         indirect_child_t *ic = zio->io_private;
1210
1211         if (zio->io_error != 0) {
1212                 /*
1213                  * Clear ic_data to indicate that we do not have data for this
1214                  * child.
1215                  */
1216                 abd_free(ic->ic_data);
1217                 ic->ic_data = NULL;
1218         }
1219 }
1220
1221 /*
1222  * Issue reads for all copies (mirror children) of all splits.
1223  */
1224 static void
1225 vdev_indirect_read_all(zio_t *zio)
1226 {
1227         indirect_vsd_t *iv = zio->io_vsd;
1228
1229         for (indirect_split_t *is = list_head(&iv->iv_splits);
1230             is != NULL; is = list_next(&iv->iv_splits, is)) {
1231                 for (int i = 0; i < is->is_children; i++) {
1232                         indirect_child_t *ic = &is->is_child[i];
1233
1234                         if (!vdev_readable(ic->ic_vdev))
1235                                 continue;
1236
1237                         /*
1238                          * Note, we may read from a child whose DTL
1239                          * indicates that the data may not be present here.
1240                          * While this might result in a few i/os that will
1241                          * likely return incorrect data, it simplifies the
1242                          * code since we can treat scrub and resilver
1243                          * identically.  (The incorrect data will be
1244                          * detected and ignored when we verify the
1245                          * checksum.)
1246                          */
1247
1248                         ic->ic_data = abd_alloc_sametype(zio->io_abd,
1249                             is->is_size);
1250                         ic->ic_duplicate = -1;
1251
1252                         zio_nowait(zio_vdev_child_io(zio, NULL,
1253                             ic->ic_vdev, is->is_target_offset, ic->ic_data,
1254                             is->is_size, zio->io_type, zio->io_priority, 0,
1255                             vdev_indirect_read_split_done, ic));
1256                 }
1257         }
1258         iv->iv_reconstruct = B_TRUE;
1259 }
1260
1261 static void
1262 vdev_indirect_io_start(zio_t *zio)
1263 {
1264         ASSERTV(spa_t *spa = zio->io_spa);
1265         indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1266         list_create(&iv->iv_splits,
1267             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1268
1269         zio->io_vsd = iv;
1270         zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1271
1272         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1273         if (zio->io_type != ZIO_TYPE_READ) {
1274                 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1275                 /*
1276                  * Note: this code can handle other kinds of writes,
1277                  * but we don't expect them.
1278                  */
1279                 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1280                     ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1281         }
1282
1283         vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1284             vdev_indirect_gather_splits, zio);
1285
1286         indirect_split_t *first = list_head(&iv->iv_splits);
1287         if (first->is_size == zio->io_size) {
1288                 /*
1289                  * This is not a split block; we are pointing to the entire
1290                  * data, which will checksum the same as the original data.
1291                  * Pass the BP down so that the child i/o can verify the
1292                  * checksum, and try a different location if available
1293                  * (e.g. on a mirror).
1294                  *
1295                  * While this special case could be handled the same as the
1296                  * general (split block) case, doing it this way ensures
1297                  * that the vast majority of blocks on indirect vdevs
1298                  * (which are not split) are handled identically to blocks
1299                  * on non-indirect vdevs.  This allows us to be less strict
1300                  * about performance in the general (but rare) case.
1301                  */
1302                 ASSERT0(first->is_split_offset);
1303                 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1304                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1305                     first->is_vdev, first->is_target_offset,
1306                     abd_get_offset(zio->io_abd, 0),
1307                     zio->io_size, zio->io_type, zio->io_priority, 0,
1308                     vdev_indirect_child_io_done, zio));
1309         } else {
1310                 iv->iv_split_block = B_TRUE;
1311                 if (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1312                         /*
1313                          * Read all copies.  Note that for simplicity,
1314                          * we don't bother consulting the DTL in the
1315                          * resilver case.
