]> granicus.if.org Git - zfs/blob - module/zfs/vdev_indirect.c
OpenZFS 9080 - recursive enter of vdev_indirect_rwlock from vdev_indirect_remap()
[zfs] / module / zfs / vdev_indirect.c
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15
16 /*
17  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18  */
19
20 #include <sys/zfs_context.h>
21 #include <sys/spa.h>
22 #include <sys/spa_impl.h>
23 #include <sys/vdev_impl.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zio_checksum.h>
27 #include <sys/metaslab.h>
28 #include <sys/refcount.h>
29 #include <sys/dmu.h>
30 #include <sys/vdev_indirect_mapping.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/abd.h>
35 #include <sys/zthr.h>
36
37 /*
38  * An indirect vdev corresponds to a vdev that has been removed.  Since
39  * we cannot rewrite block pointers of snapshots, etc., we keep a
40  * mapping from old location on the removed device to the new location
41  * on another device in the pool and use this mapping whenever we need
42  * to access the DVA.  Unfortunately, this mapping did not respect
43  * logical block boundaries when it was first created, and so a DVA on
44  * this indirect vdev may be "split" into multiple sections that each
45  * map to a different location.  As a consequence, not all DVAs can be
46  * translated to an equivalent new DVA.  Instead we must provide a
47  * "vdev_remap" operation that executes a callback on each contiguous
48  * segment of the new location.  This function is used in multiple ways:
49  *
50  *  - i/os to this vdev use the callback to determine where the
51  *    data is now located, and issue child i/os for each segment's new
52  *    location.
53  *
54  *  - frees and claims to this vdev use the callback to free or claim
55  *    each mapped segment.  (Note that we don't actually need to claim
56  *    log blocks on indirect vdevs, because we don't allocate to
57  *    removing vdevs.  However, zdb uses zio_claim() for its leak
58  *    detection.)
59  */
60
61 /*
62  * "Big theory statement" for how we mark blocks obsolete.
63  *
64  * When a block on an indirect vdev is freed or remapped, a section of
65  * that vdev's mapping may no longer be referenced (aka "obsolete").  We
66  * keep track of how much of each mapping entry is obsolete.  When
67  * an entry becomes completely obsolete, we can remove it, thus reducing
68  * the memory used by the mapping.  The complete picture of obsolescence
69  * is given by the following data structures, described below:
70  *  - the entry-specific obsolete count
71  *  - the vdev-specific obsolete spacemap
72  *  - the pool-specific obsolete bpobj
73  *
74  * == On disk data structures used ==
75  *
76  * We track the obsolete space for the pool using several objects.  Each
77  * of these objects is created on demand and freed when no longer
78  * needed, and is assumed to be empty if it does not exist.
79  * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
80  *
81  *  - Each vic_mapping_object (associated with an indirect vdev) can
82  *    have a vimp_counts_object.  This is an array of uint32_t's
83  *    with the same number of entries as the vic_mapping_object.  When
84  *    the mapping is condensed, entries from the vic_obsolete_sm_object
85  *    (see below) are folded into the counts.  Therefore, each
86  *    obsolete_counts entry tells us the number of bytes in the
87  *    corresponding mapping entry that were not referenced when the
88  *    mapping was last condensed.
89  *
90  *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
91  *    This is a space map containing an alloc entry for every DVA that
92  *    has been obsoleted since the last time this indirect vdev was
93  *    condensed.  We use this object in order to improve performance
94  *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
95  *    offset of the vimp_counts_object, we only need to append an entry
96  *    to the end of this object.  When a DVA becomes obsolete, it is
97  *    added to the obsolete space map.  This happens when the DVA is
98  *    freed, remapped and not referenced by a snapshot, or the last
99  *    snapshot referencing it is destroyed.
100  *
101  *  - Each dataset can have a ds_remap_deadlist object.  This is a
102  *    deadlist object containing all blocks that were remapped in this
103  *    dataset but referenced in a previous snapshot.  Blocks can *only*
104  *    appear on this list if they were remapped (dsl_dataset_block_remapped);
105  *    blocks that were killed in a head dataset are put on the normal
106  *    ds_deadlist and marked obsolete when they are freed.
107  *
108  *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
109  *    in the pool that need to be marked obsolete.  When a snapshot is
110  *    destroyed, we move some of the ds_remap_deadlist to the obsolete
111  *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
112  *    asynchronously process the obsolete bpobj, moving its entries to
113  *    the specific vdevs' obsolete space maps.
114  *
115  * == Summary of how we mark blocks as obsolete ==
116  *
117  * - When freeing a block: if any DVA is on an indirect vdev, append to
118  *   vic_obsolete_sm_object.
119  * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
120  *   references; otherwise append to vic_obsolete_sm_object).
121  * - When freeing a snapshot: move parts of ds_remap_deadlist to
122  *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
123  * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
124  *   individual vdev's vic_obsolete_sm_object.
125  */
126
127 /*
128  * "Big theory statement" for how we condense indirect vdevs.
129  *
130  * Condensing an indirect vdev's mapping is the process of determining
131  * the precise counts of obsolete space for each mapping entry (by
132  * integrating the obsolete spacemap into the obsolete counts) and
133  * writing out a new mapping that contains only referenced entries.
134  *
135  * We condense a vdev when we expect the mapping to shrink (see
136  * vdev_indirect_should_condense()), but only perform one condense at a
137  * time to limit the memory usage.  In addition, we use a separate
138  * open-context thread (spa_condense_indirect_thread) to incrementally
139  * create the new mapping object in a way that minimizes the impact on
140  * the rest of the system.
141  *
142  * == Generating a new mapping ==
143  *
144  * To generate a new mapping, we follow these steps:
145  *
146  * 1. Save the old obsolete space map and create a new mapping object
147  *    (see spa_condense_indirect_start_sync()).  This initializes the
148  *    spa_condensing_indirect_phys with the "previous obsolete space map",
149  *    which is now read only.  Newly obsolete DVAs will be added to a
150  *    new (initially empty) obsolete space map, and will not be
151  *    considered as part of this condense operation.
152  *
153  * 2. Construct in memory the precise counts of obsolete space for each
154  *    mapping entry, by incorporating the obsolete space map into the
155  *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
156  *
157  * 3. Iterate through each mapping entry, writing to the new mapping any
158  *    entries that are not completely obsolete (i.e. which don't have
159  *    obsolete count == mapping length).  (See
160  *    spa_condense_indirect_generate_new_mapping().)
161  *
162  * 4. Destroy the old mapping object and switch over to the new one
163  *    (spa_condense_indirect_complete_sync).
164  *
165  * == Restarting from failure ==
166  *
167  * To restart the condense when we import/open the pool, we must start
168  * at the 2nd step above: reconstruct the precise counts in memory,
169  * based on the space map + counts.  Then in the 3rd step, we start
170  * iterating where we left off: at vimp_max_offset of the new mapping
171  * object.
172  */
173
174 boolean_t zfs_condense_indirect_vdevs_enable = B_TRUE;
175
176 /*
177  * Condense if at least this percent of the bytes in the mapping is
178  * obsolete.  With the default of 25%, the amount of space mapped
179  * will be reduced to 1% of its original size after at most 16
180  * condenses.  Higher values will condense less often (causing less
181  * i/o); lower values will reduce the mapping size more quickly.
