]> granicus.if.org Git - zfs/blob - module/zfs/vdev.c
OpenZFS 8166 - zpool scrub thinks it repaired offline device
[zfs] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/metaslab_impl.h>
40 #include <sys/space_map.h>
41 #include <sys/space_reftree.h>
42 #include <sys/zio.h>
43 #include <sys/zap.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/arc.h>
46 #include <sys/zil.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/abd.h>
49 #include <sys/zvol.h>
50 #include <sys/zfs_ratelimit.h>
51
52 /*
53  * When a vdev is added, it will be divided into approximately (but no
54  * more than) this number of metaslabs.
55  */
56 int metaslabs_per_vdev = 200;
57
58 /*
59  * Virtual device management.
60  */
61
62 static vdev_ops_t *vdev_ops_table[] = {
63         &vdev_root_ops,
64         &vdev_raidz_ops,
65         &vdev_mirror_ops,
66         &vdev_replacing_ops,
67         &vdev_spare_ops,
68         &vdev_disk_ops,
69         &vdev_file_ops,
70         &vdev_missing_ops,
71         &vdev_hole_ops,
72         NULL
73 };
74
75 /*
76  * Given a vdev type, return the appropriate ops vector.
77  */
78 static vdev_ops_t *
79 vdev_getops(const char *type)
80 {
81         vdev_ops_t *ops, **opspp;
82
83         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
84                 if (strcmp(ops->vdev_op_type, type) == 0)
85                         break;
86
87         return (ops);
88 }
89
90 /*
91  * Default asize function: return the MAX of psize with the asize of
92  * all children.  This is what's used by anything other than RAID-Z.
93  */
94 uint64_t
95 vdev_default_asize(vdev_t *vd, uint64_t psize)
96 {
97         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
98         uint64_t csize;
99         int c;
100
101         for (c = 0; c < vd->vdev_children; c++) {
102                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
103                 asize = MAX(asize, csize);
104         }
105
106         return (asize);
107 }
108
109 /*
110  * Get the minimum allocatable size. We define the allocatable size as
111  * the vdev's asize rounded to the nearest metaslab. This allows us to
112  * replace or attach devices which don't have the same physical size but
113  * can still satisfy the same number of allocations.
114  */
115 uint64_t
116 vdev_get_min_asize(vdev_t *vd)
117 {
118         vdev_t *pvd = vd->vdev_parent;
119
120         /*
121          * If our parent is NULL (inactive spare or cache) or is the root,
122          * just return our own asize.
123          */
124         if (pvd == NULL)
125                 return (vd->vdev_asize);
126
127         /*
128          * The top-level vdev just returns the allocatable size rounded
129          * to the nearest metaslab.
130          */
131         if (vd == vd->vdev_top)
132                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
133
134         /*
135          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
136          * so each child must provide at least 1/Nth of its asize.
137          */
138         if (pvd->vdev_ops == &vdev_raidz_ops)
139                 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
140                     pvd->vdev_children);
141
142         return (pvd->vdev_min_asize);
143 }
144
145 void
146 vdev_set_min_asize(vdev_t *vd)
147 {
148         int c;
149         vd->vdev_min_asize = vdev_get_min_asize(vd);
150
151         for (c = 0; c < vd->vdev_children; c++)
152                 vdev_set_min_asize(vd->vdev_child[c]);
153 }
154
155 vdev_t *
156 vdev_lookup_top(spa_t *spa, uint64_t vdev)
157 {
158         vdev_t *rvd = spa->spa_root_vdev;
159
160         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
161
162         if (vdev < rvd->vdev_children) {
163                 ASSERT(rvd->vdev_child[vdev] != NULL);
164                 return (rvd->vdev_child[vdev]);
165         }
166
167         return (NULL);
168 }
169
170 vdev_t *
171 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
172 {
173         vdev_t *mvd;
174         int c;
175
176         if (vd->vdev_guid == guid)
177                 return (vd);
178
179         for (c = 0; c < vd->vdev_children; c++)
180                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
181                     NULL)
182                         return (mvd);
183
184         return (NULL);
185 }
186
187 static int
188 vdev_count_leaves_impl(vdev_t *vd)
189 {
190         int n = 0;
191         int c;
192
193         if (vd->vdev_ops->vdev_op_leaf)
194                 return (1);
195
196         for (c = 0; c < vd->vdev_children; c++)
197                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
198
199         return (n);
200 }
201
202 int
203 vdev_count_leaves(spa_t *spa)
204 {
205         return (vdev_count_leaves_impl(spa->spa_root_vdev));
206 }
207
208 void
209 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
210 {
211         size_t oldsize, newsize;
212         uint64_t id = cvd->vdev_id;
213         vdev_t **newchild;
214
215         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
216         ASSERT(cvd->vdev_parent == NULL);
217
218         cvd->vdev_parent = pvd;
219
220         if (pvd == NULL)
221                 return;
222
223         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
224
225         oldsize = pvd->vdev_children * sizeof (vdev_t *);
226         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
227         newsize = pvd->vdev_children * sizeof (vdev_t *);
228
229         newchild = kmem_alloc(newsize, KM_SLEEP);
230         if (pvd->vdev_child != NULL) {
231                 bcopy(pvd->vdev_child, newchild, oldsize);
232                 kmem_free(pvd->vdev_child, oldsize);
233         }
234
235         pvd->vdev_child = newchild;
236         pvd->vdev_child[id] = cvd;
237
238         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
239         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
240
241         /*
242          * Walk up all ancestors to update guid sum.
