]> granicus.if.org Git - zfs/blob - module/zfs/vdev.c
Fix for metaslab_fastwrite_unmark() assert failure
[zfs] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/zvol.h>
47
48 /*
49  * When a vdev is added, it will be divided into approximately (but no
50  * more than) this number of metaslabs.
51  */
52 int metaslabs_per_vdev = 200;
53
54 /*
55  * Virtual device management.
56  */
57
58 static vdev_ops_t *vdev_ops_table[] = {
59         &vdev_root_ops,
60         &vdev_raidz_ops,
61         &vdev_mirror_ops,
62         &vdev_replacing_ops,
63         &vdev_spare_ops,
64         &vdev_disk_ops,
65         &vdev_file_ops,
66         &vdev_missing_ops,
67         &vdev_hole_ops,
68         NULL
69 };
70
71 /*
72  * Given a vdev type, return the appropriate ops vector.
73  */
74 static vdev_ops_t *
75 vdev_getops(const char *type)
76 {
77         vdev_ops_t *ops, **opspp;
78
79         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
80                 if (strcmp(ops->vdev_op_type, type) == 0)
81                         break;
82
83         return (ops);
84 }
85
86 /*
87  * Default asize function: return the MAX of psize with the asize of
88  * all children.  This is what's used by anything other than RAID-Z.
89  */
90 uint64_t
91 vdev_default_asize(vdev_t *vd, uint64_t psize)
92 {
93         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
94         uint64_t csize;
95         int c;
96
97         for (c = 0; c < vd->vdev_children; c++) {
98                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
99                 asize = MAX(asize, csize);
100         }
101
102         return (asize);
103 }
104
105 /*
106  * Get the minimum allocatable size. We define the allocatable size as
107  * the vdev's asize rounded to the nearest metaslab. This allows us to
108  * replace or attach devices which don't have the same physical size but
109  * can still satisfy the same number of allocations.
110  */
111 uint64_t
112 vdev_get_min_asize(vdev_t *vd)
113 {
114         vdev_t *pvd = vd->vdev_parent;
115
116         /*
117          * If our parent is NULL (inactive spare or cache) or is the root,
118          * just return our own asize.
119          */
120         if (pvd == NULL)
121                 return (vd->vdev_asize);
122
123         /*
124          * The top-level vdev just returns the allocatable size rounded
125          * to the nearest metaslab.
126          */
127         if (vd == vd->vdev_top)
128                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
129
130         /*
131          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
132          * so each child must provide at least 1/Nth of its asize.
133          */
134         if (pvd->vdev_ops == &vdev_raidz_ops)
135                 return (pvd->vdev_min_asize / pvd->vdev_children);
136
137         return (pvd->vdev_min_asize);
138 }
139
140 void
141 vdev_set_min_asize(vdev_t *vd)
142 {
143         int c;
144         vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146         for (c = 0; c < vd->vdev_children; c++)
147                 vdev_set_min_asize(vd->vdev_child[c]);
148 }
149
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153         vdev_t *rvd = spa->spa_root_vdev;
154
155         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157         if (vdev < rvd->vdev_children) {
158                 ASSERT(rvd->vdev_child[vdev] != NULL);
159                 return (rvd->vdev_child[vdev]);
160         }
161
162         return (NULL);
163 }
164
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168         vdev_t *mvd;
169         int c;
170
171         if (vd->vdev_guid == guid)
172                 return (vd);
173
174         for (c = 0; c < vd->vdev_children; c++)
175                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
176                     NULL)
177                         return (mvd);
178
179         return (NULL);
180 }
181
182 static int
183 vdev_count_leaves_impl(vdev_t *vd)
184 {
185         int n = 0;
186         int c;
187
188         if (vd->vdev_ops->vdev_op_leaf)
189                 return (1);
190
191         for (c = 0; c < vd->vdev_children; c++)
192                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
193
194         return (n);
195 }
196
197 int
198 vdev_count_leaves(spa_t *spa)
199 {
200         return (vdev_count_leaves_impl(spa->spa_root_vdev));
201 }
202
203 void
204 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
205 {
206         size_t oldsize, newsize;
207         uint64_t id = cvd->vdev_id;
208         vdev_t **newchild;
209
210         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
211         ASSERT(cvd->vdev_parent == NULL);
212
213         cvd->vdev_parent = pvd;
214
215         if (pvd == NULL)
216                 return;
217
218         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
219
220         oldsize = pvd->vdev_children * sizeof (vdev_t *);
221         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
222         newsize = pvd->vdev_children * sizeof (vdev_t *);
223
224         newchild = kmem_alloc(newsize, KM_SLEEP);
225         if (pvd->vdev_child != NULL) {
226                 bcopy(pvd->vdev_child, newchild, oldsize);
227                 kmem_free(pvd->vdev_child, oldsize);
228         }
229
230         pvd->vdev_child = newchild;
231         pvd->vdev_child[id] = cvd;
232
233         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
234         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
235
236         /*
237          * Walk up all ancestors to update guid sum.
238          */
239         for (; pvd != NULL; pvd = pvd->vdev_parent)
240                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
241 }
242
243 void
244 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
245 {
246         int c;
247         uint_t id = cvd->vdev_id;
248
249         ASSERT(cvd->vdev_parent == pvd);
250
251         if (pvd == NULL)
252                 return;
253
254         ASSERT(id < pvd->vdev_children);
255         ASSERT(pvd->vdev_child[id] == cvd);
256
257         pvd->vdev_child[id] = NULL;
258         cvd->vdev_parent = NULL;
259
260         for (c = 0; c < pvd->vdev_children; c++)
261                 if (pvd->vdev_child[c])
262                         break;
263
264         if (c == pvd->vdev_children) {
265                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
266                 pvd->vdev_child = NULL;
267                 pvd->vdev_children = 0;
268         }
269
270         /*
271          * Walk up all ancestors to update guid sum.
272          */
273         for (; pvd != NULL; pvd = pvd->vdev_parent)
274                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
275 }
276
277 /*
278  * Remove any holes in the child array.
279  */
280 void
281 vdev_compact_children(vdev_t *pvd)
282 {
283         vdev_t **newchild, *cvd;
284         int oldc = pvd->vdev_children;
285         int newc;
286         int c;
287
288         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
289
290         for (c = newc = 0; c < oldc; c++)
291                 if (pvd->vdev_child[c])
292                         newc++;
293
294         newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
295
296         for (c = newc = 0; c < oldc; c++) {
297                 if ((cvd = pvd->vdev_child[c]) != NULL) {
298                         newchild[newc] = cvd;
299                         cvd->vdev_id = newc++;
300                 }
301         }
302
303         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
304         pvd->vdev_child = newchild;
305         pvd->vdev_children = newc;
306 }
307
308 /*
309  * Allocate and minimally initialize a vdev_t.
310  */
311 vdev_t *
312 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
313 {
314         vdev_t *vd;
315         int t;
316
317         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
318
319         if (spa->spa_root_vdev == NULL) {
320                 ASSERT(ops == &vdev_root_ops);
321                 spa->spa_root_vdev = vd;
322                 spa->spa_load_guid = spa_generate_guid(NULL);
323         }
324
325         if (guid == 0 && ops != &vdev_hole_ops) {
326                 if (spa->spa_root_vdev == vd) {
327                         /*
328                          * The root vdev's guid will also be the pool guid,
329                          * which must be unique among all pools.
330                          */
331                         guid = spa_generate_guid(NULL);
332                 } else {
333                         /*
334                          * Any other vdev's guid must be unique within the pool.
335                          */
336                         guid = spa_generate_guid(spa);
337                 }
338                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
339         }
340
341         vd->vdev_spa = spa;
342         vd->vdev_id = id;
343         vd->vdev_guid = guid;
344         vd->vdev_guid_sum = guid;
345         vd->vdev_ops = ops;
346         vd->vdev_state = VDEV_STATE_CLOSED;
347         vd->vdev_ishole = (ops == &vdev_hole_ops);
348
349         list_link_init(&vd->vdev_config_dirty_node);
350         list_link_init(&vd->vdev_state_dirty_node);
351         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
352         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
353         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
354         for (t = 0; t < DTL_TYPES; t++) {
355                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
356                     &vd->vdev_dtl_lock);
357         }
358         txg_list_create(&vd->vdev_ms_list,
359             offsetof(struct metaslab, ms_txg_node));
360         txg_list_create(&vd->vdev_dtl_list,
361             offsetof(struct vdev, vdev_dtl_node));
362         vd->vdev_stat.vs_timestamp = gethrtime();
363         vdev_queue_init(vd);
364         vdev_cache_init(vd);
365
366         return (vd);
367 }
368
369 /*
370  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
371  * creating a new vdev or loading an existing one - the behavior is slightly
372  * different for each case.
373  */
374 int
375 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
376     int alloctype)
377 {
378         vdev_ops_t *ops;
379         char *type;
380         uint64_t guid = 0, islog, nparity;
381         vdev_t *vd;
382
383         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
384
385         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
386                 return (SET_ERROR(EINVAL));
387
388         if ((ops = vdev_getops(type)) == NULL)
389                 return (SET_ERROR(EINVAL));
390
391         /*
392          * If this is a load, get the vdev guid from the nvlist.
393          * Otherwise, vdev_alloc_common() will generate one for us.
394          */
395         if (alloctype == VDEV_ALLOC_LOAD) {
396                 uint64_t label_id;
397
398                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
399                     label_id != id)
400                         return (SET_ERROR(EINVAL));
401
402                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
403                         return (SET_ERROR(EINVAL));
404         } else if (alloctype == VDEV_ALLOC_SPARE) {
405                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
406                         return (SET_ERROR(EINVAL));
407         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
408                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
409                         return (SET_ERROR(EINVAL));
410         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
411                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
412                         return (SET_ERROR(EINVAL));
413         }
414
415         /*
416          * The first allocated vdev must be of type 'root'.
417          */
418         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
419                 return (SET_ERROR(EINVAL));
420
421         /*
422          * Determine whether we're a log vdev.
423          */
424         islog = 0;
425         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
426         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
427                 return (SET_ERROR(ENOTSUP));
428
429         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
430                 return (SET_ERROR(ENOTSUP));
431
432         /*
433          * Set the nparity property for RAID-Z vdevs.
434          */
435         nparity = -1ULL;
436         if (ops == &vdev_raidz_ops) {
437                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
438                     &nparity) == 0) {
439                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
440                                 return (SET_ERROR(EINVAL));
441                         /*
442                          * Previous versions could only support 1 or 2 parity
443                          * device.
444                          */
445                         if (nparity > 1 &&
446                             spa_version(spa) < SPA_VERSION_RAIDZ2)
447                                 return (SET_ERROR(ENOTSUP));
448                         if (nparity > 2 &&
449                             spa_version(spa) < SPA_VERSION_RAIDZ3)
450                                 return (SET_ERROR(ENOTSUP));
451                 } else {
452                         /*
453                          * We require the parity to be specified for SPAs that
454                          * support multiple parity levels.
455                          */
456                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
457                                 return (SET_ERROR(EINVAL));
458                         /*
459                          * Otherwise, we default to 1 parity device for RAID-Z.
460                          */
461                         nparity = 1;
462                 }
463         } else {
464                 nparity = 0;
465         }
466         ASSERT(nparity != -1ULL);
467
468         vd = vdev_alloc_common(spa, id, guid, ops);
469
470         vd->vdev_islog = islog;
471         vd->vdev_nparity = nparity;
472
473         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
474                 vd->vdev_path = spa_strdup(vd->vdev_path);
475         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
476                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
477         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
478             &vd->vdev_physpath) == 0)
479                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
480         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
481                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
482
483         /*
484          * Set the whole_disk property.  If it's not specified, leave the value
485          * as -1.
486          */
487         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
488             &vd->vdev_wholedisk) != 0)
489                 vd->vdev_wholedisk = -1ULL;
490
491         /*
492          * Look for the 'not present' flag.  This will only be set if the device
493          * was not present at the time of import.
494          */
495         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
496             &vd->vdev_not_present);
497
498         /*
499          * Get the alignment requirement.
500          */
501         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
502
503         /*
504          * Retrieve the vdev creation time.
505          */
506         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
507             &vd->vdev_crtxg);
508
509         /*
510          * If we're a top-level vdev, try to load the allocation parameters.
511          */
512         if (parent && !parent->vdev_parent &&
513             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
514                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
515                     &vd->vdev_ms_array);
516                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
517                     &vd->vdev_ms_shift);
518                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
519                     &vd->vdev_asize);
520                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
521                     &vd->vdev_removing);
522                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
523                     &vd->vdev_top_zap);
524         } else {
525                 ASSERT0(vd->vdev_top_zap);
526         }
527
528         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
529                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
530                     alloctype == VDEV_ALLOC_ADD ||
531                     alloctype == VDEV_ALLOC_SPLIT ||
532                     alloctype == VDEV_ALLOC_ROOTPOOL);
533                 vd->vdev_mg = metaslab_group_create(islog ?
534                     spa_log_class(spa) : spa_normal_class(spa), vd);
535         }
536
537         if (vd->vdev_ops->vdev_op_leaf &&
538             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
539                 (void) nvlist_lookup_uint64(nv,
540                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
541         } else {
542                 ASSERT0(vd->vdev_leaf_zap);
543         }
544
545         /*
546          * If we're a leaf vdev, try to load the DTL object and other state.