182  */
183 int zfs_indirect_condense_obsolete_pct = 25;
184
185 /*
186  * Condense if the obsolete space map takes up more than this amount of
187  * space on disk (logically).  This limits the amount of disk space
188  * consumed by the obsolete space map; the default of 1GB is small enough
189  * that we typically don't mind "wasting" it.
190  */
191 uint64_t zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
192
193 /*
194  * Don't bother condensing if the mapping uses less than this amount of
195  * memory.  The default of 128KB is considered a "trivial" amount of
196  * memory and not worth reducing.
197  */
198 unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
199
200 /*
201  * This is used by the test suite so that it can ensure that certain
202  * actions happen while in the middle of a condense (which might otherwise
203  * complete too quickly).  If used to reduce the performance impact of
204  * condensing in production, a maximum value of 1 should be sufficient.
205  */
206 int zfs_condense_indirect_commit_entry_delay_ms = 0;
207
208 /*
209  * If an indirect split block contains more than this many possible unique
210  * combinations when being reconstructed, consider it too computationally
211  * expensive to check them all. Instead, try at most 100 randomly-selected
212  * combinations each time the block is accessed.  This allows all segment
213  * copies to participate fairly in the reconstruction when all combinations
214  * cannot be checked and prevents repeated use of one bad copy.
215  */
216 int zfs_reconstruct_indirect_combinations_max = 100;
217
218 /*
219  * The indirect_child_t represents the vdev that we will read from, when we
220  * need to read all copies of the data (e.g. for scrub or reconstruction).
221  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
222  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
223  * ic_vdev is a child of the mirror.
224  */
225 typedef struct indirect_child {
226         abd_t *ic_data;
227         vdev_t *ic_vdev;
228
229         /*
230          * ic_duplicate is -1 when the ic_data contents are unique, when it
231          * is determined to be a duplicate it refers to the primary child.
232          */
233         int ic_duplicate;
234 } indirect_child_t;
235
236 /*
237  * The indirect_split_t represents one mapped segment of an i/o to the
238  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
239  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
240  * For split blocks, there will be several of these.
241  */
242 typedef struct indirect_split {
243         list_node_t is_node; /* link on iv_splits */
244
245         /*
246          * is_split_offset is the offset into the i/o.
247          * This is the sum of the previous splits' is_size's.
248          */
249         uint64_t is_split_offset;
250
251         vdev_t *is_vdev; /* top-level vdev */
252         uint64_t is_target_offset; /* offset on is_vdev */
253         uint64_t is_size;
254         int is_children; /* number of entries in is_child[] */
255
256         /*
257          * is_good_child is the child that we are currently using to
258          * attempt reconstruction.
259          */
260         int is_good_child;
261
262         indirect_child_t is_child[1]; /* variable-length */
263 } indirect_split_t;
264
265 /*
266  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
267  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
268  */
269 typedef struct indirect_vsd {
270         boolean_t iv_split_block;
271         boolean_t iv_reconstruct;
272
273         list_t iv_splits; /* list of indirect_split_t's */
274 } indirect_vsd_t;
275
276 static void
277 vdev_indirect_map_free(zio_t *zio)
278 {
279         indirect_vsd_t *iv = zio->io_vsd;
280
281         indirect_split_t *is;
282         while ((is = list_head(&iv->iv_splits)) != NULL) {
283                 for (int c = 0; c < is->is_children; c++) {
284                         indirect_child_t *ic = &is->is_child[c];
285                         if (ic->ic_data != NULL)
286                                 abd_free(ic->ic_data);
287                 }
288                 list_remove(&iv->iv_splits, is);
289                 kmem_free(is,
290                     offsetof(indirect_split_t, is_child[is->is_children]));
291         }
292         kmem_free(iv, sizeof (*iv));
293 }
294
295 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
296         vdev_indirect_map_free,
297         zio_vsd_default_cksum_report
298 };
299
300 /*
301  * Mark the given offset and size as being obsolete in the given txg.
302  */
303 void
304 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size,
305     uint64_t txg)
306 {
307         spa_t *spa = vd->vdev_spa;
308         ASSERT3U(spa_syncing_txg(spa), ==, txg);
309         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
310         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
311         ASSERT(size > 0);
312         VERIFY(vdev_indirect_mapping_entry_for_offset(
313             vd->vdev_indirect_mapping, offset) != NULL);
314
315         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
316                 mutex_enter(&vd->vdev_obsolete_lock);
317                 range_tree_add(vd->vdev_obsolete_segments, offset, size);
318                 mutex_exit(&vd->vdev_obsolete_lock);
319                 vdev_dirty(vd, 0, NULL, txg);
320         }
321 }
322
323 /*
324  * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
325  * wrapper is provided because the DMU does not know about vdev_t's and
326  * cannot directly call vdev_indirect_mark_obsolete.
327  */
328 void
329 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
330     uint64_t size, dmu_tx_t *tx)
331 {
332         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
333         ASSERT(dmu_tx_is_syncing(tx));
334
335         /* The DMU can only remap indirect vdevs. */
336         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
337         vdev_indirect_mark_obsolete(vd, offset, size, dmu_tx_get_txg(tx));
338 }
339
340 static spa_condensing_indirect_t *
341 spa_condensing_indirect_create(spa_t *spa)
342 {
343         spa_condensing_indirect_phys_t *scip =
344             &spa->spa_condensing_indirect_phys;
345         spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
346         objset_t *mos = spa->spa_meta_objset;
347
348         for (int i = 0; i < TXG_SIZE; i++) {
349                 list_create(&sci->sci_new_mapping_entries[i],
350                     sizeof (vdev_indirect_mapping_entry_t),
351                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
352         }
353
354         sci->sci_new_mapping =
355             vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
356
357         return (sci);
358 }
359
360 static void
361 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
362 {
363         for (int i = 0; i < TXG_SIZE; i++)
364                 list_destroy(&sci->sci_new_mapping_entries[i]);
365
366         if (sci->sci_new_mapping != NULL)
367                 vdev_indirect_mapping_close(sci->sci_new_mapping);
368
369         kmem_free(sci, sizeof (*sci));
370 }
371
372 boolean_t
373 vdev_indirect_should_condense(vdev_t *vd)
374 {
375         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
376         spa_t *spa = vd->vdev_spa;
377
378         ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
379
380         if (!zfs_condense_indirect_vdevs_enable)
381                 return (B_FALSE);
382
383         /*
384          * We can only condense one indirect vdev at a time.
385          */
386         if (spa->spa_condensing_indirect != NULL)
387                 return (B_FALSE);
388
389         if (spa_shutting_down(spa))
390                 return (B_FALSE);
391
392         /*
393          * The mapping object size must not change while we are
394          * condensing, so we can only condense indirect vdevs
395          * (not vdevs that are still in the middle of being removed).
396          */
397         if (vd->vdev_ops != &vdev_indirect_ops)
398                 return (B_FALSE);
399
400         /*
401          * If nothing new has been marked obsolete, there is no
402          * point in condensing.