243          */
244         for (; pvd != NULL; pvd = pvd->vdev_parent)
245                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
246 }
247
248 void
249 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
250 {
251         int c;
252         uint_t id = cvd->vdev_id;
253
254         ASSERT(cvd->vdev_parent == pvd);
255
256         if (pvd == NULL)
257                 return;
258
259         ASSERT(id < pvd->vdev_children);
260         ASSERT(pvd->vdev_child[id] == cvd);
261
262         pvd->vdev_child[id] = NULL;
263         cvd->vdev_parent = NULL;
264
265         for (c = 0; c < pvd->vdev_children; c++)
266                 if (pvd->vdev_child[c])
267                         break;
268
269         if (c == pvd->vdev_children) {
270                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
271                 pvd->vdev_child = NULL;
272                 pvd->vdev_children = 0;
273         }
274
275         /*
276          * Walk up all ancestors to update guid sum.
277          */
278         for (; pvd != NULL; pvd = pvd->vdev_parent)
279                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
280 }
281
282 /*
283  * Remove any holes in the child array.
284  */
285 void
286 vdev_compact_children(vdev_t *pvd)
287 {
288         vdev_t **newchild, *cvd;
289         int oldc = pvd->vdev_children;
290         int newc;
291         int c;
292
293         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
294
295         for (c = newc = 0; c < oldc; c++)
296                 if (pvd->vdev_child[c])
297                         newc++;
298
299         newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
300
301         for (c = newc = 0; c < oldc; c++) {
302                 if ((cvd = pvd->vdev_child[c]) != NULL) {
303                         newchild[newc] = cvd;
304                         cvd->vdev_id = newc++;
305                 }
306         }
307
308         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
309         pvd->vdev_child = newchild;
310         pvd->vdev_children = newc;
311 }
312
313 /*
314  * Allocate and minimally initialize a vdev_t.
315  */
316 vdev_t *
317 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
318 {
319         vdev_t *vd;
320         int t;
321
322         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
323
324         if (spa->spa_root_vdev == NULL) {
325                 ASSERT(ops == &vdev_root_ops);
326                 spa->spa_root_vdev = vd;
327                 spa->spa_load_guid = spa_generate_guid(NULL);
328         }
329
330         if (guid == 0 && ops != &vdev_hole_ops) {
331                 if (spa->spa_root_vdev == vd) {
332                         /*
333                          * The root vdev's guid will also be the pool guid,
334                          * which must be unique among all pools.
335                          */
336                         guid = spa_generate_guid(NULL);
337                 } else {
338                         /*
339                          * Any other vdev's guid must be unique within the pool.
340                          */
341                         guid = spa_generate_guid(spa);
342                 }
343                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
344         }
345
346         vd->vdev_spa = spa;
347         vd->vdev_id = id;
348         vd->vdev_guid = guid;
349         vd->vdev_guid_sum = guid;
350         vd->vdev_ops = ops;
351         vd->vdev_state = VDEV_STATE_CLOSED;
352         vd->vdev_ishole = (ops == &vdev_hole_ops);
353
354         /*
355          * Initialize rate limit structs for events.  We rate limit ZIO delay
356          * and checksum events so that we don't overwhelm ZED with thousands
357          * of events when a disk is acting up.
358          */
359         zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
360         zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
361
362         list_link_init(&vd->vdev_config_dirty_node);
363         list_link_init(&vd->vdev_state_dirty_node);
364         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
365         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
366         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
367         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
368
369         for (t = 0; t < DTL_TYPES; t++) {
370                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
371                     &vd->vdev_dtl_lock);
372         }
373         txg_list_create(&vd->vdev_ms_list,
374             offsetof(struct metaslab, ms_txg_node));
375         txg_list_create(&vd->vdev_dtl_list,
376             offsetof(struct vdev, vdev_dtl_node));
377         vd->vdev_stat.vs_timestamp = gethrtime();
378         vdev_queue_init(vd);
379         vdev_cache_init(vd);
380
381         return (vd);
382 }
383
384 /*
385  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
386  * creating a new vdev or loading an existing one - the behavior is slightly
387  * different for each case.
388  */
389 int
390 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
391     int alloctype)
392 {
393         vdev_ops_t *ops;
394         char *type;
395         uint64_t guid = 0, islog, nparity;
396         vdev_t *vd;
397
398         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
399
400         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
401                 return (SET_ERROR(EINVAL));
402
403         if ((ops = vdev_getops(type)) == NULL)
404                 return (SET_ERROR(EINVAL));
405
406         /*
407          * If this is a load, get the vdev guid from the nvlist.