547          */
548
549         if (vd->vdev_ops->vdev_op_leaf &&
550             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
551             alloctype == VDEV_ALLOC_ROOTPOOL)) {
552                 if (alloctype == VDEV_ALLOC_LOAD) {
553                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
554                             &vd->vdev_dtl_object);
555                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
556                             &vd->vdev_unspare);
557                 }
558
559                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
560                         uint64_t spare = 0;
561
562                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
563                             &spare) == 0 && spare)
564                                 spa_spare_add(vd);
565                 }
566
567                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
568                     &vd->vdev_offline);
569
570                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
571                     &vd->vdev_resilver_txg);
572
573                 /*
574                  * When importing a pool, we want to ignore the persistent fault
575                  * state, as the diagnosis made on another system may not be
576                  * valid in the current context.  Local vdevs will
577                  * remain in the faulted state.
578                  */
579                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
580                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
581                             &vd->vdev_faulted);
582                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
583                             &vd->vdev_degraded);
584                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
585                             &vd->vdev_removed);
586
587                         if (vd->vdev_faulted || vd->vdev_degraded) {
588                                 char *aux;
589
590                                 vd->vdev_label_aux =
591                                     VDEV_AUX_ERR_EXCEEDED;
592                                 if (nvlist_lookup_string(nv,
593                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
594                                     strcmp(aux, "external") == 0)
595                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
596                         }
597                 }
598         }
599
600         /*
601          * Add ourselves to the parent's list of children.
602          */
603         vdev_add_child(parent, vd);
604
605         *vdp = vd;
606
607         return (0);
608 }
609
610 void
611 vdev_free(vdev_t *vd)
612 {
613         int c, t;
614         spa_t *spa = vd->vdev_spa;
615
616         /*
617          * vdev_free() implies closing the vdev first.  This is simpler than
618          * trying to ensure complicated semantics for all callers.
619          */
620         vdev_close(vd);
621
622         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
623         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
624
625         /*
626          * Free all children.
627          */
628         for (c = 0; c < vd->vdev_children; c++)
629                 vdev_free(vd->vdev_child[c]);
630
631         ASSERT(vd->vdev_child == NULL);
632         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
633
634         /*
635          * Discard allocation state.
636          */
637         if (vd->vdev_mg != NULL) {
638                 vdev_metaslab_fini(vd);
639                 metaslab_group_destroy(vd->vdev_mg);
640         }
641
642         ASSERT0(vd->vdev_stat.vs_space);
643         ASSERT0(vd->vdev_stat.vs_dspace);
644         ASSERT0(vd->vdev_stat.vs_alloc);
645
646         /*
647          * Remove this vdev from its parent's child list.
648          */
649         vdev_remove_child(vd->vdev_parent, vd);
650
651         ASSERT(vd->vdev_parent == NULL);
652
653         /*
654          * Clean up vdev structure.
655          */
656         vdev_queue_fini(vd);
657         vdev_cache_fini(vd);
658
659         if (vd->vdev_path)
660                 spa_strfree(vd->vdev_path);
661         if (vd->vdev_devid)
662                 spa_strfree(vd->vdev_devid);
663         if (vd->vdev_physpath)
664                 spa_strfree(vd->vdev_physpath);
665         if (vd->vdev_fru)
666                 spa_strfree(vd->vdev_fru);
667
668         if (vd->vdev_isspare)
669                 spa_spare_remove(vd);
670         if (vd->vdev_isl2cache)
671                 spa_l2cache_remove(vd);
672
673         txg_list_destroy(&vd->vdev_ms_list);
674         txg_list_destroy(&vd->vdev_dtl_list);
675
676         mutex_enter(&vd->vdev_dtl_lock);
677         space_map_close(vd->vdev_dtl_sm);
678         for (t = 0; t < DTL_TYPES; t++) {
679                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
680                 range_tree_destroy(vd->vdev_dtl[t]);
681         }
682         mutex_exit(&vd->vdev_dtl_lock);
683
684         mutex_destroy(&vd->vdev_dtl_lock);
685         mutex_destroy(&vd->vdev_stat_lock);
686         mutex_destroy(&vd->vdev_probe_lock);
687
688         if (vd == spa->spa_root_vdev)
689                 spa->spa_root_vdev = NULL;
690
691         kmem_free(vd, sizeof (vdev_t));
692 }
693
694 /*
695  * Transfer top-level vdev state from svd to tvd.
696  */
697 static void
698 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
699 {
700         spa_t *spa = svd->vdev_spa;
701         metaslab_t *msp;
702         vdev_t *vd;
703         int t;
704
705         ASSERT(tvd == tvd->vdev_top);
706
707         tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
708         tvd->vdev_ms_array = svd->vdev_ms_array;
709         tvd->vdev_ms_shift = svd->vdev_ms_shift;
710         tvd->vdev_ms_count = svd->vdev_ms_count;
711         tvd->vdev_top_zap = svd->vdev_top_zap;
712
713         svd->vdev_ms_array = 0;
714         svd->vdev_ms_shift = 0;
715         svd->vdev_ms_count = 0;
716         svd->vdev_top_zap = 0;
717
718         if (tvd->vdev_mg)
719                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
720         tvd->vdev_mg = svd->vdev_mg;
721         tvd->vdev_ms = svd->vdev_ms;
722
723         svd->vdev_mg = NULL;
724         svd->vdev_ms = NULL;
725
726         if (tvd->vdev_mg != NULL)
727                 tvd->vdev_mg->mg_vd = tvd;
728
729         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
730         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
731         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
732
733         svd->vdev_stat.vs_alloc = 0;
734         svd->vdev_stat.vs_space = 0;
735         svd->vdev_stat.vs_dspace = 0;
736
737         for (t = 0; t < TXG_SIZE; t++) {
738                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
739                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
740                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
741                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
742                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
743                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
744         }
745
746         if (list_link_active(&svd->vdev_config_dirty_node)) {
747                 vdev_config_clean(svd);
748                 vdev_config_dirty(tvd);
749         }
750
751         if (list_link_active(&svd->vdev_state_dirty_node)) {
752                 vdev_state_clean(svd);
753                 vdev_state_dirty(tvd);
754         }
755
756         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
757         svd->vdev_deflate_ratio = 0;
758
759         tvd->vdev_islog = svd->vdev_islog;
760         svd->vdev_islog = 0;
761 }
762
763 static void
764 vdev_top_update(vdev_t *tvd, vdev_t *vd)
765 {
766         int c;
767
768         if (vd == NULL)
769                 return;
770
771         vd->vdev_top = tvd;
772
773         for (c = 0; c < vd->vdev_children; c++)
774                 vdev_top_update(tvd, vd->vdev_child[c]);
775 }
776
777 /*
778  * Add a mirror/replacing vdev above an existing vdev.
779  */
780 vdev_t *
781 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
782 {
783         spa_t *spa = cvd->vdev_spa;
784         vdev_t *pvd = cvd->vdev_parent;
785         vdev_t *mvd;
786
787         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
788
789         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
790
791         mvd->vdev_asize = cvd->vdev_asize;
792         mvd->vdev_min_asize = cvd->vdev_min_asize;
793         mvd->vdev_max_asize = cvd->vdev_max_asize;
794         mvd->vdev_ashift = cvd->vdev_ashift;
795         mvd->vdev_state = cvd->vdev_state;
796         mvd->vdev_crtxg = cvd->vdev_crtxg;
797
798         vdev_remove_child(pvd, cvd);
799         vdev_add_child(pvd, mvd);
800         cvd->vdev_id = mvd->vdev_children;
801         vdev_add_child(mvd, cvd);
802         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
803
804         if (mvd == mvd->vdev_top)
805                 vdev_top_transfer(cvd, mvd);
806
807         return (mvd);
808 }
809
810 /*
811  * Remove a 1-way mirror/replacing vdev from the tree.
812  */
813 void
814 vdev_remove_parent(vdev_t *cvd)
815 {
816         vdev_t *mvd = cvd->vdev_parent;
817         vdev_t *pvd = mvd->vdev_parent;
818
819         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
820
821         ASSERT(mvd->vdev_children == 1);
822         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
823             mvd->vdev_ops == &vdev_replacing_ops ||
824             mvd->vdev_ops == &vdev_spare_ops);
825         cvd->vdev_ashift = mvd->vdev_ashift;
826
827         vdev_remove_child(mvd, cvd);
828         vdev_remove_child(pvd, mvd);
829
830         /*
831          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
832          * Otherwise, we could have detached an offline device, and when we
833          * go to import the pool we'll think we have two top-level vdevs,
834          * instead of a different version of the same top-level vdev.
835          */
836         if (mvd->vdev_top == mvd) {
837                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
838                 cvd->vdev_orig_guid = cvd->vdev_guid;
839                 cvd->vdev_guid += guid_delta;
840                 cvd->vdev_guid_sum += guid_delta;
841
842                 /*
843                  * If pool not set for autoexpand, we need to also preserve
844                  * mvd's asize to prevent automatic expansion of cvd.
845                  * Otherwise if we are adjusting the mirror by attaching and
846                  * detaching children of non-uniform sizes, the mirror could
847                  * autoexpand, unexpectedly requiring larger devices to
848                  * re-establish the mirror.
849                  */
850                 if (!cvd->vdev_spa->spa_autoexpand)
851                         cvd->vdev_asize = mvd->vdev_asize;
852         }
853         cvd->vdev_id = mvd->vdev_id;
854         vdev_add_child(pvd, cvd);
855         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
856
857         if (cvd == cvd->vdev_top)
858                 vdev_top_transfer(mvd, cvd);
859
860         ASSERT(mvd->vdev_children == 0);
861         vdev_free(mvd);
862 }
863
864 int
865 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
866 {
867         spa_t *spa = vd->vdev_spa;
868         objset_t *mos = spa->spa_meta_objset;
869         uint64_t m;
870         uint64_t oldc = vd->vdev_ms_count;
871         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
872         metaslab_t **mspp;
873         int error;
874
875         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
876
877         /*
878          * This vdev is not being allocated from yet or is a hole.
879          */
880         if (vd->vdev_ms_shift == 0)
881                 return (0);
882
883         ASSERT(!vd->vdev_ishole);
884
885         /*
886          * Compute the raidz-deflation ratio.  Note, we hard-code
887          * in 128k (1 << 17) because it is the "typical" blocksize.
888          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
889          * otherwise it would inconsistently account for existing bp's.
890          */
891         vd->vdev_deflate_ratio = (1 << 17) /
892             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
893
894         ASSERT(oldc <= newc);
895
896         mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
897
898         if (oldc != 0) {
899                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
900                 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
901         }
902
903         vd->vdev_ms = mspp;
904         vd->vdev_ms_count = newc;
905
906         for (m = oldc; m < newc; m++) {
907                 uint64_t object = 0;
908
909                 if (txg == 0) {
910                         error = dmu_read(mos, vd->vdev_ms_array,
911                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
912                             DMU_READ_PREFETCH);
913                         if (error)
914                                 return (error);
915                 }
916
917                 error = metaslab_init(vd->vdev_mg, m, object, txg,
918                     &(vd->vdev_ms[m]));
919                 if (error)
920                         return (error);
921         }
922
923         if (txg == 0)
924                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
925
926         /*
927          * If the vdev is being removed we don't activate
928          * the metaslabs since we want to ensure that no new
929          * allocations are performed on this device.
930          */
931         if (oldc == 0 && !vd->vdev_removing)
932                 metaslab_group_activate(vd->vdev_mg);
933
934         if (txg == 0)
935                 spa_config_exit(spa, SCL_ALLOC, FTAG);
936
937         return (0);
938 }
939
940 void
941 vdev_metaslab_fini(vdev_t *vd)
942 {
943         uint64_t m;
944         uint64_t count = vd->vdev_ms_count;
945
946         if (vd->vdev_ms != NULL) {
947                 metaslab_group_passivate(vd->vdev_mg);
948                 for (m = 0; m < count; m++) {
949                         metaslab_t *msp = vd->vdev_ms[m];
950
951                         if (msp != NULL)
952                                 metaslab_fini(msp);
953                 }
954                 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
955                 vd->vdev_ms = NULL;
956         }
957
958         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
959 }
960
961 typedef struct vdev_probe_stats {
962         boolean_t       vps_readable;
963         boolean_t       vps_writeable;
964         int             vps_flags;
965 } vdev_probe_stats_t;
966
967 static void
968 vdev_probe_done(zio_t *zio)
969 {
970         spa_t *spa = zio->io_spa;
971         vdev_t *vd = zio->io_vd;
972         vdev_probe_stats_t *vps = zio->io_private;
973
974         ASSERT(vd->vdev_probe_zio != NULL);
975
976         if (zio->io_type == ZIO_TYPE_READ) {
977                 if (zio->io_error == 0)
978                         vps->vps_readable = 1;
979                 if (zio->io_error == 0 && spa_writeable(spa)) {
980                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
981                             zio->io_offset, zio->io_size, zio->io_data,
982                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
983                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
984                 } else {
985                         zio_buf_free(zio->io_data, zio->io_size);
986                 }
987         } else if (zio->io_type == ZIO_TYPE_WRITE) {
988                 if (zio->io_error == 0)
989                         vps->vps_writeable = 1;
990                 zio_buf_free(zio->io_data, zio->io_size);
991         } else if (zio->io_type == ZIO_TYPE_NULL) {
992                 zio_t *pio;
993
994                 vd->vdev_cant_read |= !vps->vps_readable;
995                 vd->vdev_cant_write |= !vps->vps_writeable;
996
997                 if (vdev_readable(vd) &&
998                     (vdev_writeable(vd) || !spa_writeable(spa))) {
999                         zio->io_error = 0;
1000                 } else {
1001                         ASSERT(zio->io_error != 0);
1002                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1003                             spa, vd, NULL, 0, 0);
1004                         zio->io_error = SET_ERROR(ENXIO);
1005                 }
1006
1007                 mutex_enter(&vd->vdev_probe_lock);
1008                 ASSERT(vd->vdev_probe_zio == zio);
1009                 vd->vdev_probe_zio = NULL;
1010                 mutex_exit(&vd->vdev_probe_lock);
1011
1012                 while ((pio = zio_walk_parents(zio)) != NULL)
1013                         if (!vdev_accessible(vd, pio))
1014                                 pio->io_error = SET_ERROR(ENXIO);
1015
1016                 kmem_free(vps, sizeof (*vps));
1017         }
1018 }
1019
1020 /*
1021  * Determine whether this device is accessible.