403          */
404         if (vd->vdev_obsolete_sm == NULL) {
405                 ASSERT0(vdev_obsolete_sm_object(vd));
406                 return (B_FALSE);
407         }
408
409         ASSERT(vd->vdev_obsolete_sm != NULL);
410
411         ASSERT3U(vdev_obsolete_sm_object(vd), ==,
412             space_map_object(vd->vdev_obsolete_sm));
413
414         uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
415         uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
416         uint64_t mapping_size = vdev_indirect_mapping_size(vim);
417         uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
418
419         ASSERT3U(bytes_obsolete, <=, bytes_mapped);
420
421         /*
422          * If a high percentage of the bytes that are mapped have become
423          * obsolete, condense (unless the mapping is already small enough).
424          * This has a good chance of reducing the amount of memory used
425          * by the mapping.
426          */
427         if (bytes_obsolete * 100 / bytes_mapped >=
428             zfs_indirect_condense_obsolete_pct &&
429             mapping_size > zfs_condense_min_mapping_bytes) {
430                 zfs_dbgmsg("should condense vdev %llu because obsolete "
431                     "spacemap covers %d%% of %lluMB mapping",
432                     (u_longlong_t)vd->vdev_id,
433                     (int)(bytes_obsolete * 100 / bytes_mapped),
434                     (u_longlong_t)bytes_mapped / 1024 / 1024);
435                 return (B_TRUE);
436         }
437
438         /*
439          * If the obsolete space map takes up too much space on disk,
440          * condense in order to free up this disk space.
441          */
442         if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
443                 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
444                     "length %lluMB >= max size %lluMB",
445                     (u_longlong_t)vd->vdev_id,
446                     (u_longlong_t)obsolete_sm_size / 1024 / 1024,
447                     (u_longlong_t)zfs_condense_max_obsolete_bytes /
448                     1024 / 1024);
449                 return (B_TRUE);
450         }
451
452         return (B_FALSE);
453 }
454
455 /*
456  * This sync task completes (finishes) a condense, deleting the old
457  * mapping and replacing it with the new one.
458  */
459 static void
460 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
461 {
462         spa_condensing_indirect_t *sci = arg;
463         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
464         spa_condensing_indirect_phys_t *scip =
465             &spa->spa_condensing_indirect_phys;
466         vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
467         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
468         objset_t *mos = spa->spa_meta_objset;
469         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
470         uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
471         uint64_t new_count =
472             vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
473
474         ASSERT(dmu_tx_is_syncing(tx));
475         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
476         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
477         for (int i = 0; i < TXG_SIZE; i++) {
478                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
479         }
480         ASSERT(vic->vic_mapping_object != 0);
481         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
482         ASSERT(scip->scip_next_mapping_object != 0);
483         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
484
485         /*
486          * Reset vdev_indirect_mapping to refer to the new object.
487          */
488         rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
489         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
490         vd->vdev_indirect_mapping = sci->sci_new_mapping;
491         rw_exit(&vd->vdev_indirect_rwlock);
492
493         sci->sci_new_mapping = NULL;
494         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
495         vic->vic_mapping_object = scip->scip_next_mapping_object;
496         scip->scip_next_mapping_object = 0;
497
498         space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
499         spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
500         scip->scip_prev_obsolete_sm_object = 0;
501
502         scip->scip_vdev = 0;
503
504         VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
505             DMU_POOL_CONDENSING_INDIRECT, tx));
506         spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
507         spa->spa_condensing_indirect = NULL;
508
509         zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
510             "new mapping object %llu has %llu entries "
511             "(was %llu entries)",
512             vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
513             new_count, old_count);
514
515         vdev_config_dirty(spa->spa_root_vdev);
516 }
517
518 /*
519  * This sync task appends entries to the new mapping object.
520  */
521 static void
522 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
523 {
524         spa_condensing_indirect_t *sci = arg;
525         uint64_t txg = dmu_tx_get_txg(tx);
526         ASSERTV(spa_t *spa = dmu_tx_pool(tx)->dp_spa);
527
528         ASSERT(dmu_tx_is_syncing(tx));
529         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
530
531         vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
532             &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
533         ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
534 }
535
536 /*
537  * Open-context function to add one entry to the new mapping.  The new
538  * entry will be remembered and written from syncing context.
539  */
540 static void
541 spa_condense_indirect_commit_entry(spa_t *spa,
542     vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
543 {
544         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
545
546         ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
547
548         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
549         dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
550         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
551         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
552
553         /*
554          * If we are the first entry committed this txg, kick off the sync
555          * task to write to the MOS on our behalf.
556          */
557         if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
558                 dsl_sync_task_nowait(dmu_tx_pool(tx),
559                     spa_condense_indirect_commit_sync, sci,
560                     0, ZFS_SPACE_CHECK_NONE, tx);
561         }
562
563         vdev_indirect_mapping_entry_t *vime =
564             kmem_alloc(sizeof (*vime), KM_SLEEP);
565         vime->vime_mapping = *vimep;
566         vime->vime_obsolete_count = count;
567         list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
568
569         dmu_tx_commit(tx);
570 }
571
572 static void
573 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
574     uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
575 {
576         spa_t *spa = vd->vdev_spa;
577         uint64_t mapi = start_index;
578         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
579         uint64_t old_num_entries =
580             vdev_indirect_mapping_num_entries(old_mapping);
581
582         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
583         ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
584
585         zfs_dbgmsg("starting condense of vdev %llu from index %llu",
586             (u_longlong_t)vd->vdev_id,
587             (u_longlong_t)mapi);
588
589         while (mapi < old_num_entries) {
590
591                 if (zthr_iscancelled(zthr)) {
592                         zfs_dbgmsg("pausing condense of vdev %llu "
593                             "at index %llu", (u_longlong_t)vd->vdev_id,
594                             (u_longlong_t)mapi);
595                         break;
596                 }
597
598                 vdev_indirect_mapping_entry_phys_t *entry =
599                     &old_mapping->vim_entries[mapi];
600                 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
601                 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
602                 if (obsolete_counts[mapi] < entry_size) {
603                         spa_condense_indirect_commit_entry(spa, entry,
604                             obsolete_counts[mapi]);
605
606                         /*
607                          * This delay may be requested for testing, debugging,
608                          * or performance reasons.
609                          */
610                         hrtime_t now = gethrtime();
611                         hrtime_t sleep_until = now + MSEC2NSEC(
612                             zfs_condense_indirect_commit_entry_delay_ms);
613                         zfs_sleep_until(sleep_until);
614                 }
615
616                 mapi++;
617         }
618 }
619
620 /* ARGSUSED */
621 static boolean_t
622 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
623 {
624         spa_t *spa = arg;
625
626         return (spa->spa_condensing_indirect != NULL);
627 }
628
629 /* ARGSUSED */
630 static int
631 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
632 {
633         spa_t *spa = arg;
634         vdev_t *vd;
635
636         ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
637         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
638         vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
639         ASSERT3P(vd, !=, NULL);
640         spa_config_exit(spa, SCL_VDEV, FTAG);
641
642         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
643         spa_condensing_indirect_phys_t *scip =
644             &spa->spa_condensing_indirect_phys;
645         uint32_t *counts;
646         uint64_t start_index;
647         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
648         space_map_t *prev_obsolete_sm = NULL;
649
650         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
651         ASSERT(scip->scip_next_mapping_object != 0);
652         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
653         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
654
655         for (int i = 0; i < TXG_SIZE; i++) {
656                 /*
657                  * The list must start out empty in order for the
658                  * _commit_sync() sync task to be properly registered
659                  * on the first call to _commit_entry(); so it's wise
660                  * to double check and ensure we actually are starting
661                  * with empty lists.