1316                          */
1317                         vdev_indirect_read_all(zio);
1318                 } else {
1319                         /*
1320                          * Read one copy of each split segment, from the
1321                          * top-level vdev.  Since we don't know the
1322                          * checksum of each split individually, the child
1323                          * zio can't ensure that we get the right data.
1324                          * E.g. if it's a mirror, it will just read from a
1325                          * random (healthy) leaf vdev.  We have to verify
1326                          * the checksum in vdev_indirect_io_done().
1327                          */
1328                         for (indirect_split_t *is = list_head(&iv->iv_splits);
1329                             is != NULL; is = list_next(&iv->iv_splits, is)) {
1330                                 zio_nowait(zio_vdev_child_io(zio, NULL,
1331                                     is->is_vdev, is->is_target_offset,
1332                                     abd_get_offset(zio->io_abd,
1333                                     is->is_split_offset), is->is_size,
1334                                     zio->io_type, zio->io_priority, 0,
1335                                     vdev_indirect_child_io_done, zio));
1336                         }
1337
1338                 }
1339         }
1340
1341         zio_execute(zio);
1342 }
1343
1344 /*
1345  * Report a checksum error for a child.
1346  */
1347 static void
1348 vdev_indirect_checksum_error(zio_t *zio,
1349     indirect_split_t *is, indirect_child_t *ic)
1350 {
1351         vdev_t *vd = ic->ic_vdev;
1352
1353         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1354                 return;
1355
1356         mutex_enter(&vd->vdev_stat_lock);
1357         vd->vdev_stat.vs_checksum_errors++;
1358         mutex_exit(&vd->vdev_stat_lock);
1359
1360         zio_bad_cksum_t zbc = {{{ 0 }}};
1361         abd_t *bad_abd = ic->ic_data;
1362         abd_t *good_abd = is->is_child[is->is_good_child].ic_data;
1363         zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1364             is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1365 }
1366
1367 /*
1368  * Issue repair i/os for any incorrect copies.  We do this by comparing
1369  * each split segment's correct data (is_good_child's ic_data) with each
1370  * other copy of the data.  If they differ, then we overwrite the bad data
1371  * with the good copy.  Note that we do this without regard for the DTL's,
1372  * which simplifies this code and also issues the optimal number of writes
1373  * (based on which copies actually read bad data, as opposed to which we
1374  * think might be wrong).  For the same reason, we always use
1375  * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1376  */
1377 static void
1378 vdev_indirect_repair(zio_t *zio)
1379 {
1380         indirect_vsd_t *iv = zio->io_vsd;
1381
1382         enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1383
1384         if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1385                 flags |= ZIO_FLAG_SELF_HEAL;
1386
1387         if (!spa_writeable(zio->io_spa))
1388                 return;
1389
1390         for (indirect_split_t *is = list_head(&iv->iv_splits);
1391             is != NULL; is = list_next(&iv->iv_splits, is)) {
1392                 indirect_child_t *good_child = &is->is_child[is->is_good_child];
1393
1394                 for (int c = 0; c < is->is_children; c++) {
1395                         indirect_child_t *ic = &is->is_child[c];
1396                         if (ic == good_child)
1397                                 continue;
1398                         if (ic->ic_data == NULL)
1399                                 continue;
1400                         if (ic->ic_duplicate == is->is_good_child)
1401                                 continue;
1402
1403                         zio_nowait(zio_vdev_child_io(zio, NULL,
1404                             ic->ic_vdev, is->is_target_offset,
1405                             good_child->ic_data, is->is_size,
1406                             ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1407                             ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1408                             NULL, NULL));
1409
1410                         vdev_indirect_checksum_error(zio, is, ic);
1411                 }
1412         }
1413 }
1414
1415 /*
1416  * Report checksum errors on all children that we read from.