1022  *
1023  * Read and write to several known locations: the pad regions of each
1024  * vdev label but the first, which we leave alone in case it contains
1025  * a VTOC.
1026  */
1027 zio_t *
1028 vdev_probe(vdev_t *vd, zio_t *zio)
1029 {
1030         spa_t *spa = vd->vdev_spa;
1031         vdev_probe_stats_t *vps = NULL;
1032         zio_t *pio;
1033         int l;
1034
1035         ASSERT(vd->vdev_ops->vdev_op_leaf);
1036
1037         /*
1038          * Don't probe the probe.
1039          */
1040         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1041                 return (NULL);
1042
1043         /*
1044          * To prevent 'probe storms' when a device fails, we create
1045          * just one probe i/o at a time.  All zios that want to probe
1046          * this vdev will become parents of the probe io.
1047          */
1048         mutex_enter(&vd->vdev_probe_lock);
1049
1050         if ((pio = vd->vdev_probe_zio) == NULL) {
1051                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1052
1053                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1054                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1055                     ZIO_FLAG_TRYHARD;
1056
1057                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1058                         /*
1059                          * vdev_cant_read and vdev_cant_write can only
1060                          * transition from TRUE to FALSE when we have the
1061                          * SCL_ZIO lock as writer; otherwise they can only
1062                          * transition from FALSE to TRUE.  This ensures that
1063                          * any zio looking at these values can assume that
1064                          * failures persist for the life of the I/O.  That's
1065                          * important because when a device has intermittent
1066                          * connectivity problems, we want to ensure that
1067                          * they're ascribed to the device (ENXIO) and not
1068                          * the zio (EIO).
1069                          *
1070                          * Since we hold SCL_ZIO as writer here, clear both
1071                          * values so the probe can reevaluate from first
1072                          * principles.
1073                          */
1074                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1075                         vd->vdev_cant_read = B_FALSE;
1076                         vd->vdev_cant_write = B_FALSE;
1077                 }
1078
1079                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1080                     vdev_probe_done, vps,
1081                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1082
1083                 /*
1084                  * We can't change the vdev state in this context, so we
1085                  * kick off an async task to do it on our behalf.
1086                  */
1087                 if (zio != NULL) {
1088                         vd->vdev_probe_wanted = B_TRUE;
1089                         spa_async_request(spa, SPA_ASYNC_PROBE);
1090                 }
1091         }
1092
1093         if (zio != NULL)
1094                 zio_add_child(zio, pio);
1095
1096         mutex_exit(&vd->vdev_probe_lock);
1097
1098         if (vps == NULL) {
1099                 ASSERT(zio != NULL);
1100                 return (NULL);
1101         }
1102
1103         for (l = 1; l < VDEV_LABELS; l++) {
1104                 zio_nowait(zio_read_phys(pio, vd,
1105                     vdev_label_offset(vd->vdev_psize, l,
1106                     offsetof(vdev_label_t, vl_pad2)),
1107                     VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1108                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1109                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1110         }
1111
1112         if (zio == NULL)
1113                 return (pio);
1114
1115         zio_nowait(pio);
1116         return (NULL);
1117 }
1118
1119 static void
1120 vdev_open_child(void *arg)
1121 {
1122         vdev_t *vd = arg;
1123
1124         vd->vdev_open_thread = curthread;
1125         vd->vdev_open_error = vdev_open(vd);
1126         vd->vdev_open_thread = NULL;
1127         vd->vdev_parent->vdev_nonrot &= vd->vdev_nonrot;
1128 }
1129
1130 static boolean_t
1131 vdev_uses_zvols(vdev_t *vd)
1132 {
1133         int c;
1134
1135 #ifdef _KERNEL
1136         if (zvol_is_zvol(vd->vdev_path))
1137                 return (B_TRUE);
1138 #endif
1139
1140         for (c = 0; c < vd->vdev_children; c++)
1141                 if (vdev_uses_zvols(vd->vdev_child[c]))
1142                         return (B_TRUE);
1143
1144         return (B_FALSE);
1145 }
1146
1147 void
1148 vdev_open_children(vdev_t *vd)
1149 {
1150         taskq_t *tq;
1151         int children = vd->vdev_children;
1152         int c;
1153
1154         vd->vdev_nonrot = B_TRUE;
1155
1156         /*
1157          * in order to handle pools on top of zvols, do the opens
1158          * in a single thread so that the same thread holds the
1159          * spa_namespace_lock
1160          */
1161         if (vdev_uses_zvols(vd)) {
1162                 for (c = 0; c < children; c++) {
1163                         vd->vdev_child[c]->vdev_open_error =
1164                             vdev_open(vd->vdev_child[c]);
1165                         vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1166                 }
1167                 return;
1168         }
1169         tq = taskq_create("vdev_open", children, minclsyspri,
1170             children, children, TASKQ_PREPOPULATE);
1171
1172         for (c = 0; c < children; c++)
1173                 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1174                     TQ_SLEEP) != 0);
1175
1176         taskq_destroy(tq);
1177
1178         for (c = 0; c < children; c++)
1179                 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1180 }
1181
1182 /*
1183  * Prepare a virtual device for access.
1184  */
1185 int
1186 vdev_open(vdev_t *vd)
1187 {
1188         spa_t *spa = vd->vdev_spa;
1189         int error;
1190         uint64_t osize = 0;
1191         uint64_t max_osize = 0;
1192         uint64_t asize, max_asize, psize;
1193         uint64_t ashift = 0;
1194         int c;
1195
1196         ASSERT(vd->vdev_open_thread == curthread ||
1197             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1198         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1199             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1200             vd->vdev_state == VDEV_STATE_OFFLINE);
1201
1202         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1203         vd->vdev_cant_read = B_FALSE;
1204         vd->vdev_cant_write = B_FALSE;
1205         vd->vdev_min_asize = vdev_get_min_asize(vd);
1206
1207         /*
1208          * If this vdev is not removed, check its fault status.  If it's
1209          * faulted, bail out of the open.
1210          */
1211         if (!vd->vdev_removed && vd->vdev_faulted) {
1212                 ASSERT(vd->vdev_children == 0);
1213                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1214                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1215                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1216                     vd->vdev_label_aux);
1217                 return (SET_ERROR(ENXIO));
1218         } else if (vd->vdev_offline) {
1219                 ASSERT(vd->vdev_children == 0);
1220                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1221                 return (SET_ERROR(ENXIO));
1222         }
1223
1224         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1225
1226         /*
1227          * Reset the vdev_reopening flag so that we actually close
1228          * the vdev on error.
1229          */
1230         vd->vdev_reopening = B_FALSE;
1231         if (zio_injection_enabled && error == 0)
1232                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1233
1234         if (error) {
1235                 if (vd->vdev_removed &&
1236                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1237                         vd->vdev_removed = B_FALSE;
1238
1239                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1240                     vd->vdev_stat.vs_aux);
1241                 return (error);
1242         }
1243
1244         vd->vdev_removed = B_FALSE;
1245
1246         /*
1247          * Recheck the faulted flag now that we have confirmed that
1248          * the vdev is accessible.  If we're faulted, bail.
1249          */
1250         if (vd->vdev_faulted) {
1251                 ASSERT(vd->vdev_children == 0);
1252                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1253                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1254                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1255                     vd->vdev_label_aux);
1256                 return (SET_ERROR(ENXIO));
1257         }
1258
1259         if (vd->vdev_degraded) {
1260                 ASSERT(vd->vdev_children == 0);
1261                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1262                     VDEV_AUX_ERR_EXCEEDED);
1263         } else {
1264                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1265         }
1266
1267         /*
1268          * For hole or missing vdevs we just return success.
1269          */
1270         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1271                 return (0);
1272
1273         for (c = 0; c < vd->vdev_children; c++) {
1274                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1275                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1276                             VDEV_AUX_NONE);
1277                         break;
1278                 }
1279         }
1280
1281         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1282         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1283
1284         if (vd->vdev_children == 0) {
1285                 if (osize < SPA_MINDEVSIZE) {
1286                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1287                             VDEV_AUX_TOO_SMALL);
1288                         return (SET_ERROR(EOVERFLOW));
1289                 }
1290                 psize = osize;
1291                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1292                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1293                     VDEV_LABEL_END_SIZE);
1294         } else {
1295                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1296                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1297                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1298                             VDEV_AUX_TOO_SMALL);
1299                         return (SET_ERROR(EOVERFLOW));
1300                 }
1301                 psize = 0;
1302                 asize = osize;
1303                 max_asize = max_osize;
1304         }
1305
1306         vd->vdev_psize = psize;
1307
1308         /*
1309          * Make sure the allocatable size hasn't shrunk.
1310          */
1311         if (asize < vd->vdev_min_asize) {
1312                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1313                     VDEV_AUX_BAD_LABEL);
1314                 return (SET_ERROR(EINVAL));
1315         }
1316
1317         if (vd->vdev_asize == 0) {
1318                 /*
1319                  * This is the first-ever open, so use the computed values.
1320                  * For compatibility, a different ashift can be requested.
1321                  */
1322                 vd->vdev_asize = asize;
1323                 vd->vdev_max_asize = max_asize;
1324                 if (vd->vdev_ashift == 0)
1325                         vd->vdev_ashift = ashift;
1326         } else {
1327                 /*
1328                  * Detect if the alignment requirement has increased.
1329                  * We don't want to make the pool unavailable, just
1330                  * post an event instead.
1331                  */
1332                 if (ashift > vd->vdev_top->vdev_ashift &&
1333                     vd->vdev_ops->vdev_op_leaf) {
1334                         zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1335                             spa, vd, NULL, 0, 0);
1336                 }
1337
1338                 vd->vdev_max_asize = max_asize;
1339         }
1340
1341         /*
1342          * If all children are healthy and the asize has increased,
1343          * then we've experienced dynamic LUN growth.  If automatic
1344          * expansion is enabled then use the additional space.
1345          */
1346         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1347             (vd->vdev_expanding || spa->spa_autoexpand))
1348                 vd->vdev_asize = asize;
1349
1350         vdev_set_min_asize(vd);
1351
1352         /*
1353          * Ensure we can issue some IO before declaring the
1354          * vdev open for business.
1355          */
1356         if (vd->vdev_ops->vdev_op_leaf &&
1357             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1358                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1359                     VDEV_AUX_ERR_EXCEEDED);
1360                 return (error);
1361         }
1362
1363         /*
1364          * Track the min and max ashift values for normal data devices.
1365          */
1366         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1367             !vd->vdev_islog && vd->vdev_aux == NULL) {
1368                 if (vd->vdev_ashift > spa->spa_max_ashift)
1369                         spa->spa_max_ashift = vd->vdev_ashift;
1370                 if (vd->vdev_ashift < spa->spa_min_ashift)
1371                         spa->spa_min_ashift = vd->vdev_ashift;
1372         }
1373
1374         /*
1375          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1376          * resilver.  But don't do this if we are doing a reopen for a scrub,
1377          * since this would just restart the scrub we are already doing.
1378          */
1379         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1380             vdev_resilver_needed(vd, NULL, NULL))
1381                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1382
1383         return (0);
1384 }
1385
1386 /*
1387  * Called once the vdevs are all opened, this routine validates the label
1388  * contents.  This needs to be done before vdev_load() so that we don't
1389  * inadvertently do repair I/Os to the wrong device.
1390  *
1391  * If 'strict' is false ignore the spa guid check. This is necessary because
1392  * if the machine crashed during a re-guid the new guid might have been written
1393  * to all of the vdev labels, but not the cached config. The strict check
1394  * will be performed when the pool is opened again using the mos config.
1395  *
1396  * This function will only return failure if one of the vdevs indicates that it
1397  * has since been destroyed or exported.  This is only possible if
1398  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1399  * will be updated but the function will return 0.
1400  */
1401 int
1402 vdev_validate(vdev_t *vd, boolean_t strict)
1403 {
1404         spa_t *spa = vd->vdev_spa;
1405         nvlist_t *label;
1406         uint64_t guid = 0, top_guid;
1407         uint64_t state;
1408         int c;
1409
1410         for (c = 0; c < vd->vdev_children; c++)
1411                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1412                         return (SET_ERROR(EBADF));
1413
1414         /*
1415          * If the device has already failed, or was marked offline, don't do
1416          * any further validation.  Otherwise, label I/O will fail and we will
1417          * overwrite the previous state.
1418          */
1419         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1420                 uint64_t aux_guid = 0;
1421                 nvlist_t *nvl;
1422                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1423                     spa_last_synced_txg(spa) : -1ULL;
1424
1425                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1426                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1427                             VDEV_AUX_BAD_LABEL);
1428                         return (0);
1429                 }
1430
1431                 /*
1432                  * Determine if this vdev has been split off into another
1433                  * pool.  If so, then refuse to open it.