408          * Otherwise, vdev_alloc_common() will generate one for us.
409          */
410         if (alloctype == VDEV_ALLOC_LOAD) {
411                 uint64_t label_id;
412
413                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
414                     label_id != id)
415                         return (SET_ERROR(EINVAL));
416
417                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
418                         return (SET_ERROR(EINVAL));
419         } else if (alloctype == VDEV_ALLOC_SPARE) {
420                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
421                         return (SET_ERROR(EINVAL));
422         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
423                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
424                         return (SET_ERROR(EINVAL));
425         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
426                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
427                         return (SET_ERROR(EINVAL));
428         }
429
430         /*
431          * The first allocated vdev must be of type 'root'.
432          */
433         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
434                 return (SET_ERROR(EINVAL));
435
436         /*
437          * Determine whether we're a log vdev.
438          */
439         islog = 0;
440         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
441         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
442                 return (SET_ERROR(ENOTSUP));
443
444         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
445                 return (SET_ERROR(ENOTSUP));
446
447         /*
448          * Set the nparity property for RAID-Z vdevs.
449          */
450         nparity = -1ULL;
451         if (ops == &vdev_raidz_ops) {
452                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
453                     &nparity) == 0) {
454                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
455                                 return (SET_ERROR(EINVAL));
456                         /*
457                          * Previous versions could only support 1 or 2 parity
458                          * device.
459                          */
460                         if (nparity > 1 &&
461                             spa_version(spa) < SPA_VERSION_RAIDZ2)
462                                 return (SET_ERROR(ENOTSUP));
463                         if (nparity > 2 &&
464                             spa_version(spa) < SPA_VERSION_RAIDZ3)
465                                 return (SET_ERROR(ENOTSUP));
466                 } else {
467                         /*
468                          * We require the parity to be specified for SPAs that
469                          * support multiple parity levels.
470                          */
471                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
472                                 return (SET_ERROR(EINVAL));
473                         /*
474                          * Otherwise, we default to 1 parity device for RAID-Z.
475                          */
476                         nparity = 1;
477                 }
478         } else {
479                 nparity = 0;
480         }
481         ASSERT(nparity != -1ULL);
482
483         vd = vdev_alloc_common(spa, id, guid, ops);
484
485         vd->vdev_islog = islog;
486         vd->vdev_nparity = nparity;
487
488         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
489                 vd->vdev_path = spa_strdup(vd->vdev_path);
490         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
491                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
492         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
493             &vd->vdev_physpath) == 0)
494                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
495
496         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
497             &vd->vdev_enc_sysfs_path) == 0)
498                 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
499
500         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
501                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
502
503         /*
504          * Set the whole_disk property.  If it's not specified, leave the value
505          * as -1.
506          */
507         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
508             &vd->vdev_wholedisk) != 0)
509                 vd->vdev_wholedisk = -1ULL;
510
511         /*
512          * Look for the 'not present' flag.  This will only be set if the device
513          * was not present at the time of import.
514          */
515         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
516             &vd->vdev_not_present);
517
518         /*
519          * Get the alignment requirement.
520          */
521         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
522
523         /*
524          * Retrieve the vdev creation time.
525          */
526         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
527             &vd->vdev_crtxg);
528
529         /*
530          * If we're a top-level vdev, try to load the allocation parameters.
531          */
532         if (parent && !parent->vdev_parent &&
533             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
534                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
535                     &vd->vdev_ms_array);
536                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
537                     &vd->vdev_ms_shift);
538                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
539                     &vd->vdev_asize);
540                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
541                     &vd->vdev_removing);
542                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
543                     &vd->vdev_top_zap);
544         } else {
545                 ASSERT0(vd->vdev_top_zap);
546         }
547
548         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
549                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
550                     alloctype == VDEV_ALLOC_ADD ||
551                     alloctype == VDEV_ALLOC_SPLIT ||
552                     alloctype == VDEV_ALLOC_ROOTPOOL);
553                 vd->vdev_mg = metaslab_group_create(islog ?
554                     spa_log_class(spa) : spa_normal_class(spa), vd);
555         }
556
557         if (vd->vdev_ops->vdev_op_leaf &&
558             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
559                 (void) nvlist_lookup_uint64(nv,
560                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
561         } else {
562                 ASSERT0(vd->vdev_leaf_zap);
563         }
564
565         /*
566          * If we're a leaf vdev, try to load the DTL object and other state.
567          */
568
569         if (vd->vdev_ops->vdev_op_leaf &&
570             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
571             alloctype == VDEV_ALLOC_ROOTPOOL)) {
572                 if (alloctype == VDEV_ALLOC_LOAD) {
573                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
574                             &vd->vdev_dtl_object);
575                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
576                             &vd->vdev_unspare);
577                 }
578
579                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
580                         uint64_t spare = 0;
581
582                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
583                             &spare) == 0 && spare)
584                                 spa_spare_add(vd);
585                 }
586
587                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
588                     &vd->vdev_offline);
589
590                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
591                     &vd->vdev_resilver_txg);
592
593                 /*
594                  * When importing a pool, we want to ignore the persistent fault
595                  * state, as the diagnosis made on another system may not be
596                  * valid in the current context.  Local vdevs will
597                  * remain in the faulted state.