1417  */
1418 static void
1419 vdev_indirect_all_checksum_errors(zio_t *zio)
1420 {
1421         indirect_vsd_t *iv = zio->io_vsd;
1422
1423         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1424                 return;
1425
1426         for (indirect_split_t *is = list_head(&iv->iv_splits);
1427             is != NULL; is = list_next(&iv->iv_splits, is)) {
1428                 for (int c = 0; c < is->is_children; c++) {
1429                         indirect_child_t *ic = &is->is_child[c];
1430
1431                         if (ic->ic_data == NULL)
1432                                 continue;
1433
1434                         vdev_t *vd = ic->ic_vdev;
1435
1436                         mutex_enter(&vd->vdev_stat_lock);
1437                         vd->vdev_stat.vs_checksum_errors++;
1438                         mutex_exit(&vd->vdev_stat_lock);
1439
1440                         zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1441                             is->is_target_offset, is->is_size,
1442                             NULL, NULL, NULL);
1443                 }
1444         }
1445 }
1446
1447 /*
1448  * This function is called when we have read all copies of the data and need
1449  * to try to find a combination of copies that gives us the right checksum.
1450  *
1451  * If we pointed to any mirror vdevs, this effectively does the job of the
1452  * mirror.  The mirror vdev code can't do its own job because we don't know
1453  * the checksum of each split segment individually.
1454  *
1455  * We have to try every unique combination of copies of split segments, until
1456  * we find one that checksums correctly.  Duplicate segment copies are first
1457  * discarded as an optimization to reduce the search space.  After pruning
1458  * there will exist at most one valid combination.
1459  *
1460  * When the total number of combinations is small they can all be checked.
1461  * For example, if we have 3 segments in the split, and each points to a
1462  * 2-way mirror with unique copies, we will have the following pieces of data:
1463  *
1464  *       |     mirror child
1465  * split |     [0]        [1]
1466  * ======|=====================
1467  *   A   |  data_A_0   data_A_1
1468  *   B   |  data_B_0   data_B_1
1469  *   C   |  data_C_0   data_C_1
1470  *
1471  * We will try the following (mirror children)^(number of splits) (2^3=8)
1472  * combinations, which is similar to bitwise-little-endian counting in
1473  * binary.  In general each "digit" corresponds to a split segment, and the
1474  * base of each digit is is_children, which can be different for each
1475  * digit.
1476  *
1477  * "low bit"        "high bit"
1478  *        v                 v
1479  * data_A_0 data_B_0 data_C_0
1480  * data_A_1 data_B_0 data_C_0
1481  * data_A_0 data_B_1 data_C_0
1482  * data_A_1 data_B_1 data_C_0
1483  * data_A_0 data_B_0 data_C_1
1484  * data_A_1 data_B_0 data_C_1
1485  * data_A_0 data_B_1 data_C_1
1486  * data_A_1 data_B_1 data_C_1
1487  *
1488  * Note that the split segments may be on the same or different top-level
1489  * vdevs. In either case, we try lots of combinations (see
1490  * zfs_reconstruct_indirect_segments_max).  This ensures that if a mirror has
1491  * small silent errors on all of its children, we can still reconstruct the
1492  * correct data, as long as those errors are at sufficiently-separated
1493  * offsets (specifically, separated by the largest block size - default of
1494  * 128KB, but up to 16MB).
1495  */
1496 static void
1497 vdev_indirect_reconstruct_io_done(zio_t *zio)
1498 {
1499         indirect_vsd_t *iv = zio->io_vsd;
1500         uint64_t attempts = 0;
1501         uint64_t attempts_max = UINT64_MAX;
1502         uint64_t combinations = 1;
1503
1504         if (zfs_reconstruct_indirect_combinations_max > 0)
1505                 attempts_max = zfs_reconstruct_indirect_combinations_max;
1506
1507         /*
1508          * Discard duplicate copies of split segments to minimize the
1509          * number of unique combinations when attempting reconstruction.