1434                  */
1435                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1436                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1437                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1438                             VDEV_AUX_SPLIT_POOL);
1439                         nvlist_free(label);
1440                         return (0);
1441                 }
1442
1443                 if (strict && (nvlist_lookup_uint64(label,
1444                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1445                     guid != spa_guid(spa))) {
1446                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1447                             VDEV_AUX_CORRUPT_DATA);
1448                         nvlist_free(label);
1449                         return (0);
1450                 }
1451
1452                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1453                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1454                     &aux_guid) != 0)
1455                         aux_guid = 0;
1456
1457                 /*
1458                  * If this vdev just became a top-level vdev because its
1459                  * sibling was detached, it will have adopted the parent's
1460                  * vdev guid -- but the label may or may not be on disk yet.
1461                  * Fortunately, either version of the label will have the
1462                  * same top guid, so if we're a top-level vdev, we can
1463                  * safely compare to that instead.
1464                  *
1465                  * If we split this vdev off instead, then we also check the
1466                  * original pool's guid.  We don't want to consider the vdev
1467                  * corrupt if it is partway through a split operation.
1468                  */
1469                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1470                     &guid) != 0 ||
1471                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1472                     &top_guid) != 0 ||
1473                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1474                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1475                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1476                             VDEV_AUX_CORRUPT_DATA);
1477                         nvlist_free(label);
1478                         return (0);
1479                 }
1480
1481                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1482                     &state) != 0) {
1483                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1484                             VDEV_AUX_CORRUPT_DATA);
1485                         nvlist_free(label);
1486                         return (0);
1487                 }
1488
1489                 nvlist_free(label);
1490
1491                 /*
1492                  * If this is a verbatim import, no need to check the
1493                  * state of the pool.
1494                  */
1495                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1496                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1497                     state != POOL_STATE_ACTIVE)
1498                         return (SET_ERROR(EBADF));
1499
1500                 /*
1501                  * If we were able to open and validate a vdev that was
1502                  * previously marked permanently unavailable, clear that state
1503                  * now.
1504                  */
1505                 if (vd->vdev_not_present)
1506                         vd->vdev_not_present = 0;
1507         }
1508
1509         return (0);
1510 }
1511
1512 /*
1513  * Close a virtual device.
1514  */
1515 void
1516 vdev_close(vdev_t *vd)
1517 {
1518         vdev_t *pvd = vd->vdev_parent;
1519         ASSERTV(spa_t *spa = vd->vdev_spa);
1520
1521         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1522
1523         /*
1524          * If our parent is reopening, then we are as well, unless we are
1525          * going offline.
1526          */
1527         if (pvd != NULL && pvd->vdev_reopening)
1528                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1529
1530         vd->vdev_ops->vdev_op_close(vd);
1531
1532         vdev_cache_purge(vd);
1533
1534         /*
1535          * We record the previous state before we close it, so that if we are
1536          * doing a reopen(), we don't generate FMA ereports if we notice that
1537          * it's still faulted.
1538          */
1539         vd->vdev_prevstate = vd->vdev_state;
1540
1541         if (vd->vdev_offline)
1542                 vd->vdev_state = VDEV_STATE_OFFLINE;
1543         else
1544                 vd->vdev_state = VDEV_STATE_CLOSED;
1545         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1546 }
1547
1548 void
1549 vdev_hold(vdev_t *vd)
1550 {
1551         spa_t *spa = vd->vdev_spa;
1552         int c;
1553
1554         ASSERT(spa_is_root(spa));
1555         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1556                 return;
1557
1558         for (c = 0; c < vd->vdev_children; c++)
1559                 vdev_hold(vd->vdev_child[c]);
1560
1561         if (vd->vdev_ops->vdev_op_leaf)
1562                 vd->vdev_ops->vdev_op_hold(vd);
1563 }
1564
1565 void
1566 vdev_rele(vdev_t *vd)
1567 {
1568         int c;
1569
1570         ASSERT(spa_is_root(vd->vdev_spa));
1571         for (c = 0; c < vd->vdev_children; c++)
1572                 vdev_rele(vd->vdev_child[c]);
1573
1574         if (vd->vdev_ops->vdev_op_leaf)
1575                 vd->vdev_ops->vdev_op_rele(vd);
1576 }
1577
1578 /*
1579  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1580  * reopen leaf vdevs which had previously been opened as they might deadlock
1581  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1582  * If the leaf has never been opened then open it, as usual.
1583  */
1584 void
1585 vdev_reopen(vdev_t *vd)
1586 {
1587         spa_t *spa = vd->vdev_spa;
1588
1589         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1590
1591         /* set the reopening flag unless we're taking the vdev offline */
1592         vd->vdev_reopening = !vd->vdev_offline;
1593         vdev_close(vd);
1594         (void) vdev_open(vd);
1595
1596         /*
1597          * Call vdev_validate() here to make sure we have the same device.
1598          * Otherwise, a device with an invalid label could be successfully
1599          * opened in response to vdev_reopen().
1600          */
1601         if (vd->vdev_aux) {
1602                 (void) vdev_validate_aux(vd);
1603                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1604                     vd->vdev_aux == &spa->spa_l2cache &&
1605                     !l2arc_vdev_present(vd))
1606                         l2arc_add_vdev(spa, vd);
1607         } else {
1608                 (void) vdev_validate(vd, B_TRUE);
1609         }
1610
1611         /*
1612          * Reassess parent vdev's health.
1613          */
1614         vdev_propagate_state(vd);
1615 }
1616
1617 int
1618 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1619 {
1620         int error;
1621
1622         /*
1623          * Normally, partial opens (e.g. of a mirror) are allowed.
1624          * For a create, however, we want to fail the request if
1625          * there are any components we can't open.
1626          */
1627         error = vdev_open(vd);
1628
1629         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1630                 vdev_close(vd);
1631                 return (error ? error : ENXIO);
1632         }
1633
1634         /*
1635          * Recursively load DTLs and initialize all labels.
1636          */
1637         if ((error = vdev_dtl_load(vd)) != 0 ||
1638             (error = vdev_label_init(vd, txg, isreplacing ?
1639             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1640                 vdev_close(vd);
1641                 return (error);
1642         }
1643
1644         return (0);
1645 }
1646
1647 void
1648 vdev_metaslab_set_size(vdev_t *vd)
1649 {
1650         /*
1651          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1652          */
1653         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1654         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1655 }
1656
1657 void
1658 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1659 {
1660         ASSERT(vd == vd->vdev_top);
1661         ASSERT(!vd->vdev_ishole);
1662         ASSERT(ISP2(flags));
1663         ASSERT(spa_writeable(vd->vdev_spa));
1664
1665         if (flags & VDD_METASLAB)
1666                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1667
1668         if (flags & VDD_DTL)
1669                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1670
1671         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1672 }
1673
1674 void
1675 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1676 {
1677         int c;
1678
1679         for (c = 0; c < vd->vdev_children; c++)
1680                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1681
1682         if (vd->vdev_ops->vdev_op_leaf)
1683                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1684 }
1685
1686 /*
1687  * DTLs.
1688  *
1689  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1690  * the vdev has less than perfect replication.  There are four kinds of DTL:
1691  *
1692  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1693  *
1694  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1695  *
1696  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1697  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1698  *      txgs that was scrubbed.
1699  *
1700  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1701  *      persistent errors or just some device being offline.
1702  *      Unlike the other three, the DTL_OUTAGE map is not generally
1703  *      maintained; it's only computed when needed, typically to
1704  *      determine whether a device can be detached.
1705  *
1706  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1707  * either has the data or it doesn't.
1708  *
1709  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1710  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1711  * if any child is less than fully replicated, then so is its parent.
1712  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1713  * comprising only those txgs which appear in 'maxfaults' or more children;
1714  * those are the txgs we don't have enough replication to read.  For example,
1715  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1716  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1717  * two child DTL_MISSING maps.
1718  *
1719  * It should be clear from the above that to compute the DTLs and outage maps
1720  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1721  * Therefore, that is all we keep on disk.  When loading the pool, or after
1722  * a configuration change, we generate all other DTLs from first principles.
1723  */
1724 void
1725 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1726 {
1727         range_tree_t *rt = vd->vdev_dtl[t];
1728
1729         ASSERT(t < DTL_TYPES);
1730         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1731         ASSERT(spa_writeable(vd->vdev_spa));
1732
1733         mutex_enter(rt->rt_lock);
1734         if (!range_tree_contains(rt, txg, size))
1735                 range_tree_add(rt, txg, size);
1736         mutex_exit(rt->rt_lock);
1737 }
1738
1739 boolean_t
1740 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1741 {
1742         range_tree_t *rt = vd->vdev_dtl[t];
1743         boolean_t dirty = B_FALSE;
1744
1745         ASSERT(t < DTL_TYPES);
1746         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1747
1748         mutex_enter(rt->rt_lock);
1749         if (range_tree_space(rt) != 0)
1750                 dirty = range_tree_contains(rt, txg, size);
1751         mutex_exit(rt->rt_lock);
1752
1753         return (dirty);
1754 }
1755
1756 boolean_t
1757 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1758 {
1759         range_tree_t *rt = vd->vdev_dtl[t];
1760         boolean_t empty;
1761
1762         mutex_enter(rt->rt_lock);
1763         empty = (range_tree_space(rt) == 0);
1764         mutex_exit(rt->rt_lock);
1765
1766         return (empty);
1767 }
1768
1769 /*
1770  * Returns the lowest txg in the DTL range.
1771  */
1772 static uint64_t
1773 vdev_dtl_min(vdev_t *vd)
1774 {
1775         range_seg_t *rs;
1776
1777         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1778         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1779         ASSERT0(vd->vdev_children);
1780
1781         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1782         return (rs->rs_start - 1);
1783 }
1784
1785 /*
1786  * Returns the highest txg in the DTL.
1787  */
1788 static uint64_t
1789 vdev_dtl_max(vdev_t *vd)
1790 {
1791         range_seg_t *rs;
1792
1793         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1794         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1795         ASSERT0(vd->vdev_children);
1796
1797         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1798         return (rs->rs_end);
1799 }
1800
1801 /*
1802  * Determine if a resilvering vdev should remove any DTL entries from
1803  * its range. If the vdev was resilvering for the entire duration of the
1804  * scan then it should excise that range from its DTLs. Otherwise, this
1805  * vdev is considered partially resilvered and should leave its DTL
1806  * entries intact. The comment in vdev_dtl_reassess() describes how we
1807  * excise the DTLs.
1808  */
1809 static boolean_t
1810 vdev_dtl_should_excise(vdev_t *vd)
1811 {
1812         spa_t *spa = vd->vdev_spa;
1813         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1814
1815         ASSERT0(scn->scn_phys.scn_errors);
1816         ASSERT0(vd->vdev_children);
1817
1818         if (vd->vdev_resilver_txg == 0 ||
1819             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1820                 return (B_TRUE);
1821
1822         /*
1823          * When a resilver is initiated the scan will assign the scn_max_txg
1824          * value to the highest txg value that exists in all DTLs. If this
1825          * device's max DTL is not part of this scan (i.e. it is not in
1826          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1827          * for excision.
1828          */
1829         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1830                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1831                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1832                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1833                 return (B_TRUE);
1834         }
1835         return (B_FALSE);
1836 }
1837
1838 /*
1839  * Reassess DTLs after a config change or scrub completion.
1840  */
1841 void
1842 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1843 {
1844         spa_t *spa = vd->vdev_spa;
1845         avl_tree_t reftree;
1846         int c, t, minref;
1847
1848         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1849
1850         for (c = 0; c < vd->vdev_children; c++)
1851                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1852                     scrub_txg, scrub_done);
1853
1854         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1855                 return;
1856
1857         if (vd->vdev_ops->vdev_op_leaf) {
1858                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1859
1860                 mutex_enter(&vd->vdev_dtl_lock);
1861
1862                 /*
1863                  * If we've completed a scan cleanly then determine
1864                  * if this vdev should remove any DTLs. We only want to
1865                  * excise regions on vdevs that were available during
1866                  * the entire duration of this scan.
1867                  */
1868                 if (scrub_txg != 0 &&
1869                     (spa->spa_scrub_started ||
1870                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1871                     vdev_dtl_should_excise(vd)) {
1872                         /*
1873                          * We completed a scrub up to scrub_txg.  If we
1874                          * did it without rebooting, then the scrub dtl
1875                          * will be valid, so excise the old region and
1876                          * fold in the scrub dtl.  Otherwise, leave the
1877                          * dtl as-is if there was an error.
1878                          *
1879                          * There's little trick here: to excise the beginning
1880                          * of the DTL_MISSING map, we put it into a reference
1881                          * tree and then add a segment with refcnt -1 that
1882                          * covers the range [0, scrub_txg).  This means
1883                          * that each txg in that range has refcnt -1 or 0.
1884                          * We then add DTL_SCRUB with a refcnt of 2, so that
1885                          * entries in the range [0, scrub_txg) will have a
1886                          * positive refcnt -- either 1 or 2.  We then convert
1887                          * the reference tree into the new DTL_MISSING map.