598                  */
599                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
600                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
601                             &vd->vdev_faulted);
602                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
603                             &vd->vdev_degraded);
604                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
605                             &vd->vdev_removed);
606
607                         if (vd->vdev_faulted || vd->vdev_degraded) {
608                                 char *aux;
609
610                                 vd->vdev_label_aux =
611                                     VDEV_AUX_ERR_EXCEEDED;
612                                 if (nvlist_lookup_string(nv,
613                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
614                                     strcmp(aux, "external") == 0)
615                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
616                         }
617                 }
618         }
619
620         /*
621          * Add ourselves to the parent's list of children.
622          */
623         vdev_add_child(parent, vd);
624
625         *vdp = vd;
626
627         return (0);
628 }
629
630 void
631 vdev_free(vdev_t *vd)
632 {
633         int c, t;
634         spa_t *spa = vd->vdev_spa;
635
636         /*
637          * vdev_free() implies closing the vdev first.  This is simpler than
638          * trying to ensure complicated semantics for all callers.
639          */
640         vdev_close(vd);
641
642         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
643         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
644
645         /*
646          * Free all children.
647          */
648         for (c = 0; c < vd->vdev_children; c++)
649                 vdev_free(vd->vdev_child[c]);
650
651         ASSERT(vd->vdev_child == NULL);
652         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
653
654         /*
655          * Discard allocation state.
656          */
657         if (vd->vdev_mg != NULL) {
658                 vdev_metaslab_fini(vd);
659                 metaslab_group_destroy(vd->vdev_mg);
660         }
661
662         ASSERT0(vd->vdev_stat.vs_space);
663         ASSERT0(vd->vdev_stat.vs_dspace);
664         ASSERT0(vd->vdev_stat.vs_alloc);
665
666         /*
667          * Remove this vdev from its parent's child list.
668          */
669         vdev_remove_child(vd->vdev_parent, vd);
670
671         ASSERT(vd->vdev_parent == NULL);
672
673         /*
674          * Clean up vdev structure.
675          */
676         vdev_queue_fini(vd);
677         vdev_cache_fini(vd);
678
679         if (vd->vdev_path)
680                 spa_strfree(vd->vdev_path);
681         if (vd->vdev_devid)
682                 spa_strfree(vd->vdev_devid);
683         if (vd->vdev_physpath)
684                 spa_strfree(vd->vdev_physpath);
685
686         if (vd->vdev_enc_sysfs_path)
687                 spa_strfree(vd->vdev_enc_sysfs_path);
688
689         if (vd->vdev_fru)
690                 spa_strfree(vd->vdev_fru);
691
692         if (vd->vdev_isspare)
693                 spa_spare_remove(vd);
694         if (vd->vdev_isl2cache)
695                 spa_l2cache_remove(vd);
696
697         txg_list_destroy(&vd->vdev_ms_list);
698         txg_list_destroy(&vd->vdev_dtl_list);
699
700         mutex_enter(&vd->vdev_dtl_lock);
701         space_map_close(vd->vdev_dtl_sm);
702         for (t = 0; t < DTL_TYPES; t++) {
703                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
704                 range_tree_destroy(vd->vdev_dtl[t]);
705         }
706         mutex_exit(&vd->vdev_dtl_lock);
707
708         mutex_destroy(&vd->vdev_queue_lock);
709         mutex_destroy(&vd->vdev_dtl_lock);
710         mutex_destroy(&vd->vdev_stat_lock);
711         mutex_destroy(&vd->vdev_probe_lock);
712
713         zfs_ratelimit_fini(&vd->vdev_delay_rl);
714         zfs_ratelimit_fini(&vd->vdev_checksum_rl);
715
716         if (vd == spa->spa_root_vdev)
717                 spa->spa_root_vdev = NULL;
718
719         kmem_free(vd, sizeof (vdev_t));
720 }
721
722 /*
723  * Transfer top-level vdev state from svd to tvd.