1510          */
1511         for (indirect_split_t *is = list_head(&iv->iv_splits);
1512             is != NULL; is = list_next(&iv->iv_splits, is)) {
1513                 uint64_t is_copies = 0;
1514
1515                 for (int i = 0; i < is->is_children; i++) {
1516                         if (is->is_child[i].ic_data == NULL)
1517                                 continue;
1518
1519                         for (int j = i + 1; j < is->is_children; j++) {
1520                                 if (is->is_child[j].ic_data == NULL)
1521                                         continue;
1522
1523                                 if (is->is_child[j].ic_duplicate == -1 &&
1524                                     abd_cmp(is->is_child[i].ic_data,
1525                                     is->is_child[j].ic_data) == 0) {
1526                                         is->is_child[j].ic_duplicate = i;
1527                                 }
1528                         }
1529
1530                         is_copies++;
1531                 }
1532
1533                 /* Reconstruction is impossible, no valid is->is_child[] */
1534                 if (is_copies == 0) {
1535                         zio->io_error = EIO;
1536                         vdev_indirect_all_checksum_errors(zio);
1537                         zio_checksum_verified(zio);
1538                         return;
1539                 }
1540
1541                 combinations *= is_copies;
1542         }
1543
1544         for (;;) {
1545                 /* copy data from splits to main zio */
1546                 int ret;
1547                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1548                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1549
1550                         /*
1551                          * If this child failed, its ic_data will be NULL.
1552                          * Skip this combination.
1553                          */
1554                         if (is->is_child[is->is_good_child].ic_data == NULL) {
1555                                 ret = EIO;
1556                                 goto next;
1557                         }
1558
1559                         /*
1560                          * If this child is a duplicate, its is_duplicate will
1561                          * refer to the primary copy.  Skip this combination.
1562                          */
1563                         if (is->is_child[is->is_good_child].ic_duplicate >= 0) {
1564                                 ret = ECKSUM;
1565                                 goto next;
1566                         }
1567
1568                         abd_copy_off(zio->io_abd,
1569                             is->is_child[is->is_good_child].ic_data,
1570                             is->is_split_offset, 0, is->is_size);
1571                 }
1572
1573                 /* See if this checksum matches. */
1574                 zio_bad_cksum_t zbc;
1575                 ret = zio_checksum_error(zio, &zbc);
1576                 if (ret == 0) {
1577                         /* Found a matching checksum.  Issue repair i/os. */
1578                         vdev_indirect_repair(zio);
1579                         zio_checksum_verified(zio);
1580                         return;
1581                 }
1582
1583                 /*
1584                  * Checksum failed; try a different combination of split
1585                  * children.
1586                  */
1587                 boolean_t more;
1588 next:
1589                 more = B_FALSE;
1590                 if (combinations <= attempts_max) {
1591                         /*
1592                          * There are relatively few possible combinations, so
1593                          * deterministically check them all.  We do this by
1594                          * adding one to the first split's good_child.  If it
1595                          * overflows, then "carry over" to the next split
1596                          * (like counting in base is_children, but each
1597                          * digit can have a different base).
1598                          */
1599                         for (indirect_split_t *is = list_head(&iv->iv_splits);
1600                             is != NULL; is = list_next(&iv->iv_splits, is)) {
1601                                 is->is_good_child++;
1602                                 if (is->is_good_child < is->is_children) {
1603                                         more = B_TRUE;
1604                                         break;
1605                                 }
1606                                 is->is_good_child = 0;
1607                         }
1608                 } else if (++attempts < attempts_max) {
1609                         /*
1610                          * There are too many combinations to try all of them
1611                          * in a reasonable amount of time, so try a fixed
1612                          * number of random combinations, after which we'll
1613                          * consider the block unrecoverable.