662                  */
663                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
664         }
665
666         VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
667             scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
668         space_map_update(prev_obsolete_sm);
669         counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
670         if (prev_obsolete_sm != NULL) {
671                 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
672                     counts, prev_obsolete_sm);
673         }
674         space_map_close(prev_obsolete_sm);
675
676         /*
677          * Generate new mapping.  Determine what index to continue from
678          * based on the max offset that we've already written in the
679          * new mapping.
680          */
681         uint64_t max_offset =
682             vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
683         if (max_offset == 0) {
684                 /* We haven't written anything to the new mapping yet. */
685                 start_index = 0;
686         } else {
687                 /*
688                  * Pick up from where we left off. _entry_for_offset()
689                  * returns a pointer into the vim_entries array. If
690                  * max_offset is greater than any of the mappings
691                  * contained in the table  NULL will be returned and
692                  * that indicates we've exhausted our iteration of the
693                  * old_mapping.
694                  */
695
696                 vdev_indirect_mapping_entry_phys_t *entry =
697                     vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
698                     max_offset);
699
700                 if (entry == NULL) {
701                         /*
702                          * We've already written the whole new mapping.
703                          * This special value will cause us to skip the
704                          * generate_new_mapping step and just do the sync
705                          * task to complete the condense.
706                          */
707                         start_index = UINT64_MAX;
708                 } else {
709                         start_index = entry - old_mapping->vim_entries;
710                         ASSERT3U(start_index, <,
711                             vdev_indirect_mapping_num_entries(old_mapping));
712                 }
713         }
714
715         spa_condense_indirect_generate_new_mapping(vd, counts,
716             start_index, zthr);
717
718         vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
719
720         /*
721          * If the zthr has received a cancellation signal while running
722          * in generate_new_mapping() or at any point after that, then bail
723          * early. We don't want to complete the condense if the spa is
724          * shutting down.
725          */
726         if (zthr_iscancelled(zthr))
727                 return (0);
728
729         VERIFY0(dsl_sync_task(spa_name(spa), NULL,
730             spa_condense_indirect_complete_sync, sci, 0, ZFS_SPACE_CHECK_NONE));
731
732         return (0);
733 }
734
735 /*
736  * Sync task to begin the condensing process.
737  */
738 void
739 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
740 {
741         spa_t *spa = vd->vdev_spa;
742         spa_condensing_indirect_phys_t *scip =
743             &spa->spa_condensing_indirect_phys;
744
745         ASSERT0(scip->scip_next_mapping_object);
746         ASSERT0(scip->scip_prev_obsolete_sm_object);
747         ASSERT0(scip->scip_vdev);
748         ASSERT(dmu_tx_is_syncing(tx));
749         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
750         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
751         ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
752
753         uint64_t obsolete_sm_obj = vdev_obsolete_sm_object(vd);
754         ASSERT(obsolete_sm_obj != 0);
755
756         scip->scip_vdev = vd->vdev_id;
757         scip->scip_next_mapping_object =
758             vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
759
760         scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
761
762         /*
763          * We don't need to allocate a new space map object, since
764          * vdev_indirect_sync_obsolete will allocate one when needed.
765          */
766         space_map_close(vd->vdev_obsolete_sm);
767         vd->vdev_obsolete_sm = NULL;
768         VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
769             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
770
771         VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
772             DMU_POOL_DIRECTORY_OBJECT,
773             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
774             sizeof (*scip) / sizeof (uint64_t), scip, tx));
775
776         ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
777         spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
778
779         zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
780             "posm=%llu nm=%llu",
781             vd->vdev_id, dmu_tx_get_txg(tx),
782             (u_longlong_t)scip->scip_prev_obsolete_sm_object,
783             (u_longlong_t)scip->scip_next_mapping_object);
784
785         zthr_wakeup(spa->spa_condense_zthr);
786 }
787
788 /*
789  * Sync to the given vdev's obsolete space map any segments that are no longer
790  * referenced as of the given txg.
791  *
792  * If the obsolete space map doesn't exist yet, create and open it.
793  */
794 void
795 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
796 {
797         spa_t *spa = vd->vdev_spa;
798         ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
799
800         ASSERT3U(vic->vic_mapping_object, !=, 0);
801         ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
802         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
803         ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
804
805         if (vdev_obsolete_sm_object(vd) == 0) {
806                 uint64_t obsolete_sm_object =
807                     space_map_alloc(spa->spa_meta_objset, tx);
808
809                 ASSERT(vd->vdev_top_zap != 0);
810                 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
811                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
812                     sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
813                 ASSERT3U(vdev_obsolete_sm_object(vd), !=, 0);
814
815                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
816                 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
817                     spa->spa_meta_objset, obsolete_sm_object,
818                     0, vd->vdev_asize, 0));
819                 space_map_update(vd->vdev_obsolete_sm);
820         }
821
822         ASSERT(vd->vdev_obsolete_sm != NULL);
823         ASSERT3U(vdev_obsolete_sm_object(vd), ==,
824             space_map_object(vd->vdev_obsolete_sm));
825
826         space_map_write(vd->vdev_obsolete_sm,
827             vd->vdev_obsolete_segments, SM_ALLOC, tx);
828         space_map_update(vd->vdev_obsolete_sm);
829         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
830 }
831
832 int
833 spa_condense_init(spa_t *spa)
834 {
835         int error = zap_lookup(spa->spa_meta_objset,
836             DMU_POOL_DIRECTORY_OBJECT,
837             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
838             sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
839             &spa->spa_condensing_indirect_phys);
840         if (error == 0) {
841                 if (spa_writeable(spa)) {
842                         spa->spa_condensing_indirect =
843                             spa_condensing_indirect_create(spa);
844                 }
845                 return (0);
846         } else if (error == ENOENT) {
847                 return (0);
848         } else {
849                 return (error);
850         }
851 }
852
853 void
854 spa_condense_fini(spa_t *spa)
855 {
856         if (spa->spa_condensing_indirect != NULL) {
857                 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
858                 spa->spa_condensing_indirect = NULL;
859         }
860 }
861
862 void
863 spa_start_indirect_condensing_thread(spa_t *spa)
864 {
865         ASSERT3P(spa->spa_condense_zthr, ==, NULL);
866         spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
867             spa_condense_indirect_thread, spa);
868 }
869
870 /*
871  * Gets the obsolete spacemap object from the vdev's ZAP.
872  * Returns the spacemap object, or 0 if it wasn't in the ZAP or the ZAP doesn't
873  * exist yet.