1888                          */
1889                         space_reftree_create(&reftree);
1890                         space_reftree_add_map(&reftree,
1891                             vd->vdev_dtl[DTL_MISSING], 1);
1892                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1893                         space_reftree_add_map(&reftree,
1894                             vd->vdev_dtl[DTL_SCRUB], 2);
1895                         space_reftree_generate_map(&reftree,
1896                             vd->vdev_dtl[DTL_MISSING], 1);
1897                         space_reftree_destroy(&reftree);
1898                 }
1899                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1900                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1901                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1902                 if (scrub_done)
1903                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1904                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1905                 if (!vdev_readable(vd))
1906                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1907                 else
1908                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1909                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1910
1911                 /*
1912                  * If the vdev was resilvering and no longer has any
1913                  * DTLs then reset its resilvering flag and dirty
1914                  * the top level so that we persist the change.
1915                  */
1916                 if (vd->vdev_resilver_txg != 0 &&
1917                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1918                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1919                         vd->vdev_resilver_txg = 0;
1920                         vdev_config_dirty(vd->vdev_top);
1921                 }
1922
1923                 mutex_exit(&vd->vdev_dtl_lock);
1924
1925                 if (txg != 0)
1926                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1927                 return;
1928         }
1929
1930         mutex_enter(&vd->vdev_dtl_lock);
1931         for (t = 0; t < DTL_TYPES; t++) {
1932                 int c;
1933
1934                 /* account for child's outage in parent's missing map */
1935                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1936                 if (t == DTL_SCRUB)
1937                         continue;                       /* leaf vdevs only */
1938                 if (t == DTL_PARTIAL)
1939                         minref = 1;                     /* i.e. non-zero */
1940                 else if (vd->vdev_nparity != 0)
1941                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1942                 else
1943                         minref = vd->vdev_children;     /* any kind of mirror */
1944                 space_reftree_create(&reftree);
1945                 for (c = 0; c < vd->vdev_children; c++) {
1946                         vdev_t *cvd = vd->vdev_child[c];
1947                         mutex_enter(&cvd->vdev_dtl_lock);
1948                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1949                         mutex_exit(&cvd->vdev_dtl_lock);
1950                 }
1951                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1952                 space_reftree_destroy(&reftree);
1953         }
1954         mutex_exit(&vd->vdev_dtl_lock);
1955 }
1956
1957 int
1958 vdev_dtl_load(vdev_t *vd)
1959 {
1960         spa_t *spa = vd->vdev_spa;
1961         objset_t *mos = spa->spa_meta_objset;
1962         int error = 0;
1963         int c;
1964
1965         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1966                 ASSERT(!vd->vdev_ishole);
1967
1968                 error = space_map_open(&vd->vdev_dtl_sm, mos,
1969                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1970                 if (error)
1971                         return (error);
1972                 ASSERT(vd->vdev_dtl_sm != NULL);
1973
1974                 mutex_enter(&vd->vdev_dtl_lock);
1975
1976                 /*
1977                  * Now that we've opened the space_map we need to update
1978                  * the in-core DTL.
1979                  */
1980                 space_map_update(vd->vdev_dtl_sm);
1981
1982                 error = space_map_load(vd->vdev_dtl_sm,
1983                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1984                 mutex_exit(&vd->vdev_dtl_lock);
1985
1986                 return (error);
1987         }
1988
1989         for (c = 0; c < vd->vdev_children; c++) {
1990                 error = vdev_dtl_load(vd->vdev_child[c]);
1991                 if (error != 0)
1992                         break;
1993         }
1994
1995         return (error);
1996 }
1997
1998 void
1999 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2000 {
2001         spa_t *spa = vd->vdev_spa;
2002
2003         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2004         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2005             zapobj, tx));
2006 }
2007
2008 uint64_t
2009 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2010 {
2011         spa_t *spa = vd->vdev_spa;
2012         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2013             DMU_OT_NONE, 0, tx);
2014
2015         ASSERT(zap != 0);
2016         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2017             zap, tx));
2018
2019         return (zap);
2020 }
2021
2022 void
2023 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2024 {
2025         uint64_t i;
2026
2027         if (vd->vdev_ops != &vdev_hole_ops &&
2028             vd->vdev_ops != &vdev_missing_ops &&
2029             vd->vdev_ops != &vdev_root_ops &&
2030             !vd->vdev_top->vdev_removing) {
2031                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2032                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2033                 }
2034                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2035                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2036                 }
2037         }
2038         for (i = 0; i < vd->vdev_children; i++) {
2039                 vdev_construct_zaps(vd->vdev_child[i], tx);
2040         }
2041 }
2042
2043 void
2044 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2045 {
2046         spa_t *spa = vd->vdev_spa;
2047         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2048         objset_t *mos = spa->spa_meta_objset;
2049         range_tree_t *rtsync;
2050         kmutex_t rtlock;
2051         dmu_tx_t *tx;
2052         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2053
2054         ASSERT(!vd->vdev_ishole);
2055         ASSERT(vd->vdev_ops->vdev_op_leaf);
2056
2057         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2058
2059         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2060                 mutex_enter(&vd->vdev_dtl_lock);
2061                 space_map_free(vd->vdev_dtl_sm, tx);
2062                 space_map_close(vd->vdev_dtl_sm);
2063                 vd->vdev_dtl_sm = NULL;
2064                 mutex_exit(&vd->vdev_dtl_lock);
2065
2066                 /*
2067                  * We only destroy the leaf ZAP for detached leaves or for
2068                  * removed log devices. Removed data devices handle leaf ZAP
2069                  * cleanup later, once cancellation is no longer possible.
2070                  */
2071                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2072                     vd->vdev_top->vdev_islog)) {
2073                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2074                         vd->vdev_leaf_zap = 0;
2075                 }
2076
2077                 dmu_tx_commit(tx);
2078                 return;
2079         }
2080
2081         if (vd->vdev_dtl_sm == NULL) {
2082                 uint64_t new_object;
2083
2084                 new_object = space_map_alloc(mos, tx);
2085                 VERIFY3U(new_object, !=, 0);
2086
2087                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2088                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2089                 ASSERT(vd->vdev_dtl_sm != NULL);
2090         }
2091
2092         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2093
2094         rtsync = range_tree_create(NULL, NULL, &rtlock);
2095
2096         mutex_enter(&rtlock);
2097
2098         mutex_enter(&vd->vdev_dtl_lock);
2099         range_tree_walk(rt, range_tree_add, rtsync);
2100         mutex_exit(&vd->vdev_dtl_lock);
2101
2102         space_map_truncate(vd->vdev_dtl_sm, tx);
2103         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2104         range_tree_vacate(rtsync, NULL, NULL);
2105
2106         range_tree_destroy(rtsync);
2107
2108         mutex_exit(&rtlock);
2109         mutex_destroy(&rtlock);
2110
2111         /*
2112          * If the object for the space map has changed then dirty
2113          * the top level so that we update the config.
2114          */
2115         if (object != space_map_object(vd->vdev_dtl_sm)) {
2116                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2117                     "new object %llu", txg, spa_name(spa), object,
2118                     space_map_object(vd->vdev_dtl_sm));
2119                 vdev_config_dirty(vd->vdev_top);
2120         }
2121
2122         dmu_tx_commit(tx);
2123
2124         mutex_enter(&vd->vdev_dtl_lock);
2125         space_map_update(vd->vdev_dtl_sm);
2126         mutex_exit(&vd->vdev_dtl_lock);
2127 }
2128
2129 /*
2130  * Determine whether the specified vdev can be offlined/detached/removed
2131  * without losing data.
2132  */
2133 boolean_t
2134 vdev_dtl_required(vdev_t *vd)
2135 {
2136         spa_t *spa = vd->vdev_spa;
2137         vdev_t *tvd = vd->vdev_top;
2138         uint8_t cant_read = vd->vdev_cant_read;
2139         boolean_t required;
2140
2141         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2142
2143         if (vd == spa->spa_root_vdev || vd == tvd)
2144                 return (B_TRUE);
2145
2146         /*
2147          * Temporarily mark the device as unreadable, and then determine
2148          * whether this results in any DTL outages in the top-level vdev.
2149          * If not, we can safely offline/detach/remove the device.
2150          */
2151         vd->vdev_cant_read = B_TRUE;
2152         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2153         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2154         vd->vdev_cant_read = cant_read;
2155         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2156
2157         if (!required && zio_injection_enabled)
2158                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2159
2160         return (required);
2161 }
2162
2163 /*
2164  * Determine if resilver is needed, and if so the txg range.
2165  */
2166 boolean_t
2167 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2168 {
2169         boolean_t needed = B_FALSE;
2170         uint64_t thismin = UINT64_MAX;
2171         uint64_t thismax = 0;
2172         int c;
2173
2174         if (vd->vdev_children == 0) {
2175                 mutex_enter(&vd->vdev_dtl_lock);
2176                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2177                     vdev_writeable(vd)) {
2178
2179                         thismin = vdev_dtl_min(vd);
2180                         thismax = vdev_dtl_max(vd);
2181                         needed = B_TRUE;
2182                 }
2183                 mutex_exit(&vd->vdev_dtl_lock);
2184         } else {
2185                 for (c = 0; c < vd->vdev_children; c++) {
2186                         vdev_t *cvd = vd->vdev_child[c];
2187                         uint64_t cmin, cmax;
2188
2189                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2190                                 thismin = MIN(thismin, cmin);
2191                                 thismax = MAX(thismax, cmax);
2192                                 needed = B_TRUE;
2193                         }
2194                 }
2195         }
2196
2197         if (needed && minp) {
2198                 *minp = thismin;
2199                 *maxp = thismax;
2200         }
2201         return (needed);
2202 }
2203
2204 void
2205 vdev_load(vdev_t *vd)
2206 {
2207         int c;
2208
2209         /*
2210          * Recursively load all children.
2211          */
2212         for (c = 0; c < vd->vdev_children; c++)
2213                 vdev_load(vd->vdev_child[c]);
2214
2215         /*
2216          * If this is a top-level vdev, initialize its metaslabs.
2217          */
2218         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2219             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2220             vdev_metaslab_init(vd, 0) != 0))
2221                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2222                     VDEV_AUX_CORRUPT_DATA);
2223
2224         /*
2225          * If this is a leaf vdev, load its DTL.
2226          */
2227         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2228                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2229                     VDEV_AUX_CORRUPT_DATA);
2230 }
2231
2232 /*
2233  * The special vdev case is used for hot spares and l2cache devices.  Its
2234  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2235  * we make sure that we can open the underlying device, then try to read the
2236  * label, and make sure that the label is sane and that it hasn't been
2237  * repurposed to another pool.
2238  */
2239 int
2240 vdev_validate_aux(vdev_t *vd)
2241 {
2242         nvlist_t *label;
2243         uint64_t guid, version;
2244         uint64_t state;
2245
2246         if (!vdev_readable(vd))
2247                 return (0);
2248
2249         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2250                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2251                     VDEV_AUX_CORRUPT_DATA);
2252                 return (-1);
2253         }
2254
2255         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2256             !SPA_VERSION_IS_SUPPORTED(version) ||
2257             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2258             guid != vd->vdev_guid ||
2259             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2260                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2261                     VDEV_AUX_CORRUPT_DATA);
2262                 nvlist_free(label);
2263                 return (-1);
2264         }
2265
2266         /*
2267          * We don't actually check the pool state here.  If it's in fact in
2268          * use by another pool, we update this fact on the fly when requested.
2269          */
2270         nvlist_free(label);
2271         return (0);
2272 }
2273
2274 void
2275 vdev_remove(vdev_t *vd, uint64_t txg)
2276 {
2277         spa_t *spa = vd->vdev_spa;
2278         objset_t *mos = spa->spa_meta_objset;
2279         dmu_tx_t *tx;
2280         int m, i;
2281
2282         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2283         ASSERT(vd == vd->vdev_top);
2284         ASSERT3U(txg, ==, spa_syncing_txg(spa));
2285
2286         if (vd->vdev_ms != NULL) {
2287                 metaslab_group_t *mg = vd->vdev_mg;
2288
2289                 metaslab_group_histogram_verify(mg);
2290                 metaslab_class_histogram_verify(mg->mg_class);
2291
2292                 for (m = 0; m < vd->vdev_ms_count; m++) {
2293                         metaslab_t *msp = vd->vdev_ms[m];
2294
2295                         if (msp == NULL || msp->ms_sm == NULL)
2296                                 continue;
2297
2298                         mutex_enter(&msp->ms_lock);
2299                         /*
2300                          * If the metaslab was not loaded when the vdev
2301                          * was removed then the histogram accounting may
2302                          * not be accurate. Update the histogram information
2303                          * here so that we ensure that the metaslab group
2304                          * and metaslab class are up-to-date.