1614                          */
1615                         for (indirect_split_t *is = list_head(&iv->iv_splits);
1616                             is != NULL; is = list_next(&iv->iv_splits, is)) {
1617                                 int c = spa_get_random(is->is_children);
1618
1619                                 while (is->is_child[c].ic_duplicate >= 0)
1620                                         c = (c + 1) % is->is_children;
1621
1622                                 is->is_good_child = c;
1623                         }
1624                         more = B_TRUE;
1625                 }
1626                 if (!more) {
1627                         /* All combinations failed. */
1628                         zio->io_error = ret;
1629                         vdev_indirect_all_checksum_errors(zio);
1630                         zio_checksum_verified(zio);
1631                         return;
1632                 }
1633         }
1634 }
1635
1636 static void
1637 vdev_indirect_io_done(zio_t *zio)
1638 {
1639         indirect_vsd_t *iv = zio->io_vsd;
1640
1641         if (iv->iv_reconstruct) {
1642                 /*
1643                  * We have read all copies of the data (e.g. from mirrors),
1644                  * either because this was a scrub/resilver, or because the
1645                  * one-copy read didn't checksum correctly.
1646                  */
1647                 vdev_indirect_reconstruct_io_done(zio);
1648                 return;
1649         }
1650
1651         if (!iv->iv_split_block) {
1652                 /*
1653                  * This was not a split block, so we passed the BP down,
1654                  * and the checksum was handled by the (one) child zio.
1655                  */
1656                 return;
1657         }
1658
1659         zio_bad_cksum_t zbc;
1660         int ret = zio_checksum_error(zio, &zbc);
1661         if (ret == 0) {
1662                 zio_checksum_verified(zio);
1663                 return;
1664         }
1665
1666         /*
1667          * The checksum didn't match.  Read all copies of all splits, and
1668          * then we will try to reconstruct.  The next time
1669          * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1670          */
1671         vdev_indirect_read_all(zio);
1672
1673         zio_vdev_io_redone(zio);
1674 }
1675
1676 vdev_ops_t vdev_indirect_ops = {
1677         vdev_indirect_open,
1678         vdev_indirect_close,
1679         vdev_default_asize,
1680         vdev_indirect_io_start,
1681         vdev_indirect_io_done,
1682         NULL,
1683         NULL,
1684         NULL,
1685         NULL,
1686         vdev_indirect_remap,
1687         VDEV_TYPE_INDIRECT,     /* name of this vdev type */
1688         B_FALSE                 /* leaf vdev */
1689 };
1690
1691 #if defined(_KERNEL)
1692 EXPORT_SYMBOL(rs_alloc);
1693 EXPORT_SYMBOL(spa_condense_fini);
1694 EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
1695 EXPORT_SYMBOL(spa_condense_indirect_start_sync);
1696 EXPORT_SYMBOL(spa_condense_init);
1697 EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
1698 EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
1699 EXPORT_SYMBOL(vdev_indirect_should_condense);
1700 EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
1701 EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
1702 EXPORT_SYMBOL(vdev_obsolete_sm_object);
1703
1704 module_param(zfs_condense_indirect_vdevs_enable, int, 0644);
1705 MODULE_PARM_DESC(zfs_condense_indirect_vdevs_enable,
1706         "Whether to attempt condensing indirect vdev mappings");
1707
1708 /* CSTYLED */
1709 module_param(zfs_condense_min_mapping_bytes, ulong, 0644);
1710 MODULE_PARM_DESC(zfs_condense_min_mapping_bytes,
1711         "Minimum size of vdev mapping to condense");
1712
1713 /* CSTYLED */
1714 module_param(zfs_condense_max_obsolete_bytes, ulong, 0644);
1715 MODULE_PARM_DESC(zfs_condense_max_obsolete_bytes,
1716         "Minimum size obsolete spacemap to attempt condensing");
1717
1718 module_param(zfs_condense_indirect_commit_entry_delay_ms, int, 0644);
1719 MODULE_PARM_DESC(zfs_condense_indirect_commit_entry_delay_ms,
1720         "Delay while condensing vdev mapping");
1721
1722 module_param(zfs_reconstruct_indirect_combinations_max, int, 0644);
1723 MODULE_PARM_DESC(zfs_reconstruct_indirect_combinations_max,
1724         "Maximum number of combinations when reconstructing split segments");
1725 #endif