874  */
875 int
876 vdev_obsolete_sm_object(vdev_t *vd)
877 {
878         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
879         if (vd->vdev_top_zap == 0) {
880                 return (0);
881         }
882
883         uint64_t sm_obj = 0;
884         int err;
885         err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
886             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, &sm_obj);
887
888         ASSERT(err == 0 || err == ENOENT);
889
890         return (sm_obj);
891 }
892
893 boolean_t
894 vdev_obsolete_counts_are_precise(vdev_t *vd)
895 {
896         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
897         if (vd->vdev_top_zap == 0) {
898                 return (B_FALSE);
899         }
900
901         uint64_t val = 0;
902         int err;
903         err = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
904             VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
905
906         ASSERT(err == 0 || err == ENOENT);
907
908         return (val != 0);
909 }
910
911 /* ARGSUSED */
912 static void
913 vdev_indirect_close(vdev_t *vd)
914 {
915 }
916
917 /* ARGSUSED */
918 static int
919 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
920     uint64_t *ashift)
921 {
922         *psize = *max_psize = vd->vdev_asize +
923             VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
924         *ashift = vd->vdev_ashift;
925         return (0);
926 }
927
928 typedef struct remap_segment {
929         vdev_t *rs_vd;
930         uint64_t rs_offset;
931         uint64_t rs_asize;
932         uint64_t rs_split_offset;
933         list_node_t rs_node;
934 } remap_segment_t;
935
936 remap_segment_t *
937 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
938 {
939         remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
940         rs->rs_vd = vd;
941         rs->rs_offset = offset;
942         rs->rs_asize = asize;
943         rs->rs_split_offset = split_offset;
944         return (rs);
945 }
946
947 /*
948  * Given an indirect vdev and an extent on that vdev, it duplicates the
949  * physical entries of the indirect mapping that correspond to the extent
950  * to a new array and returns a pointer to it. In addition, copied_entries
951  * is populated with the number of mapping entries that were duplicated.
952  *
953  * Note that the function assumes that the caller holds vdev_indirect_rwlock.
954  * This ensures that the mapping won't change due to condensing as we
955  * copy over its contents.
956  *
957  * Finally, since we are doing an allocation, it is up to the caller to
958  * free the array allocated in this function.
959  */
960 vdev_indirect_mapping_entry_phys_t *
961 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
962     uint64_t asize, uint64_t *copied_entries)
963 {
964         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
965         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
966         uint64_t entries = 0;
967
968         ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
969
970         vdev_indirect_mapping_entry_phys_t *first_mapping =
971             vdev_indirect_mapping_entry_for_offset(vim, offset);
972         ASSERT3P(first_mapping, !=, NULL);
973
974         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
975         while (asize > 0) {
976                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
977
978                 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
979                 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
980
981                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
982                 uint64_t inner_size = MIN(asize, size - inner_offset);
983
984                 offset += inner_size;
985                 asize -= inner_size;
986                 entries++;
987                 m++;
988         }
989
990         size_t copy_length = entries * sizeof (*first_mapping);
991         duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
992         bcopy(first_mapping, duplicate_mappings, copy_length);
993         *copied_entries = entries;
994
995         return (duplicate_mappings);
996 }
997
998 /*
999  * Goes through the relevant indirect mappings until it hits a concrete vdev
1000  * and issues the callback. On the way to the concrete vdev, if any other
1001  * indirect vdevs are encountered, then the callback will also be called on
1002  * each of those indirect vdevs. For example, if the segment is mapped to
1003  * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1004  * mapped to segment B on concrete vdev 2, then the callback will be called on
1005  * both vdev 1 and vdev 2.
1006  *
1007  * While the callback passed to vdev_indirect_remap() is called on every vdev
1008  * the function encounters, certain callbacks only care about concrete vdevs.
1009  * These types of callbacks should return immediately and explicitly when they
1010  * are called on an indirect vdev.
1011  *
1012  * Because there is a possibility that a DVA section in the indirect device
1013  * has been split into multiple sections in our mapping, we keep track
1014  * of the relevant contiguous segments of the new location (remap_segment_t)
1015  * in a stack. This way we can call the callback for each of the new sections
1016  * created by a single section of the indirect device. Note though, that in
1017  * this scenario the callbacks in each split block won't occur in-order in
1018  * terms of offset, so callers should not make any assumptions about that.
1019  *
1020  * For callbacks that don't handle split blocks and immediately return when
1021  * they encounter them (as is the case for remap_blkptr_cb), the caller can
1022  * assume that its callback will be applied from the first indirect vdev
1023  * encountered to the last one and then the concrete vdev, in that order.
1024  */
1025 static void
1026 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1027     void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1028 {
1029         list_t stack;
1030         spa_t *spa = vd->vdev_spa;
1031
1032         list_create(&stack, sizeof (remap_segment_t),
1033             offsetof(remap_segment_t, rs_node));
1034
1035         for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1036             rs != NULL; rs = list_remove_head(&stack)) {
1037                 vdev_t *v = rs->rs_vd;
1038                 uint64_t num_entries = 0;
1039
1040                 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1041                 ASSERT(rs->rs_asize > 0);
1042
1043                 /*
1044                  * Note: As this function can be called from open context
1045                  * (e.g. zio_read()), we need the following rwlock to
1046                  * prevent the mapping from being changed by condensing.
1047                  *
1048                  * So we grab the lock and we make a copy of the entries
1049                  * that are relevant to the extent that we are working on.
1050                  * Once that is done, we drop the lock and iterate over
1051                  * our copy of the mapping. Once we are done with the with
1052                  * the remap segment and we free it, we also free our copy
1053                  * of the indirect mapping entries that are relevant to it.
1054                  *
1055                  * This way we don't need to wait until the function is
1056                  * finished with a segment, to condense it. In addition, we
1057                  * don't need a recursive rwlock for the case that a call to
1058                  * vdev_indirect_remap() needs to call itself (through the
1059                  * codepath of its callback) for the same vdev in the middle
1060                  * of its execution.
1061                  */
1062                 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1063                 ASSERT3P(v->vdev_indirect_mapping, !=, NULL);
1064
1065                 vdev_indirect_mapping_entry_phys_t *mapping =
1066                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
1067                     rs->rs_offset, rs->rs_asize, &num_entries);
1068                 ASSERT3P(mapping, !=, NULL);
1069                 ASSERT3U(num_entries, >, 0);
1070                 rw_exit(&v->vdev_indirect_rwlock);
1071
1072                 for (uint64_t i = 0; i < num_entries; i++) {
1073                         /*
1074                          * Note: the vdev_indirect_mapping can not change
1075                          * while we are running.  It only changes while the
1076                          * removal is in progress, and then only from syncing
1077                          * context. While a removal is in progress, this
1078                          * function is only called for frees, which also only
1079                          * happen from syncing context.
1080                          */
1081                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1082
1083                         ASSERT3P(m, !=, NULL);
1084                         ASSERT3U(rs->rs_asize, >, 0);
1085
1086                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1087                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1088                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1089
1090                         ASSERT3U(rs->rs_offset, >=,
1091                             DVA_MAPPING_GET_SRC_OFFSET(m));
1092                         ASSERT3U(rs->rs_offset, <,
1093                             DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1094                         ASSERT3U(dst_vdev, !=, v->vdev_id);
1095
1096                         uint64_t inner_offset = rs->rs_offset -
1097                             DVA_MAPPING_GET_SRC_OFFSET(m);
1098                         uint64_t inner_size =
1099                             MIN(rs->rs_asize, size - inner_offset);
1100
1101                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1102                         ASSERT3P(dst_v, !=, NULL);
1103
1104                         if (dst_v->vdev_ops == &vdev_indirect_ops) {
1105                                 list_insert_head(&stack,
1106                                     rs_alloc(dst_v, dst_offset + inner_offset,
1107                                     inner_size, rs->rs_split_offset));
1108
1109                         }
1110
1111                         if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1112                             IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1113                                 /*
1114                                  * Note: This clause exists only solely for
1115                                  * testing purposes. We use it to ensure that
1116                                  * split blocks work and that the callbacks
1117                                  * using them yield the same result if issued
1118                                  * in reverse order.