2305                          */
2306                         metaslab_group_histogram_remove(mg, msp);
2307
2308                         VERIFY0(space_map_allocated(msp->ms_sm));
2309                         space_map_free(msp->ms_sm, tx);
2310                         space_map_close(msp->ms_sm);
2311                         msp->ms_sm = NULL;
2312                         mutex_exit(&msp->ms_lock);
2313                 }
2314
2315                 metaslab_group_histogram_verify(mg);
2316                 metaslab_class_histogram_verify(mg->mg_class);
2317                 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2318                         ASSERT0(mg->mg_histogram[i]);
2319
2320         }
2321
2322         if (vd->vdev_ms_array) {
2323                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2324                 vd->vdev_ms_array = 0;
2325         }
2326
2327         if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2328                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2329                 vd->vdev_top_zap = 0;
2330         }
2331         dmu_tx_commit(tx);
2332 }
2333
2334 void
2335 vdev_sync_done(vdev_t *vd, uint64_t txg)
2336 {
2337         metaslab_t *msp;
2338         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2339
2340         ASSERT(!vd->vdev_ishole);
2341
2342         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2343                 metaslab_sync_done(msp, txg);
2344
2345         if (reassess)
2346                 metaslab_sync_reassess(vd->vdev_mg);
2347 }
2348
2349 void
2350 vdev_sync(vdev_t *vd, uint64_t txg)
2351 {
2352         spa_t *spa = vd->vdev_spa;
2353         vdev_t *lvd;
2354         metaslab_t *msp;
2355         dmu_tx_t *tx;
2356
2357         ASSERT(!vd->vdev_ishole);
2358
2359         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2360                 ASSERT(vd == vd->vdev_top);
2361                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2362                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2363                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2364                 ASSERT(vd->vdev_ms_array != 0);
2365                 vdev_config_dirty(vd);
2366                 dmu_tx_commit(tx);
2367         }
2368
2369         /*
2370          * Remove the metadata associated with this vdev once it's empty.
2371          */
2372         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2373                 vdev_remove(vd, txg);
2374
2375         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2376                 metaslab_sync(msp, txg);
2377                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2378         }
2379
2380         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2381                 vdev_dtl_sync(lvd, txg);
2382
2383         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2384 }
2385
2386 uint64_t
2387 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2388 {
2389         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2390 }
2391
2392 /*
2393  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2394  * not be opened, and no I/O is attempted.
2395  */
2396 int
2397 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2398 {
2399         vdev_t *vd, *tvd;
2400
2401         spa_vdev_state_enter(spa, SCL_NONE);
2402
2403         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2404                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2405
2406         if (!vd->vdev_ops->vdev_op_leaf)
2407                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2408
2409         tvd = vd->vdev_top;
2410
2411         /*
2412          * We don't directly use the aux state here, but if we do a
2413          * vdev_reopen(), we need this value to be present to remember why we
2414          * were faulted.
2415          */
2416         vd->vdev_label_aux = aux;
2417
2418         /*
2419          * Faulted state takes precedence over degraded.
2420          */
2421         vd->vdev_delayed_close = B_FALSE;
2422         vd->vdev_faulted = 1ULL;
2423         vd->vdev_degraded = 0ULL;
2424         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2425
2426         /*
2427          * If this device has the only valid copy of the data, then
2428          * back off and simply mark the vdev as degraded instead.
2429          */
2430         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2431                 vd->vdev_degraded = 1ULL;
2432                 vd->vdev_faulted = 0ULL;
2433
2434                 /*
2435                  * If we reopen the device and it's not dead, only then do we
2436                  * mark it degraded.
2437                  */
2438                 vdev_reopen(tvd);
2439
2440                 if (vdev_readable(vd))
2441                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2442         }
2443
2444         return (spa_vdev_state_exit(spa, vd, 0));
2445 }
2446
2447 /*
2448  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2449  * user that something is wrong.  The vdev continues to operate as normal as far
2450  * as I/O is concerned.
2451  */
2452 int
2453 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2454 {
2455         vdev_t *vd;
2456
2457         spa_vdev_state_enter(spa, SCL_NONE);
2458
2459         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2460                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2461
2462         if (!vd->vdev_ops->vdev_op_leaf)
2463                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2464
2465         /*
2466          * If the vdev is already faulted, then don't do anything.
2467          */
2468         if (vd->vdev_faulted || vd->vdev_degraded)
2469                 return (spa_vdev_state_exit(spa, NULL, 0));
2470
2471         vd->vdev_degraded = 1ULL;
2472         if (!vdev_is_dead(vd))
2473                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2474                     aux);
2475
2476         return (spa_vdev_state_exit(spa, vd, 0));
2477 }
2478
2479 /*
2480  * Online the given vdev.
2481  *
2482  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2483  * spare device should be detached when the device finishes resilvering.
2484  * Second, the online should be treated like a 'test' online case, so no FMA
2485  * events are generated if the device fails to open.
2486  */
2487 int
2488 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2489 {
2490         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2491
2492         spa_vdev_state_enter(spa, SCL_NONE);
2493
2494         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2495                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2496
2497         if (!vd->vdev_ops->vdev_op_leaf)
2498                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2499
2500         tvd = vd->vdev_top;
2501         vd->vdev_offline = B_FALSE;
2502         vd->vdev_tmpoffline = B_FALSE;
2503         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2504         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2505
2506         /* XXX - L2ARC 1.0 does not support expansion */
2507         if (!vd->vdev_aux) {
2508                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2509                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2510         }
2511
2512         vdev_reopen(tvd);
2513         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2514
2515         if (!vd->vdev_aux) {
2516                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2517                         pvd->vdev_expanding = B_FALSE;
2518         }
2519
2520         if (newstate)
2521                 *newstate = vd->vdev_state;
2522         if ((flags & ZFS_ONLINE_UNSPARE) &&
2523             !vdev_is_dead(vd) && vd->vdev_parent &&
2524             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2525             vd->vdev_parent->vdev_child[0] == vd)
2526                 vd->vdev_unspare = B_TRUE;
2527
2528         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2529
2530                 /* XXX - L2ARC 1.0 does not support expansion */
2531                 if (vd->vdev_aux)
2532                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2533                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2534         }
2535         return (spa_vdev_state_exit(spa, vd, 0));
2536 }
2537
2538 static int
2539 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2540 {
2541         vdev_t *vd, *tvd;
2542         int error = 0;
2543         uint64_t generation;
2544         metaslab_group_t *mg;
2545
2546 top:
2547         spa_vdev_state_enter(spa, SCL_ALLOC);
2548
2549         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2550                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2551
2552         if (!vd->vdev_ops->vdev_op_leaf)
2553                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2554
2555         tvd = vd->vdev_top;
2556         mg = tvd->vdev_mg;
2557         generation = spa->spa_config_generation + 1;
2558
2559         /*
2560          * If the device isn't already offline, try to offline it.
2561          */
2562         if (!vd->vdev_offline) {
2563                 /*
2564                  * If this device has the only valid copy of some data,
2565                  * don't allow it to be offlined. Log devices are always
2566                  * expendable.
2567                  */
2568                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2569                     vdev_dtl_required(vd))
2570                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2571
2572                 /*
2573                  * If the top-level is a slog and it has had allocations
2574                  * then proceed.  We check that the vdev's metaslab group
2575                  * is not NULL since it's possible that we may have just
2576                  * added this vdev but not yet initialized its metaslabs.
2577                  */
2578                 if (tvd->vdev_islog && mg != NULL) {
2579                         /*
2580                          * Prevent any future allocations.
2581                          */
2582                         metaslab_group_passivate(mg);
2583                         (void) spa_vdev_state_exit(spa, vd, 0);
2584
2585                         error = spa_offline_log(spa);
2586
2587                         spa_vdev_state_enter(spa, SCL_ALLOC);
2588
2589                         /*
2590                          * Check to see if the config has changed.
2591                          */
2592                         if (error || generation != spa->spa_config_generation) {
2593                                 metaslab_group_activate(mg);
2594                                 if (error)
2595                                         return (spa_vdev_state_exit(spa,
2596                                             vd, error));
2597                                 (void) spa_vdev_state_exit(spa, vd, 0);
2598                                 goto top;
2599                         }
2600                         ASSERT0(tvd->vdev_stat.vs_alloc);
2601                 }
2602
2603                 /*
2604                  * Offline this device and reopen its top-level vdev.
2605                  * If the top-level vdev is a log device then just offline
2606                  * it. Otherwise, if this action results in the top-level
2607                  * vdev becoming unusable, undo it and fail the request.
2608                  */
2609                 vd->vdev_offline = B_TRUE;
2610                 vdev_reopen(tvd);
2611
2612                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2613                     vdev_is_dead(tvd)) {
2614                         vd->vdev_offline = B_FALSE;
2615                         vdev_reopen(tvd);
2616                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2617                 }
2618
2619                 /*
2620                  * Add the device back into the metaslab rotor so that
2621                  * once we online the device it's open for business.
2622                  */
2623                 if (tvd->vdev_islog && mg != NULL)
2624                         metaslab_group_activate(mg);
2625         }
2626
2627         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2628
2629         return (spa_vdev_state_exit(spa, vd, 0));
2630 }
2631
2632 int
2633 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2634 {
2635         int error;
2636
2637         mutex_enter(&spa->spa_vdev_top_lock);
2638         error = vdev_offline_locked(spa, guid, flags);
2639         mutex_exit(&spa->spa_vdev_top_lock);
2640
2641         return (error);
2642 }
2643
2644 /*
2645  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2646  * vdev_offline(), we assume the spa config is locked.  We also clear all
2647  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2648  */
2649 void
2650 vdev_clear(spa_t *spa, vdev_t *vd)
2651 {
2652         vdev_t *rvd = spa->spa_root_vdev;
2653         int c;
2654
2655         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2656
2657         if (vd == NULL)
2658                 vd = rvd;
2659
2660         vd->vdev_stat.vs_read_errors = 0;
2661         vd->vdev_stat.vs_write_errors = 0;
2662         vd->vdev_stat.vs_checksum_errors = 0;
2663
2664         for (c = 0; c < vd->vdev_children; c++)
2665                 vdev_clear(spa, vd->vdev_child[c]);
2666
2667         /*
2668          * If we're in the FAULTED state or have experienced failed I/O, then
2669          * clear the persistent state and attempt to reopen the device.  We
2670          * also mark the vdev config dirty, so that the new faulted state is
2671          * written out to disk.
2672          */
2673         if (vd->vdev_faulted || vd->vdev_degraded ||
2674             !vdev_readable(vd) || !vdev_writeable(vd)) {
2675
2676                 /*
2677                  * When reopening in reponse to a clear event, it may be due to
2678                  * a fmadm repair request.  In this case, if the device is
2679                  * still broken, we want to still post the ereport again.
2680                  */
2681                 vd->vdev_forcefault = B_TRUE;
2682
2683                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2684                 vd->vdev_cant_read = B_FALSE;
2685                 vd->vdev_cant_write = B_FALSE;
2686
2687                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2688
2689                 vd->vdev_forcefault = B_FALSE;
2690
2691                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2692                         vdev_state_dirty(vd->vdev_top);
2693
2694                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2695                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2696
2697                 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2698         }
2699
2700         /*
2701          * When clearing a FMA-diagnosed fault, we always want to
2702          * unspare the device, as we assume that the original spare was
2703          * done in response to the FMA fault.
2704          */
2705         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2706             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2707             vd->vdev_parent->vdev_child[0] == vd)
2708                 vd->vdev_unspare = B_TRUE;
2709 }
2710
2711 boolean_t
2712 vdev_is_dead(vdev_t *vd)
2713 {
2714         /*
2715          * Holes and missing devices are always considered "dead".
2716          * This simplifies the code since we don't have to check for
2717          * these types of devices in the various code paths.
2718          * Instead we rely on the fact that we skip over dead devices
2719          * before issuing I/O to them.
2720          */
2721         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2722             vd->vdev_ops == &vdev_missing_ops);
2723 }
2724
2725 boolean_t
2726 vdev_readable(vdev_t *vd)
2727 {
2728         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2729 }
2730
2731 boolean_t
2732 vdev_writeable(vdev_t *vd)
2733 {
2734         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2735 }
2736
2737 boolean_t
2738 vdev_allocatable(vdev_t *vd)
2739 {
2740         uint64_t state = vd->vdev_state;
2741
2742         /*
2743          * We currently allow allocations from vdevs which may be in the
2744          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2745          * fails to reopen then we'll catch it later when we're holding
2746          * the proper locks.  Note that we have to get the vdev state
2747          * in a local variable because although it changes atomically,
2748          * we're asking two separate questions about it.
2749          */
2750         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2751             !vd->vdev_cant_write && !vd->vdev_ishole);
2752 }
2753
2754 boolean_t
2755 vdev_accessible(vdev_t *vd, zio_t *zio)
2756 {
2757         ASSERT(zio->io_vd == vd);
2758
2759         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2760                 return (B_FALSE);
2761
2762         if (zio->io_type == ZIO_TYPE_READ)
2763                 return (!vd->vdev_cant_read);
2764
2765         if (zio->io_type == ZIO_TYPE_WRITE)
2766                 return (!vd->vdev_cant_write);
2767
2768         return (B_TRUE);
2769 }
2770
2771 static void
2772 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2773 {
2774         int t;
2775         for (t = 0; t < ZIO_TYPES; t++) {
2776                 vs->vs_ops[t] += cvs->vs_ops[t];
2777                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2778         }
2779
2780         cvs->vs_scan_removing = cvd->vdev_removing;
2781 }
2782
2783 /*
2784  * Get extended stats
2785  */
2786 static void
2787 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2788 {
2789         int t, b;
2790         for (t = 0; t < ZIO_TYPES; t++) {
2791                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2792                         vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2793
2794                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2795                         vsx->vsx_total_histo[t][b] +=
2796                             cvsx->vsx_total_histo[t][b];
2797                 }
2798         }
2799
2800         for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2801                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2802                         vsx->vsx_queue_histo[t][b] +=
2803                             cvsx->vsx_queue_histo[t][b];
2804                 }
2805                 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2806                 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2807
2808                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2809                         vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2810
2811                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2812                         vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2813         }
2814
2815 }
2816
2817 /*
2818  * Get statistics for the given vdev.