724  */
725 static void
726 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
727 {
728         spa_t *spa = svd->vdev_spa;
729         metaslab_t *msp;
730         vdev_t *vd;
731         int t;
732
733         ASSERT(tvd == tvd->vdev_top);
734
735         tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
736         tvd->vdev_ms_array = svd->vdev_ms_array;
737         tvd->vdev_ms_shift = svd->vdev_ms_shift;
738         tvd->vdev_ms_count = svd->vdev_ms_count;
739         tvd->vdev_top_zap = svd->vdev_top_zap;
740
741         svd->vdev_ms_array = 0;
742         svd->vdev_ms_shift = 0;
743         svd->vdev_ms_count = 0;
744         svd->vdev_top_zap = 0;
745
746         if (tvd->vdev_mg)
747                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
748         tvd->vdev_mg = svd->vdev_mg;
749         tvd->vdev_ms = svd->vdev_ms;
750
751         svd->vdev_mg = NULL;
752         svd->vdev_ms = NULL;
753
754         if (tvd->vdev_mg != NULL)
755                 tvd->vdev_mg->mg_vd = tvd;
756
757         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
758         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
759         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
760
761         svd->vdev_stat.vs_alloc = 0;
762         svd->vdev_stat.vs_space = 0;
763         svd->vdev_stat.vs_dspace = 0;
764
765         for (t = 0; t < TXG_SIZE; t++) {
766                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
767                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
768                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
769                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
770                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
771                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
772         }
773
774         if (list_link_active(&svd->vdev_config_dirty_node)) {
775                 vdev_config_clean(svd);
776                 vdev_config_dirty(tvd);
777         }
778
779         if (list_link_active(&svd->vdev_state_dirty_node)) {
780                 vdev_state_clean(svd);
781                 vdev_state_dirty(tvd);
782         }
783
784         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
785         svd->vdev_deflate_ratio = 0;
786
787         tvd->vdev_islog = svd->vdev_islog;
788         svd->vdev_islog = 0;
789 }
790
791 static void
792 vdev_top_update(vdev_t *tvd, vdev_t *vd)
793 {
794         int c;
795
796         if (vd == NULL)
797                 return;
798
799         vd->vdev_top = tvd;
800
801         for (c = 0; c < vd->vdev_children; c++)
802                 vdev_top_update(tvd, vd->vdev_child[c]);
803 }
804
805 /*
806  * Add a mirror/replacing vdev above an existing vdev.
807  */
808 vdev_t *
809 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
810 {
811         spa_t *spa = cvd->vdev_spa;
812         vdev_t *pvd = cvd->vdev_parent;
813         vdev_t *mvd;
814
815         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
816
817         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
818
819         mvd->vdev_asize = cvd->vdev_asize;
820         mvd->vdev_min_asize = cvd->vdev_min_asize;
821         mvd->vdev_max_asize = cvd->vdev_max_asize;
822         mvd->vdev_ashift = cvd->vdev_ashift;
823         mvd->vdev_state = cvd->vdev_state;
824         mvd->vdev_crtxg = cvd->vdev_crtxg;
825
826         vdev_remove_child(pvd, cvd);
827         vdev_add_child(pvd, mvd);
828         cvd->vdev_id = mvd->vdev_children;
829         vdev_add_child(mvd, cvd);
830         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
831
832         if (mvd == mvd->vdev_top)
833                 vdev_top_transfer(cvd, mvd);
834
835         return (mvd);
836 }
837
838 /*
839  * Remove a 1-way mirror/replacing vdev from the tree.
840  */
841 void
842 vdev_remove_parent(vdev_t *cvd)
843 {
844         vdev_t *mvd = cvd->vdev_parent;
845         vdev_t *pvd = mvd->vdev_parent;
846
847         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
848
849         ASSERT(mvd->vdev_children == 1);
850         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
851             mvd->vdev_ops == &vdev_replacing_ops ||
852             mvd->vdev_ops == &vdev_spare_ops);
853         cvd->vdev_ashift = mvd->vdev_ashift;
854
855         vdev_remove_child(mvd, cvd);
856         vdev_remove_child(pvd, mvd);
857
858         /*
859          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
860          * Otherwise, we could have detached an offline device, and when we
861          * go to import the pool we'll think we have two top-level vdevs,
862          * instead of a different version of the same top-level vdev.
863          */
864         if (mvd->vdev_top == mvd) {
865                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
866                 cvd->vdev_orig_guid = cvd->vdev_guid;
867                 cvd->vdev_guid += guid_delta;
868                 cvd->vdev_guid_sum += guid_delta;
869
870                 /*
871                  * If pool not set for autoexpand, we need to also preserve
872                  * mvd's asize to prevent automatic expansion of cvd.
873                  * Otherwise if we are adjusting the mirror by attaching and
874                  * detaching children of non-uniform sizes, the mirror could
875                  * autoexpand, unexpectedly requiring larger devices to
876                  * re-establish the mirror.
877                  */
878                 if (!cvd->vdev_spa->spa_autoexpand)
879                         cvd->vdev_asize = mvd->vdev_asize;
880         }
881         cvd->vdev_id = mvd->vdev_id;
882         vdev_add_child(pvd, cvd);
883         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
884
885         if (cvd == cvd->vdev_top)
886                 vdev_top_transfer(mvd, cvd);
887
888         ASSERT(mvd->vdev_children == 0);
889         vdev_free(mvd);
890 }
891
892 int
893 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
894 {
895         spa_t *spa = vd->vdev_spa;
896         objset_t *mos = spa->spa_meta_objset;
897         uint64_t m;
898         uint64_t oldc = vd->vdev_ms_count;
899         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
900         metaslab_t **mspp;
901         int error;
902
903         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
904
905         /*
906          * This vdev is not being allocated from yet or is a hole.
907          */
908         if (vd->vdev_ms_shift == 0)
909                 return (0);
910
911         ASSERT(!vd->vdev_ishole);
912
913         /*
914          * Compute the raidz-deflation ratio.  Note, we hard-code
915          * in 128k (1 << 17) because it is the "typical" blocksize.