1119                                  */
1120                                 uint64_t inner_half = inner_size / 2;
1121
1122                                 func(rs->rs_split_offset + inner_half, dst_v,
1123                                     dst_offset + inner_offset + inner_half,
1124                                     inner_half, arg);
1125
1126                                 func(rs->rs_split_offset, dst_v,
1127                                     dst_offset + inner_offset,
1128                                     inner_half, arg);
1129                         } else {
1130                                 func(rs->rs_split_offset, dst_v,
1131                                     dst_offset + inner_offset,
1132                                     inner_size, arg);
1133                         }
1134
1135                         rs->rs_offset += inner_size;
1136                         rs->rs_asize -= inner_size;
1137                         rs->rs_split_offset += inner_size;
1138                 }
1139                 VERIFY0(rs->rs_asize);
1140
1141                 kmem_free(mapping, num_entries * sizeof (*mapping));
1142                 kmem_free(rs, sizeof (remap_segment_t));
1143         }
1144         list_destroy(&stack);
1145 }
1146
1147 static void
1148 vdev_indirect_child_io_done(zio_t *zio)
1149 {
1150         zio_t *pio = zio->io_private;
1151
1152         mutex_enter(&pio->io_lock);
1153         pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1154         mutex_exit(&pio->io_lock);
1155
1156         abd_put(zio->io_abd);
1157 }
1158
1159 /*
1160  * This is a callback for vdev_indirect_remap() which allocates an
1161  * indirect_split_t for each split segment and adds it to iv_splits.
1162  */
1163 static void
1164 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1165     uint64_t size, void *arg)
1166 {
1167         zio_t *zio = arg;
1168         indirect_vsd_t *iv = zio->io_vsd;
1169
1170         ASSERT3P(vd, !=, NULL);
1171
1172         if (vd->vdev_ops == &vdev_indirect_ops)
1173                 return;
1174
1175         int n = 1;
1176         if (vd->vdev_ops == &vdev_mirror_ops)
1177                 n = vd->vdev_children;
1178
1179         indirect_split_t *is =
1180             kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1181
1182         is->is_children = n;
1183         is->is_size = size;
1184         is->is_split_offset = split_offset;
1185         is->is_target_offset = offset;
1186         is->is_vdev = vd;
1187
1188         /*
1189          * Note that we only consider multiple copies of the data for
1190          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
1191          * though they use the same ops as mirror, because there's only one
1192          * "good" copy under the replacing/spare.
1193          */
1194         if (vd->vdev_ops == &vdev_mirror_ops) {
1195                 for (int i = 0; i < n; i++) {
1196                         is->is_child[i].ic_vdev = vd->vdev_child[i];
1197                 }
1198         } else {
1199                 is->is_child[0].ic_vdev = vd;
1200         }
1201
1202         list_insert_tail(&iv->iv_splits, is);
1203 }
1204
1205 static void
1206 vdev_indirect_read_split_done(zio_t *zio)
1207 {
1208         indirect_child_t *ic = zio->io_private;
1209
1210         if (zio->io_error != 0) {
1211                 /*
1212                  * Clear ic_data to indicate that we do not have data for this
1213                  * child.
1214                  */
1215                 abd_free(ic->ic_data);
1216                 ic->ic_data = NULL;
1217         }
1218 }
1219
1220 /*
1221  * Issue reads for all copies (mirror children) of all splits.
1222  */
1223 static void
1224 vdev_indirect_read_all(zio_t *zio)
1225 {
1226         indirect_vsd_t *iv = zio->io_vsd;
1227
1228         for (indirect_split_t *is = list_head(&iv->iv_splits);
1229             is != NULL; is = list_next(&iv->iv_splits, is)) {
1230                 for (int i = 0; i < is->is_children; i++) {
1231                         indirect_child_t *ic = &is->is_child[i];
1232
1233                         if (!vdev_readable(ic->ic_vdev))
1234                                 continue;
1235
1236                         /*
1237                          * Note, we may read from a child whose DTL
1238                          * indicates that the data may not be present here.
1239                          * While this might result in a few i/os that will
1240                          * likely return incorrect data, it simplifies the
1241                          * code since we can treat scrub and resilver
1242                          * identically.  (The incorrect data will be
1243                          * detected and ignored when we verify the
1244                          * checksum.)
1245                          */
1246
1247                         ic->ic_data = abd_alloc_sametype(zio->io_abd,
1248                             is->is_size);
1249                         ic->ic_duplicate = -1;
1250
1251                         zio_nowait(zio_vdev_child_io(zio, NULL,
1252                             ic->ic_vdev, is->is_target_offset, ic->ic_data,
1253                             is->is_size, zio->io_type, zio->io_priority, 0,
1254                             vdev_indirect_read_split_done, ic));
1255                 }
1256         }
1257         iv->iv_reconstruct = B_TRUE;
1258 }
1259
1260 static void
1261 vdev_indirect_io_start(zio_t *zio)
1262 {
1263         ASSERTV(spa_t *spa = zio->io_spa);
1264         indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1265         list_create(&iv->iv_splits,
1266             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1267
1268         zio->io_vsd = iv;
1269         zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1270
1271         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1272         if (zio->io_type != ZIO_TYPE_READ) {
1273                 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1274                 /*
1275                  * Note: this code can handle other kinds of writes,
1276                  * but we don't expect them.
1277                  */
1278                 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1279                     ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1280         }
1281
1282         vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1283             vdev_indirect_gather_splits, zio);
1284
1285         indirect_split_t *first = list_head(&iv->iv_splits);
1286         if (first->is_size == zio->io_size) {
1287                 /*
1288                  * This is not a split block; we are pointing to the entire
1289                  * data, which will checksum the same as the original data.
1290                  * Pass the BP down so that the child i/o can verify the
1291                  * checksum, and try a different location if available
1292                  * (e.g. on a mirror).
1293                  *
1294                  * While this special case could be handled the same as the
1295                  * general (split block) case, doing it this way ensures
1296                  * that the vast majority of blocks on indirect vdevs
1297                  * (which are not split) are handled identically to blocks
1298                  * on non-indirect vdevs.  This allows us to be less strict
1299                  * about performance in the general (but rare) case.
1300                  */
1301                 ASSERT0(first->is_split_offset);
1302                 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1303                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1304                     first->is_vdev, first->is_target_offset,
1305                     abd_get_offset(zio->io_abd, 0),
1306                     zio->io_size, zio->io_type, zio->io_priority, 0,
1307                     vdev_indirect_child_io_done, zio));
1308         } else {
1309                 iv->iv_split_block = B_TRUE;
1310                 if (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1311                         /*
1312                          * Read all copies.  Note that for simplicity,
1313                          * we don't bother consulting the DTL in the
1314                          * resilver case.
1315                          */
1316                         vdev_indirect_read_all(zio);
1317                 } else {
1318                         /*
1319                          * Read one copy of each split segment, from the
1320                          * top-level vdev.  Since we don't know the
1321                          * checksum of each split individually, the child
1322                          * zio can't ensure that we get the right data.
1323                          * E.g. if it's a mirror, it will just read from a
1324                          * random (healthy) leaf vdev.  We have to verify
1325                          * the checksum in vdev_indirect_io_done().