2819  */
2820 static void
2821 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2822 {
2823         int c, t;
2824         /*
2825          * If we're getting stats on the root vdev, aggregate the I/O counts
2826          * over all top-level vdevs (i.e. the direct children of the root).
2827          */
2828         if (!vd->vdev_ops->vdev_op_leaf) {
2829                 if (vs) {
2830                         memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2831                         memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2832                 }
2833                 if (vsx)
2834                         memset(vsx, 0, sizeof (*vsx));
2835
2836                 for (c = 0; c < vd->vdev_children; c++) {
2837                         vdev_t *cvd = vd->vdev_child[c];
2838                         vdev_stat_t *cvs = &cvd->vdev_stat;
2839                         vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2840
2841                         vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2842                         if (vs)
2843                                 vdev_get_child_stat(cvd, vs, cvs);
2844                         if (vsx)
2845                                 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2846
2847                 }
2848         } else {
2849                 /*
2850                  * We're a leaf.  Just copy our ZIO active queue stats in.  The
2851                  * other leaf stats are updated in vdev_stat_update().
2852                  */
2853                 if (!vsx)
2854                         return;
2855
2856                 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2857
2858                 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2859                         vsx->vsx_active_queue[t] =
2860                             vd->vdev_queue.vq_class[t].vqc_active;
2861                         vsx->vsx_pend_queue[t] = avl_numnodes(
2862                             &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2863                 }
2864         }
2865 }
2866
2867 void
2868 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2869 {
2870         mutex_enter(&vd->vdev_stat_lock);
2871         if (vs) {
2872                 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2873                 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2874                 vs->vs_state = vd->vdev_state;
2875                 vs->vs_rsize = vdev_get_min_asize(vd);
2876                 if (vd->vdev_ops->vdev_op_leaf)
2877                         vs->vs_rsize += VDEV_LABEL_START_SIZE +
2878                             VDEV_LABEL_END_SIZE;
2879                 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2880                 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2881                     !vd->vdev_ishole) {
2882                         vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2883                 }
2884         }
2885
2886         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
2887         vdev_get_stats_ex_impl(vd, vs, vsx);
2888         mutex_exit(&vd->vdev_stat_lock);
2889 }
2890
2891 void
2892 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2893 {
2894         return (vdev_get_stats_ex(vd, vs, NULL));
2895 }
2896
2897 void
2898 vdev_clear_stats(vdev_t *vd)
2899 {
2900         mutex_enter(&vd->vdev_stat_lock);
2901         vd->vdev_stat.vs_space = 0;
2902         vd->vdev_stat.vs_dspace = 0;
2903         vd->vdev_stat.vs_alloc = 0;
2904         mutex_exit(&vd->vdev_stat_lock);
2905 }
2906
2907 void
2908 vdev_scan_stat_init(vdev_t *vd)
2909 {
2910         vdev_stat_t *vs = &vd->vdev_stat;
2911         int c;
2912
2913         for (c = 0; c < vd->vdev_children; c++)
2914                 vdev_scan_stat_init(vd->vdev_child[c]);
2915
2916         mutex_enter(&vd->vdev_stat_lock);
2917         vs->vs_scan_processed = 0;
2918         mutex_exit(&vd->vdev_stat_lock);
2919 }
2920
2921 void
2922 vdev_stat_update(zio_t *zio, uint64_t psize)
2923 {
2924         spa_t *spa = zio->io_spa;
2925         vdev_t *rvd = spa->spa_root_vdev;
2926         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2927         vdev_t *pvd;
2928         uint64_t txg = zio->io_txg;
2929         vdev_stat_t *vs = &vd->vdev_stat;
2930         vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
2931         zio_type_t type = zio->io_type;
2932         int flags = zio->io_flags;
2933
2934         /*
2935          * If this i/o is a gang leader, it didn't do any actual work.
2936          */
2937         if (zio->io_gang_tree)
2938                 return;
2939
2940         if (zio->io_error == 0) {
2941                 /*
2942                  * If this is a root i/o, don't count it -- we've already
2943                  * counted the top-level vdevs, and vdev_get_stats() will
2944                  * aggregate them when asked.  This reduces contention on
2945                  * the root vdev_stat_lock and implicitly handles blocks
2946                  * that compress away to holes, for which there is no i/o.
2947                  * (Holes never create vdev children, so all the counters
2948                  * remain zero, which is what we want.)
2949                  *
2950                  * Note: this only applies to successful i/o (io_error == 0)
2951                  * because unlike i/o counts, errors are not additive.
2952                  * When reading a ditto block, for example, failure of
2953                  * one top-level vdev does not imply a root-level error.
2954                  */
2955                 if (vd == rvd)
2956                         return;
2957
2958                 ASSERT(vd == zio->io_vd);
2959
2960                 if (flags & ZIO_FLAG_IO_BYPASS)
2961                         return;
2962
2963                 mutex_enter(&vd->vdev_stat_lock);
2964
2965                 if (flags & ZIO_FLAG_IO_REPAIR) {
2966                         if (flags & ZIO_FLAG_SCAN_THREAD) {
2967                                 dsl_scan_phys_t *scn_phys =
2968                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
2969                                 uint64_t *processed = &scn_phys->scn_processed;
2970
2971                                 /* XXX cleanup? */
2972                                 if (vd->vdev_ops->vdev_op_leaf)
2973                                         atomic_add_64(processed, psize);
2974                                 vs->vs_scan_processed += psize;
2975                         }
2976
2977                         if (flags & ZIO_FLAG_SELF_HEAL)
2978                                 vs->vs_self_healed += psize;
2979                 }
2980
2981                 /*
2982                  * The bytes/ops/histograms are recorded at the leaf level and
2983                  * aggregated into the higher level vdevs in vdev_get_stats().
2984                  */
2985                 if (vd->vdev_ops->vdev_op_leaf) {
2986
2987                         vs->vs_ops[type]++;
2988                         vs->vs_bytes[type] += psize;
2989
2990                         if (flags & ZIO_FLAG_DELEGATED) {
2991                                 vsx->vsx_agg_histo[zio->io_priority]
2992                                     [RQ_HISTO(zio->io_size)]++;
2993                         } else {
2994                                 vsx->vsx_ind_histo[zio->io_priority]
2995                                     [RQ_HISTO(zio->io_size)]++;
2996                         }
2997
2998                         if (zio->io_delta && zio->io_delay) {
2999                                 vsx->vsx_queue_histo[zio->io_priority]
3000                                     [L_HISTO(zio->io_delta - zio->io_delay)]++;
3001                                 vsx->vsx_disk_histo[type]
3002                                     [L_HISTO(zio->io_delay)]++;
3003                                 vsx->vsx_total_histo[type]
3004                                     [L_HISTO(zio->io_delta)]++;
3005                         }
3006                 }
3007
3008                 mutex_exit(&vd->vdev_stat_lock);
3009                 return;
3010         }
3011
3012         if (flags & ZIO_FLAG_SPECULATIVE)
3013                 return;
3014
3015         /*
3016          * If this is an I/O error that is going to be retried, then ignore the
3017          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3018          * hard errors, when in reality they can happen for any number of
3019          * innocuous reasons (bus resets, MPxIO link failure, etc).
3020          */
3021         if (zio->io_error == EIO &&
3022             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3023                 return;
3024
3025         /*
3026          * Intent logs writes won't propagate their error to the root
3027          * I/O so don't mark these types of failures as pool-level
3028          * errors.
3029          */
3030         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3031                 return;
3032
3033         mutex_enter(&vd->vdev_stat_lock);
3034         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3035                 if (zio->io_error == ECKSUM)
3036                         vs->vs_checksum_errors++;
3037                 else
3038                         vs->vs_read_errors++;
3039         }
3040         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3041                 vs->vs_write_errors++;
3042         mutex_exit(&vd->vdev_stat_lock);
3043
3044         if (type == ZIO_TYPE_WRITE && txg != 0 &&
3045             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3046             (flags & ZIO_FLAG_SCAN_THREAD) ||
3047             spa->spa_claiming)) {
3048                 /*
3049                  * This is either a normal write (not a repair), or it's
3050                  * a repair induced by the scrub thread, or it's a repair
3051                  * made by zil_claim() during spa_load() in the first txg.
3052                  * In the normal case, we commit the DTL change in the same
3053                  * txg as the block was born.  In the scrub-induced repair
3054                  * case, we know that scrubs run in first-pass syncing context,
3055                  * so we commit the DTL change in spa_syncing_txg(spa).
3056                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3057                  *
3058                  * We currently do not make DTL entries for failed spontaneous
3059                  * self-healing writes triggered by normal (non-scrubbing)
3060                  * reads, because we have no transactional context in which to
3061                  * do so -- and it's not clear that it'd be desirable anyway.
3062                  */
3063                 if (vd->vdev_ops->vdev_op_leaf) {
3064                         uint64_t commit_txg = txg;
3065                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3066                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3067                                 ASSERT(spa_sync_pass(spa) == 1);
3068                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3069                                 commit_txg = spa_syncing_txg(spa);
3070                         } else if (spa->spa_claiming) {
3071                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3072                                 commit_txg = spa_first_txg(spa);
3073                         }
3074                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3075                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3076                                 return;
3077                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3078                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3079                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3080                 }
3081                 if (vd != rvd)
3082                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3083         }
3084 }
3085
3086 /*
3087  * Update the in-core space usage stats for this vdev, its metaslab class,
3088  * and the root vdev.
3089  */
3090 void
3091 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3092     int64_t space_delta)
3093 {
3094         int64_t dspace_delta = space_delta;
3095         spa_t *spa = vd->vdev_spa;
3096         vdev_t *rvd = spa->spa_root_vdev;
3097         metaslab_group_t *mg = vd->vdev_mg;
3098         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3099
3100         ASSERT(vd == vd->vdev_top);
3101
3102         /*
3103          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3104          * factor.  We must calculate this here and not at the root vdev
3105          * because the root vdev's psize-to-asize is simply the max of its
3106          * childrens', thus not accurate enough for us.
3107          */
3108         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3109         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3110         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3111             vd->vdev_deflate_ratio;
3112
3113         mutex_enter(&vd->vdev_stat_lock);
3114         vd->vdev_stat.vs_alloc += alloc_delta;
3115         vd->vdev_stat.vs_space += space_delta;
3116         vd->vdev_stat.vs_dspace += dspace_delta;
3117         mutex_exit(&vd->vdev_stat_lock);
3118
3119         if (mc == spa_normal_class(spa)) {
3120                 mutex_enter(&rvd->vdev_stat_lock);
3121                 rvd->vdev_stat.vs_alloc += alloc_delta;
3122                 rvd->vdev_stat.vs_space += space_delta;
3123                 rvd->vdev_stat.vs_dspace += dspace_delta;
3124                 mutex_exit(&rvd->vdev_stat_lock);
3125         }
3126
3127         if (mc != NULL) {
3128                 ASSERT(rvd == vd->vdev_parent);
3129                 ASSERT(vd->vdev_ms_count != 0);
3130
3131                 metaslab_class_space_update(mc,
3132                     alloc_delta, defer_delta, space_delta, dspace_delta);
3133         }
3134 }
3135
3136 /*
3137  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3138  * so that it will be written out next time the vdev configuration is synced.
3139  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3140  */
3141 void
3142 vdev_config_dirty(vdev_t *vd)
3143 {
3144         spa_t *spa = vd->vdev_spa;
3145         vdev_t *rvd = spa->spa_root_vdev;
3146         int c;
3147
3148         ASSERT(spa_writeable(spa));
3149
3150         /*
3151          * If this is an aux vdev (as with l2cache and spare devices), then we
3152          * update the vdev config manually and set the sync flag.
3153          */
3154         if (vd->vdev_aux != NULL) {
3155                 spa_aux_vdev_t *sav = vd->vdev_aux;
3156                 nvlist_t **aux;
3157                 uint_t naux;
3158
3159                 for (c = 0; c < sav->sav_count; c++) {
3160                         if (sav->sav_vdevs[c] == vd)
3161                                 break;
3162                 }
3163
3164                 if (c == sav->sav_count) {
3165                         /*
3166                          * We're being removed.  There's nothing more to do.
3167                          */
3168                         ASSERT(sav->sav_sync == B_TRUE);
3169                         return;
3170                 }
3171
3172                 sav->sav_sync = B_TRUE;
3173
3174                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3175                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3176                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3177                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3178                 }
3179
3180                 ASSERT(c < naux);
3181
3182                 /*
3183                  * Setting the nvlist in the middle if the array is a little
3184                  * sketchy, but it will work.
3185                  */
3186                 nvlist_free(aux[c]);
3187                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3188
3189                 return;
3190         }
3191
3192         /*
3193          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3194          * must either hold SCL_CONFIG as writer, or must be the sync thread
3195          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3196          * so this is sufficient to ensure mutual exclusion.
3197          */
3198         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3199             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3200             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3201
3202         if (vd == rvd) {
3203                 for (c = 0; c < rvd->vdev_children; c++)
3204                         vdev_config_dirty(rvd->vdev_child[c]);
3205         } else {
3206                 ASSERT(vd == vd->vdev_top);
3207
3208                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3209                     !vd->vdev_ishole)
3210                         list_insert_head(&spa->spa_config_dirty_list, vd);
3211         }
3212 }
3213
3214 void
3215 vdev_config_clean(vdev_t *vd)
3216 {
3217         spa_t *spa = vd->vdev_spa;
3218
3219         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3220             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3221             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3222
3223         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3224         list_remove(&spa->spa_config_dirty_list, vd);
3225 }
3226
3227 /*
3228  * Mark a top-level vdev's state as dirty, so that the next pass of
3229  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3230  * the state changes from larger config changes because they require
3231  * much less locking, and are often needed for administrative actions.