916          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
917          * otherwise it would inconsistently account for existing bp's.
918          */
919         vd->vdev_deflate_ratio = (1 << 17) /
920             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
921
922         ASSERT(oldc <= newc);
923
924         mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
925
926         if (oldc != 0) {
927                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
928                 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
929         }
930
931         vd->vdev_ms = mspp;
932         vd->vdev_ms_count = newc;
933
934         for (m = oldc; m < newc; m++) {
935                 uint64_t object = 0;
936
937                 if (txg == 0) {
938                         error = dmu_read(mos, vd->vdev_ms_array,
939                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
940                             DMU_READ_PREFETCH);
941                         if (error)
942                                 return (error);
943                 }
944
945                 error = metaslab_init(vd->vdev_mg, m, object, txg,
946                     &(vd->vdev_ms[m]));
947                 if (error)
948                         return (error);
949         }
950
951         if (txg == 0)
952                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
953
954         /*
955          * If the vdev is being removed we don't activate
956          * the metaslabs since we want to ensure that no new
957          * allocations are performed on this device.
958          */
959         if (oldc == 0 && !vd->vdev_removing)
960                 metaslab_group_activate(vd->vdev_mg);
961
962         if (txg == 0)
963                 spa_config_exit(spa, SCL_ALLOC, FTAG);
964
965         return (0);
966 }
967
968 void
969 vdev_metaslab_fini(vdev_t *vd)
970 {
971         uint64_t m;
972         uint64_t count = vd->vdev_ms_count;
973
974         if (vd->vdev_ms != NULL) {
975                 metaslab_group_passivate(vd->vdev_mg);
976                 for (m = 0; m < count; m++) {
977                         metaslab_t *msp = vd->vdev_ms[m];
978
979                         if (msp != NULL)
980                                 metaslab_fini(msp);
981                 }
982                 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
983                 vd->vdev_ms = NULL;
984         }
985
986         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
987 }
988
989 typedef struct vdev_probe_stats {
990         boolean_t       vps_readable;
991         boolean_t       vps_writeable;
992         int             vps_flags;
993 } vdev_probe_stats_t;
994
995 static void
996 vdev_probe_done(zio_t *zio)
997 {
998         spa_t *spa = zio->io_spa;
999         vdev_t *vd = zio->io_vd;
1000         vdev_probe_stats_t *vps = zio->io_private;
1001
1002         ASSERT(vd->vdev_probe_zio != NULL);
1003
1004         if (zio->io_type == ZIO_TYPE_READ) {
1005                 if (zio->io_error == 0)
1006                         vps->vps_readable = 1;
1007                 if (zio->io_error == 0 && spa_writeable(spa)) {
1008                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1009                             zio->io_offset, zio->io_size, zio->io_abd,
1010                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1011                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1012                 } else {
1013                         abd_free(zio->io_abd);
1014                 }
1015         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1016                 if (zio->io_error == 0)
1017                         vps->vps_writeable = 1;
1018                 abd_free(zio->io_abd);
1019         } else if (zio->io_type == ZIO_TYPE_NULL) {
1020                 zio_t *pio;
1021                 zio_link_t *zl;
1022
1023                 vd->vdev_cant_read |= !vps->vps_readable;
1024                 vd->vdev_cant_write |= !vps->vps_writeable;
1025
1026                 if (vdev_readable(vd) &&
1027                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1028                         zio->io_error = 0;
1029                 } else {
1030                         ASSERT(zio->io_error != 0);
1031                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1032                             spa, vd, NULL, 0, 0);
1033                         zio->io_error = SET_ERROR(ENXIO);
1034                 }
1035
1036                 mutex_enter(&vd->vdev_probe_lock);
1037                 ASSERT(vd->vdev_probe_zio == zio);
1038                 vd->vdev_probe_zio = NULL;
1039                 mutex_exit(&vd->vdev_probe_lock);
1040
1041                 zl = NULL;
1042                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1043                         if (!vdev_accessible(vd, pio))
1044                                 pio->io_error = SET_ERROR(ENXIO);
1045
1046                 kmem_free(vps, sizeof (*vps));
1047         }
1048 }
1049
1050 /*
1051  * Determine whether this device is accessible.
1052  *
1053  * Read and write to several known locations: the pad regions of each
1054  * vdev label but the first, which we leave alone in case it contains
1055  * a VTOC.
1056  */
1057 zio_t *
1058 vdev_probe(vdev_t *vd, zio_t *zio)
1059 {
1060         spa_t *spa = vd->vdev_spa;
1061         vdev_probe_stats_t *vps = NULL;
1062         zio_t *pio;
1063         int l;
1064
1065         ASSERT(vd->vdev_ops->vdev_op_leaf);
1066
1067         /*
1068          * Don't probe the probe.
1069          */
1070         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1071                 return (NULL);
1072
1073         /*
1074          * To prevent 'probe storms' when a device fails, we create
1075          * just one probe i/o at a time.  All zios that want to probe
1076          * this vdev will become parents of the probe io.