1326                          */
1327                         for (indirect_split_t *is = list_head(&iv->iv_splits);
1328                             is != NULL; is = list_next(&iv->iv_splits, is)) {
1329                                 zio_nowait(zio_vdev_child_io(zio, NULL,
1330                                     is->is_vdev, is->is_target_offset,
1331                                     abd_get_offset(zio->io_abd,
1332                                     is->is_split_offset), is->is_size,
1333                                     zio->io_type, zio->io_priority, 0,
1334                                     vdev_indirect_child_io_done, zio));
1335                         }
1336
1337                 }
1338         }
1339
1340         zio_execute(zio);
1341 }
1342
1343 /*
1344  * Report a checksum error for a child.
1345  */
1346 static void
1347 vdev_indirect_checksum_error(zio_t *zio,
1348     indirect_split_t *is, indirect_child_t *ic)
1349 {
1350         vdev_t *vd = ic->ic_vdev;
1351
1352         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1353                 return;
1354
1355         mutex_enter(&vd->vdev_stat_lock);
1356         vd->vdev_stat.vs_checksum_errors++;
1357         mutex_exit(&vd->vdev_stat_lock);
1358
1359         zio_bad_cksum_t zbc = {{{ 0 }}};
1360         abd_t *bad_abd = ic->ic_data;
1361         abd_t *good_abd = is->is_child[is->is_good_child].ic_data;
1362         zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1363             is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1364 }
1365
1366 /*
1367  * Issue repair i/os for any incorrect copies.  We do this by comparing
1368  * each split segment's correct data (is_good_child's ic_data) with each
1369  * other copy of the data.  If they differ, then we overwrite the bad data
1370  * with the good copy.  Note that we do this without regard for the DTL's,
1371  * which simplifies this code and also issues the optimal number of writes
1372  * (based on which copies actually read bad data, as opposed to which we
1373  * think might be wrong).  For the same reason, we always use
1374  * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1375  */
1376 static void
1377 vdev_indirect_repair(zio_t *zio)
1378 {
1379         indirect_vsd_t *iv = zio->io_vsd;
1380
1381         enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1382
1383         if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1384                 flags |= ZIO_FLAG_SELF_HEAL;
1385
1386         if (!spa_writeable(zio->io_spa))
1387                 return;
1388
1389         for (indirect_split_t *is = list_head(&iv->iv_splits);
1390             is != NULL; is = list_next(&iv->iv_splits, is)) {
1391                 indirect_child_t *good_child = &is->is_child[is->is_good_child];
1392
1393                 for (int c = 0; c < is->is_children; c++) {
1394                         indirect_child_t *ic = &is->is_child[c];
1395                         if (ic == good_child)
1396                                 continue;
1397                         if (ic->ic_data == NULL)
1398                                 continue;
1399                         if (ic->ic_duplicate == is->is_good_child)
1400                                 continue;
1401
1402                         zio_nowait(zio_vdev_child_io(zio, NULL,
1403                             ic->ic_vdev, is->is_target_offset,
1404                             good_child->ic_data, is->is_size,
1405                             ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1406                             ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1407                             NULL, NULL));
1408
1409                         vdev_indirect_checksum_error(zio, is, ic);
1410                 }
1411         }
1412 }
1413
1414 /*
1415  * Report checksum errors on all children that we read from.
1416  */
1417 static void
1418 vdev_indirect_all_checksum_errors(zio_t *zio)
1419 {
1420         indirect_vsd_t *iv = zio->io_vsd;
1421
1422         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1423                 return;
1424
1425         for (indirect_split_t *is = list_head(&iv->iv_splits);
1426             is != NULL; is = list_next(&iv->iv_splits, is)) {
1427                 for (int c = 0; c < is->is_children; c++) {
1428                         indirect_child_t *ic = &is->is_child[c];
1429
1430                         if (ic->ic_data == NULL)
1431                                 continue;
1432
1433                         vdev_t *vd = ic->ic_vdev;
1434
1435                         mutex_enter(&vd->vdev_stat_lock);
1436                         vd->vdev_stat.vs_checksum_errors++;
1437                         mutex_exit(&vd->vdev_stat_lock);
1438
1439                         zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1440                             is->is_target_offset, is->is_size,
1441                             NULL, NULL, NULL);
1442                 }
1443         }
1444 }
1445
1446 /*
1447  * This function is called when we have read all copies of the data and need
1448  * to try to find a combination of copies that gives us the right checksum.
1449  *
1450  * If we pointed to any mirror vdevs, this effectively does the job of the
1451  * mirror.  The mirror vdev code can't do its own job because we don't know
1452  * the checksum of each split segment individually.
1453  *
1454  * We have to try every unique combination of copies of split segments, until
1455  * we find one that checksums correctly.  Duplicate segment copies are first
1456  * discarded as an optimization to reduce the search space.  After pruning
1457  * there will exist at most one valid combination.
1458  *
1459  * When the total number of combinations is small they can all be checked.
1460  * For example, if we have 3 segments in the split, and each points to a
1461  * 2-way mirror with unique copies, we will have the following pieces of data:
1462  *
1463  *       |     mirror child
1464  * split |     [0]        [1]
1465  * ======|=====================
1466  *   A   |  data_A_0   data_A_1
1467  *   B   |  data_B_0   data_B_1
1468  *   C   |  data_C_0   data_C_1
1469  *
1470  * We will try the following (mirror children)^(number of splits) (2^3=8)
1471  * combinations, which is similar to bitwise-little-endian counting in
1472  * binary.  In general each "digit" corresponds to a split segment, and the
1473  * base of each digit is is_children, which can be different for each
1474  * digit.
1475  *
1476  * "low bit"        "high bit"
1477  *        v                 v
1478  * data_A_0 data_B_0 data_C_0
1479  * data_A_1 data_B_0 data_C_0
1480  * data_A_0 data_B_1 data_C_0
1481  * data_A_1 data_B_1 data_C_0
1482  * data_A_0 data_B_0 data_C_1
1483  * data_A_1 data_B_0 data_C_1
1484  * data_A_0 data_B_1 data_C_1
1485  * data_A_1 data_B_1 data_C_1
1486  *
1487  * Note that the split segments may be on the same or different top-level
1488  * vdevs. In either case, we try lots of combinations (see
1489  * zfs_reconstruct_indirect_segments_max).  This ensures that if a mirror has
1490  * small silent errors on all of its children, we can still reconstruct the
1491  * correct data, as long as those errors are at sufficiently-separated
1492  * offsets (specifically, separated by the largest block size - default of
1493  * 128KB, but up to 16MB).
1494  */
1495 static void
1496 vdev_indirect_reconstruct_io_done(zio_t *zio)
1497 {
1498         indirect_vsd_t *iv = zio->io_vsd;
1499         uint64_t attempts = 0;
1500         uint64_t attempts_max = UINT64_MAX;
1501         uint64_t combinations = 1;
1502
1503         if (zfs_reconstruct_indirect_combinations_max > 0)
1504                 attempts_max = zfs_reconstruct_indirect_combinations_max;
1505
1506         /*
1507          * Discard duplicate copies of split segments to minimize the
1508          * number of unique combinations when attempting reconstruction.