3232  */
3233 void
3234 vdev_state_dirty(vdev_t *vd)
3235 {
3236         spa_t *spa = vd->vdev_spa;
3237
3238         ASSERT(spa_writeable(spa));
3239         ASSERT(vd == vd->vdev_top);
3240
3241         /*
3242          * The state list is protected by the SCL_STATE lock.  The caller
3243          * must either hold SCL_STATE as writer, or must be the sync thread
3244          * (which holds SCL_STATE as reader).  There's only one sync thread,
3245          * so this is sufficient to ensure mutual exclusion.
3246          */
3247         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3248             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3249             spa_config_held(spa, SCL_STATE, RW_READER)));
3250
3251         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3252                 list_insert_head(&spa->spa_state_dirty_list, vd);
3253 }
3254
3255 void
3256 vdev_state_clean(vdev_t *vd)
3257 {
3258         spa_t *spa = vd->vdev_spa;
3259
3260         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3261             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3262             spa_config_held(spa, SCL_STATE, RW_READER)));
3263
3264         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3265         list_remove(&spa->spa_state_dirty_list, vd);
3266 }
3267
3268 /*
3269  * Propagate vdev state up from children to parent.
3270  */
3271 void
3272 vdev_propagate_state(vdev_t *vd)
3273 {
3274         spa_t *spa = vd->vdev_spa;
3275         vdev_t *rvd = spa->spa_root_vdev;
3276         int degraded = 0, faulted = 0;
3277         int corrupted = 0;
3278         vdev_t *child;
3279         int c;
3280
3281         if (vd->vdev_children > 0) {
3282                 for (c = 0; c < vd->vdev_children; c++) {
3283                         child = vd->vdev_child[c];
3284
3285                         /*
3286                          * Don't factor holes into the decision.
3287                          */
3288                         if (child->vdev_ishole)
3289                                 continue;
3290
3291                         if (!vdev_readable(child) ||
3292                             (!vdev_writeable(child) && spa_writeable(spa))) {
3293                                 /*
3294                                  * Root special: if there is a top-level log
3295                                  * device, treat the root vdev as if it were
3296                                  * degraded.
3297                                  */
3298                                 if (child->vdev_islog && vd == rvd)
3299                                         degraded++;
3300                                 else
3301                                         faulted++;
3302                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3303                                 degraded++;
3304                         }
3305
3306                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3307                                 corrupted++;
3308                 }
3309
3310                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3311
3312                 /*
3313                  * Root special: if there is a top-level vdev that cannot be
3314                  * opened due to corrupted metadata, then propagate the root
3315                  * vdev's aux state as 'corrupt' rather than 'insufficient
3316                  * replicas'.
3317                  */
3318                 if (corrupted && vd == rvd &&
3319                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3320                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3321                             VDEV_AUX_CORRUPT_DATA);
3322         }
3323
3324         if (vd->vdev_parent)
3325                 vdev_propagate_state(vd->vdev_parent);
3326 }
3327
3328 /*
3329  * Set a vdev's state.  If this is during an open, we don't update the parent
3330  * state, because we're in the process of opening children depth-first.
3331  * Otherwise, we propagate the change to the parent.
3332  *
3333  * If this routine places a device in a faulted state, an appropriate ereport is
3334  * generated.
3335  */
3336 void
3337 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3338 {
3339         uint64_t save_state;
3340         spa_t *spa = vd->vdev_spa;
3341
3342         if (state == vd->vdev_state) {
3343                 vd->vdev_stat.vs_aux = aux;
3344                 return;
3345         }
3346
3347         save_state = vd->vdev_state;
3348
3349         vd->vdev_state = state;
3350         vd->vdev_stat.vs_aux = aux;
3351
3352         /*
3353          * If we are setting the vdev state to anything but an open state, then
3354          * always close the underlying device unless the device has requested
3355          * a delayed close (i.e. we're about to remove or fault the device).
3356          * Otherwise, we keep accessible but invalid devices open forever.
3357          * We don't call vdev_close() itself, because that implies some extra
3358          * checks (offline, etc) that we don't want here.  This is limited to
3359          * leaf devices, because otherwise closing the device will affect other
3360          * children.
3361          */
3362         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3363             vd->vdev_ops->vdev_op_leaf)
3364                 vd->vdev_ops->vdev_op_close(vd);
3365
3366         /*
3367          * If we have brought this vdev back into service, we need
3368          * to notify fmd so that it can gracefully repair any outstanding
3369          * cases due to a missing device.  We do this in all cases, even those
3370          * that probably don't correlate to a repaired fault.  This is sure to
3371          * catch all cases, and we let the zfs-retire agent sort it out.  If
3372          * this is a transient state it's OK, as the retire agent will
3373          * double-check the state of the vdev before repairing it.
3374          */
3375         if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3376             vd->vdev_prevstate != state)
3377                 zfs_post_state_change(spa, vd);
3378
3379         if (vd->vdev_removed &&
3380             state == VDEV_STATE_CANT_OPEN &&
3381             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3382                 /*
3383                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3384                  * device was previously marked removed and someone attempted to
3385                  * reopen it.  If this failed due to a nonexistent device, then
3386                  * keep the device in the REMOVED state.  We also let this be if
3387                  * it is one of our special test online cases, which is only
3388                  * attempting to online the device and shouldn't generate an FMA
3389                  * fault.
3390                  */
3391                 vd->vdev_state = VDEV_STATE_REMOVED;
3392                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3393         } else if (state == VDEV_STATE_REMOVED) {
3394                 vd->vdev_removed = B_TRUE;
3395         } else if (state == VDEV_STATE_CANT_OPEN) {
3396                 /*
3397                  * If we fail to open a vdev during an import or recovery, we
3398                  * mark it as "not available", which signifies that it was
3399                  * never there to begin with.  Failure to open such a device
3400                  * is not considered an error.
3401                  */
3402                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3403                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3404                     vd->vdev_ops->vdev_op_leaf)
3405                         vd->vdev_not_present = 1;
3406
3407                 /*
3408                  * Post the appropriate ereport.  If the 'prevstate' field is
3409                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3410                  * that this is part of a vdev_reopen().  In this case, we don't
3411                  * want to post the ereport if the device was already in the
3412                  * CANT_OPEN state beforehand.
3413                  *
3414                  * If the 'checkremove' flag is set, then this is an attempt to
3415                  * online the device in response to an insertion event.  If we
3416                  * hit this case, then we have detected an insertion event for a
3417                  * faulted or offline device that wasn't in the removed state.
3418                  * In this scenario, we don't post an ereport because we are
3419                  * about to replace the device, or attempt an online with
3420                  * vdev_forcefault, which will generate the fault for us.
3421                  */
3422                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3423                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3424                     vd != spa->spa_root_vdev) {
3425                         const char *class;
3426
3427                         switch (aux) {
3428                         case VDEV_AUX_OPEN_FAILED:
3429                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3430                                 break;
3431                         case VDEV_AUX_CORRUPT_DATA:
3432                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3433                                 break;
3434                         case VDEV_AUX_NO_REPLICAS:
3435                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3436                                 break;
3437                         case VDEV_AUX_BAD_GUID_SUM:
3438                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3439                                 break;
3440                         case VDEV_AUX_TOO_SMALL:
3441                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3442                                 break;
3443                         case VDEV_AUX_BAD_LABEL:
3444                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3445                                 break;
3446                         default:
3447                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3448                         }
3449
3450                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3451                 }
3452
3453                 /* Erase any notion of persistent removed state */
3454                 vd->vdev_removed = B_FALSE;
3455         } else {
3456                 vd->vdev_removed = B_FALSE;
3457         }
3458
3459         if (!isopen && vd->vdev_parent)
3460                 vdev_propagate_state(vd->vdev_parent);
3461 }
3462
3463 /*
3464  * Check the vdev configuration to ensure that it's capable of supporting
3465  * a root pool.
3466  */
3467 boolean_t
3468 vdev_is_bootable(vdev_t *vd)
3469 {
3470 #if defined(__sun__) || defined(__sun)
3471         /*
3472          * Currently, we do not support RAID-Z or partial configuration.
3473          * In addition, only a single top-level vdev is allowed and none of the
3474          * leaves can be wholedisks.
3475          */
3476         int c;
3477
3478         if (!vd->vdev_ops->vdev_op_leaf) {
3479                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3480
3481                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3482                     vd->vdev_children > 1) {
3483                         return (B_FALSE);
3484                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3485                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3486                         return (B_FALSE);
3487                 }
3488         } else if (vd->vdev_wholedisk == 1) {
3489                 return (B_FALSE);
3490         }
3491
3492         for (c = 0; c < vd->vdev_children; c++) {
3493                 if (!vdev_is_bootable(vd->vdev_child[c]))
3494                         return (B_FALSE);
3495         }
3496 #endif /* __sun__ || __sun */
3497         return (B_TRUE);
3498 }
3499
3500 /*
3501  * Load the state from the original vdev tree (ovd) which
3502  * we've retrieved from the MOS config object. If the original
3503  * vdev was offline or faulted then we transfer that state to the
3504  * device in the current vdev tree (nvd).
3505  */
3506 void
3507 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3508 {
3509         int c;
3510
3511         ASSERT(nvd->vdev_top->vdev_islog);
3512         ASSERT(spa_config_held(nvd->vdev_spa,
3513             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3514         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3515
3516         for (c = 0; c < nvd->vdev_children; c++)
3517                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3518
3519         if (nvd->vdev_ops->vdev_op_leaf) {
3520                 /*
3521                  * Restore the persistent vdev state
3522                  */
3523                 nvd->vdev_offline = ovd->vdev_offline;
3524                 nvd->vdev_faulted = ovd->vdev_faulted;
3525                 nvd->vdev_degraded = ovd->vdev_degraded;
3526                 nvd->vdev_removed = ovd->vdev_removed;
3527         }
3528 }
3529
3530 /*
3531  * Determine if a log device has valid content.  If the vdev was
3532  * removed or faulted in the MOS config then we know that
3533  * the content on the log device has already been written to the pool.
3534  */
3535 boolean_t
3536 vdev_log_state_valid(vdev_t *vd)
3537 {
3538         int c;
3539
3540         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3541             !vd->vdev_removed)
3542                 return (B_TRUE);
3543
3544         for (c = 0; c < vd->vdev_children; c++)
3545                 if (vdev_log_state_valid(vd->vdev_child[c]))
3546                         return (B_TRUE);
3547
3548         return (B_FALSE);
3549 }
3550
3551 /*
3552  * Expand a vdev if possible.
3553  */
3554 void
3555 vdev_expand(vdev_t *vd, uint64_t txg)
3556 {
3557         ASSERT(vd->vdev_top == vd);
3558         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3559
3560         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3561                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3562                 vdev_config_dirty(vd);
3563         }
3564 }
3565
3566 /*
3567  * Split a vdev.
3568  */
3569 void
3570 vdev_split(vdev_t *vd)
3571 {
3572         vdev_t *cvd, *pvd = vd->vdev_parent;
3573
3574         vdev_remove_child(pvd, vd);
3575         vdev_compact_children(pvd);
3576
3577         cvd = pvd->vdev_child[0];
3578         if (pvd->vdev_children == 1) {
3579                 vdev_remove_parent(cvd);
3580                 cvd->vdev_splitting = B_TRUE;
3581         }
3582         vdev_propagate_state(cvd);
3583 }
3584
3585 void
3586 vdev_deadman(vdev_t *vd)
3587 {
3588         int c;
3589
3590         for (c = 0; c < vd->vdev_children; c++) {
3591                 vdev_t *cvd = vd->vdev_child[c];
3592
3593                 vdev_deadman(cvd);
3594         }
3595
3596         if (vd->vdev_ops->vdev_op_leaf) {
3597                 vdev_queue_t *vq = &vd->vdev_queue;
3598
3599                 mutex_enter(&vq->vq_lock);
3600                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3601                         spa_t *spa = vd->vdev_spa;
3602                         zio_t *fio;
3603                         uint64_t delta;
3604
3605                         /*
3606                          * Look at the head of all the pending queues,
3607                          * if any I/O has been outstanding for longer than
3608                          * the spa_deadman_synctime we log a zevent.
3609                          */
3610                         fio = avl_first(&vq->vq_active_tree);
3611                         delta = gethrtime() - fio->io_timestamp;
3612                         if (delta > spa_deadman_synctime(spa)) {
3613                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3614                                     "delta %lluns, last io %lluns",
3615                                     fio->io_timestamp, delta,
3616                                     vq->vq_io_complete_ts);
3617                                 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3618                                     spa, vd, fio, 0, 0);
3619                         }
3620                 }
3621                 mutex_exit(&vq->vq_lock);
3622         }
3623 }
3624
3625 #if defined(_KERNEL) && defined(HAVE_SPL)
3626 EXPORT_SYMBOL(vdev_fault);
3627 EXPORT_SYMBOL(vdev_degrade);
3628 EXPORT_SYMBOL(vdev_online);
3629 EXPORT_SYMBOL(vdev_offline);
3630 EXPORT_SYMBOL(vdev_clear);
3631
3632 module_param(metaslabs_per_vdev, int, 0644);
3633 MODULE_PARM_DESC(metaslabs_per_vdev,
3634         "Divide added vdev into approximately (but no more than) this number "
3635         "of metaslabs");
3636 #endif