1077          */
1078         mutex_enter(&vd->vdev_probe_lock);
1079
1080         if ((pio = vd->vdev_probe_zio) == NULL) {
1081                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1082
1083                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1084                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1085                     ZIO_FLAG_TRYHARD;
1086
1087                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1088                         /*
1089                          * vdev_cant_read and vdev_cant_write can only
1090                          * transition from TRUE to FALSE when we have the
1091                          * SCL_ZIO lock as writer; otherwise they can only
1092                          * transition from FALSE to TRUE.  This ensures that
1093                          * any zio looking at these values can assume that
1094                          * failures persist for the life of the I/O.  That's
1095                          * important because when a device has intermittent
1096                          * connectivity problems, we want to ensure that
1097                          * they're ascribed to the device (ENXIO) and not
1098                          * the zio (EIO).
1099                          *
1100                          * Since we hold SCL_ZIO as writer here, clear both
1101                          * values so the probe can reevaluate from first
1102                          * principles.
1103                          */
1104                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1105                         vd->vdev_cant_read = B_FALSE;
1106                         vd->vdev_cant_write = B_FALSE;
1107                 }
1108
1109                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1110                     vdev_probe_done, vps,
1111                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1112
1113                 /*
1114                  * We can't change the vdev state in this context, so we
1115                  * kick off an async task to do it on our behalf.
1116                  */
1117                 if (zio != NULL) {
1118                         vd->vdev_probe_wanted = B_TRUE;
1119                         spa_async_request(spa, SPA_ASYNC_PROBE);
1120                 }
1121         }
1122
1123         if (zio != NULL)
1124                 zio_add_child(zio, pio);
1125
1126         mutex_exit(&vd->vdev_probe_lock);
1127
1128         if (vps == NULL) {
1129                 ASSERT(zio != NULL);
1130                 return (NULL);
1131         }
1132
1133         for (l = 1; l < VDEV_LABELS; l++) {
1134                 zio_nowait(zio_read_phys(pio, vd,
1135                     vdev_label_offset(vd->vdev_psize, l,
1136                     offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1137                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1138                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1139                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1140         }
1141
1142         if (zio == NULL)
1143                 return (pio);
1144
1145         zio_nowait(pio);
1146         return (NULL);
1147 }
1148
1149 static void
1150 vdev_open_child(void *arg)
1151 {
1152         vdev_t *vd = arg;
1153
1154         vd->vdev_open_thread = curthread;
1155         vd->vdev_open_error = vdev_open(vd);
1156         vd->vdev_open_thread = NULL;
1157 }
1158
1159 static boolean_t
1160 vdev_uses_zvols(vdev_t *vd)
1161 {
1162         int c;
1163
1164 #ifdef _KERNEL
1165         if (zvol_is_zvol(vd->vdev_path))
1166                 return (B_TRUE);
1167 #endif
1168
1169         for (c = 0; c < vd->vdev_children; c++)
1170                 if (vdev_uses_zvols(vd->vdev_child[c]))
1171                         return (B_TRUE);
1172
1173         return (B_FALSE);
1174 }
1175
1176 void
1177 vdev_open_children(vdev_t *vd)
1178 {
1179         taskq_t *tq;
1180         int children = vd->vdev_children;
1181         int c;
1182
1183         /*
1184          * in order to handle pools on top of zvols, do the opens
1185          * in a single thread so that the same thread holds the
1186          * spa_namespace_lock
1187          */
1188         if (vdev_uses_zvols(vd)) {
1189 retry_sync:
1190                 for (c = 0; c < children; c++)
1191                         vd->vdev_child[c]->vdev_open_error =
1192                             vdev_open(vd->vdev_child[c]);
1193         } else {
1194                 tq = taskq_create("vdev_open", children, minclsyspri,
1195                     children, children, TASKQ_PREPOPULATE);
1196                 if (tq == NULL)
1197                         goto retry_sync;
1198
1199                 for (c = 0; c < children; c++)
1200                         VERIFY(taskq_dispatch(tq, vdev_open_child,
1201                             vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1202
1203                 taskq_destroy(tq);
1204         }
1205
1206         vd->vdev_nonrot = B_TRUE;
1207
1208         for (c = 0; c < children; c++)
1209                 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1210 }
1211
1212 /*
1213  * Prepare a virtual device for access.
1214  */
1215 int
1216 vdev_open(vdev_t *vd)
1217 {
1218         spa_t *spa = vd->vdev_spa;
1219         int error;
1220         uint64_t osize = 0;
1221         uint64_t max_osize = 0;
1222         uint64_t asize, max_asize, psize;
1223         uint64_t ashift = 0;
1224         int c;
1225
1226         ASSERT(vd->vdev_open_thread == curthread ||
1227             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1228         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1229             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1230             vd->vdev_state == VDEV_STATE_OFFLINE);
1231
1232         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1233         vd->vdev_cant_read = B_FALSE;
1234         vd->vdev_cant_write = B_FALSE;
1235         vd->vdev_min_asize = vdev_get_min_asize(vd);
1236
1237         /*
1238          * If this vdev is not removed, check its fault status.  If it's
1239          * faulted, bail out of the open.