1509          */
1510         for (indirect_split_t *is = list_head(&iv->iv_splits);
1511             is != NULL; is = list_next(&iv->iv_splits, is)) {
1512                 uint64_t is_copies = 0;
1513
1514                 for (int i = 0; i < is->is_children; i++) {
1515                         if (is->is_child[i].ic_data == NULL)
1516                                 continue;
1517
1518                         for (int j = i + 1; j < is->is_children; j++) {
1519                                 if (is->is_child[j].ic_data == NULL)
1520                                         continue;
1521
1522                                 if (is->is_child[j].ic_duplicate == -1 &&
1523                                     abd_cmp(is->is_child[i].ic_data,
1524                                     is->is_child[j].ic_data) == 0) {
1525                                         is->is_child[j].ic_duplicate = i;
1526                                 }
1527                         }
1528
1529                         is_copies++;
1530                 }
1531
1532                 /* Reconstruction is impossible, no valid is->is_child[] */
1533                 if (is_copies == 0) {
1534                         zio->io_error = EIO;
1535                         vdev_indirect_all_checksum_errors(zio);
1536                         zio_checksum_verified(zio);
1537                         return;
1538                 }
1539
1540                 combinations *= is_copies;
1541         }
1542
1543         for (;;) {
1544                 /* copy data from splits to main zio */
1545                 int ret;
1546                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1547                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1548
1549                         /*
1550                          * If this child failed, its ic_data will be NULL.
1551                          * Skip this combination.
1552                          */
1553                         if (is->is_child[is->is_good_child].ic_data == NULL) {
1554                                 ret = EIO;
1555                                 goto next;
1556                         }
1557
1558                         /*
1559                          * If this child is a duplicate, its is_duplicate will
1560                          * refer to the primary copy.  Skip this combination.
1561                          */
1562                         if (is->is_child[is->is_good_child].ic_duplicate >= 0) {
1563                                 ret = ECKSUM;
1564                                 goto next;
1565                         }
1566
1567                         abd_copy_off(zio->io_abd,
1568                             is->is_child[is->is_good_child].ic_data,
1569                             is->is_split_offset, 0, is->is_size);
1570                 }
1571
1572                 /* See if this checksum matches. */
1573                 zio_bad_cksum_t zbc;
1574                 ret = zio_checksum_error(zio, &zbc);
1575                 if (ret == 0) {
1576                         /* Found a matching checksum.  Issue repair i/os. */
1577                         vdev_indirect_repair(zio);
1578                         zio_checksum_verified(zio);
1579                         return;
1580                 }
1581
1582                 /*
1583                  * Checksum failed; try a different combination of split
1584                  * children.
1585                  */
1586                 boolean_t more;
1587 next:
1588                 more = B_FALSE;
1589                 if (combinations <= attempts_max) {
1590                         /*
1591                          * There are relatively few possible combinations, so
1592                          * deterministically check them all.  We do this by
1593                          * adding one to the first split's good_child.  If it
1594                          * overflows, then "carry over" to the next split
1595                          * (like counting in base is_children, but each
1596                          * digit can have a different base).
1597                          */
1598                         for (indirect_split_t *is = list_head(&iv->iv_splits);
1599                             is != NULL; is = list_next(&iv->iv_splits, is)) {
1600                                 is->is_good_child++;
1601                                 if (is->is_good_child < is->is_children) {
1602                                         more = B_TRUE;
1603                                         break;
1604                                 }
1605                                 is->is_good_child = 0;
1606                         }
1607                 } else if (++attempts < attempts_max) {
1608                         /*
1609                          * There are too many combinations to try all of them
1610                          * in a reasonable amount of time, so try a fixed
1611                          * number of random combinations, after which we'll
1612                          * consider the block unrecoverable.
1613                          */
1614                         for (indirect_split_t *is = list_head(&iv->iv_splits);
1615                             is != NULL; is = list_next(&iv->iv_splits, is)) {
1616                                 int c = spa_get_random(is->is_children);
1617
1618                                 while (is->is_child[c].ic_duplicate >= 0)
1619                                         c = (c + 1) % is->is_children;
1620
1621                                 is->is_good_child = c;
1622                         }
1623                         more = B_TRUE;
1624                 }
1625                 if (!more) {
1626                         /* All combinations failed. */
1627                         zio->io_error = ret;
1628                         vdev_indirect_all_checksum_errors(zio);
1629                         zio_checksum_verified(zio);
1630                         return;
1631                 }
1632         }
1633 }
1634
1635 static void
1636 vdev_indirect_io_done(zio_t *zio)
1637 {
1638         indirect_vsd_t *iv = zio->io_vsd;
1639
1640         if (iv->iv_reconstruct) {
1641                 /*
1642                  * We have read all copies of the data (e.g. from mirrors),
1643                  * either because this was a scrub/resilver, or because the
1644                  * one-copy read didn't checksum correctly.
1645                  */
1646                 vdev_indirect_reconstruct_io_done(zio);
1647                 return;
1648         }
1649
1650         if (!iv->iv_split_block) {
1651                 /*
1652                  * This was not a split block, so we passed the BP down,
1653                  * and the checksum was handled by the (one) child zio.
1654                  */
1655                 return;
1656         }
1657
1658         zio_bad_cksum_t zbc;
1659         int ret = zio_checksum_error(zio, &zbc);
1660         if (ret == 0) {
1661                 zio_checksum_verified(zio);
1662                 return;
1663         }
1664
1665         /*
1666          * The checksum didn't match.  Read all copies of all splits, and
1667          * then we will try to reconstruct.  The next time
1668          * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1669          */
1670         vdev_indirect_read_all(zio);
1671
1672         zio_vdev_io_redone(zio);
1673 }
1674
1675 vdev_ops_t vdev_indirect_ops = {
1676         vdev_indirect_open,
1677         vdev_indirect_close,
1678         vdev_default_asize,
1679         vdev_indirect_io_start,
1680         vdev_indirect_io_done,
1681         NULL,
1682         NULL,
1683         NULL,
1684         NULL,
1685         vdev_indirect_remap,
1686         VDEV_TYPE_INDIRECT,     /* name of this vdev type */
1687         B_FALSE                 /* leaf vdev */
1688 };
1689
1690 #if defined(_KERNEL) && defined(HAVE_SPL)
1691 EXPORT_SYMBOL(rs_alloc);
1692 EXPORT_SYMBOL(spa_condense_fini);
1693 EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
1694 EXPORT_SYMBOL(spa_condense_indirect_start_sync);
1695 EXPORT_SYMBOL(spa_condense_init);
1696 EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
1697 EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
1698 EXPORT_SYMBOL(vdev_indirect_should_condense);
1699 EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
1700 EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
1701 EXPORT_SYMBOL(vdev_obsolete_sm_object);
1702
1703 /* CSTYLED */
1704 module_param(zfs_condense_min_mapping_bytes, ulong, 0644);
1705 MODULE_PARM_DESC(zfs_condense_min_mapping_bytes,
1706         "Minimum size of vdev mapping to condense");
1707
1708 module_param(zfs_condense_indirect_commit_entry_delay_ms, int, 0644);
1709 MODULE_PARM_DESC(zfs_condense_indirect_commit_entry_delay_ms,
1710         "Delay while condensing vdev mapping");
1711
1712 module_param(zfs_reconstruct_indirect_combinations_max, int, 0644);
1713 MODULE_PARM_DESC(zfs_reconstruct_indirect_combinations_max,
1714         "Maximum number of combinations when reconstructing split segments");
1715 #endif