1240          */
1241         if (!vd->vdev_removed && vd->vdev_faulted) {
1242                 ASSERT(vd->vdev_children == 0);
1243                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1244                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1245                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1246                     vd->vdev_label_aux);
1247                 return (SET_ERROR(ENXIO));
1248         } else if (vd->vdev_offline) {
1249                 ASSERT(vd->vdev_children == 0);
1250                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1251                 return (SET_ERROR(ENXIO));
1252         }
1253
1254         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1255
1256         /*
1257          * Reset the vdev_reopening flag so that we actually close
1258          * the vdev on error.
1259          */
1260         vd->vdev_reopening = B_FALSE;
1261         if (zio_injection_enabled && error == 0)
1262                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1263
1264         if (error) {
1265                 if (vd->vdev_removed &&
1266                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1267                         vd->vdev_removed = B_FALSE;
1268
1269                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1270                     vd->vdev_stat.vs_aux);
1271                 return (error);
1272         }
1273
1274         vd->vdev_removed = B_FALSE;
1275
1276         /*
1277          * Recheck the faulted flag now that we have confirmed that
1278          * the vdev is accessible.  If we're faulted, bail.
1279          */
1280         if (vd->vdev_faulted) {
1281                 ASSERT(vd->vdev_children == 0);
1282                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1283                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1284                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1285                     vd->vdev_label_aux);
1286                 return (SET_ERROR(ENXIO));
1287         }
1288
1289         if (vd->vdev_degraded) {
1290                 ASSERT(vd->vdev_children == 0);
1291                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1292                     VDEV_AUX_ERR_EXCEEDED);
1293         } else {
1294                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1295         }
1296
1297         /*
1298          * For hole or missing vdevs we just return success.
1299          */
1300         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1301                 return (0);
1302
1303         for (c = 0; c < vd->vdev_children; c++) {
1304                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1305                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1306                             VDEV_AUX_NONE);
1307                         break;
1308                 }
1309         }
1310
1311         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1312         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1313
1314         if (vd->vdev_children == 0) {
1315                 if (osize < SPA_MINDEVSIZE) {
1316                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1317                             VDEV_AUX_TOO_SMALL);
1318                         return (SET_ERROR(EOVERFLOW));
1319                 }
1320                 psize = osize;
1321                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1322                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1323                     VDEV_LABEL_END_SIZE);
1324         } else {
1325                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1326                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1327                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1328                             VDEV_AUX_TOO_SMALL);
1329                         return (SET_ERROR(EOVERFLOW));
1330                 }
1331                 psize = 0;
1332                 asize = osize;
1333                 max_asize = max_osize;
1334         }
1335
1336         /*
1337          * If the vdev was expanded, record this so that we can re-create the
1338          * uberblock rings in labels {2,3}, during the next sync.
1339          */
1340         if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1341                 vd->vdev_copy_uberblocks = B_TRUE;
1342
1343         vd->vdev_psize = psize;
1344
1345         /*
1346          * Make sure the allocatable size hasn't shrunk too much.
1347          */
1348         if (asize < vd->vdev_min_asize) {
1349                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1350                     VDEV_AUX_BAD_LABEL);
1351                 return (SET_ERROR(EINVAL));
1352         }
1353
1354         if (vd->vdev_asize == 0) {
1355                 /*
1356                  * This is the first-ever open, so use the computed values.
1357                  * For compatibility, a different ashift can be requested.
1358                  */
1359                 vd->vdev_asize = asize;
1360                 vd->vdev_max_asize = max_asize;
1361                 if (vd->vdev_ashift == 0) {
1362                         vd->vdev_ashift = ashift; /* use detected value */
1363                 }
1364                 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1365                     vd->vdev_ashift > ASHIFT_MAX)) {
1366                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1367                             VDEV_AUX_BAD_ASHIFT);
1368                         return (SET_ERROR(EDOM));
1369                 }
1370         } else {
1371                 /*
1372                  * Detect if the alignment requirement has increased.
1373                  * We don't want to make the pool unavailable, just
1374                  * post an event instead.
1375                  */
1376                 if (ashift > vd->vdev_top->vdev_ashift &&
1377                     vd->vdev_ops->vdev_op_leaf) {
1378                         zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1379                             spa, vd, NULL, 0, 0);
1380                 }
1381
1382                 vd->vdev_max_asize = max_asize;
1383         }
1384
1385         /*
1386          * If all children are healthy we update asize if either:
1387          * The asize has increased, due to a device expansion caused by dynamic
1388          * LUN growth or vdev replacement, and automatic expansion is enabled;
1389          * making the additional space available.
1390          *
1391          * The asize has decreased, due to a device shrink usually caused by a
1392          * vdev replace with a smaller device. This ensures that calculations
1393          * based of max_asize and asize e.g. esize are always valid. It's safe
1394          * to do this as we've already validated that asize is greater than
1395          * vdev_min_asize.
1396          */
1397         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1398             ((asize > vd->vdev_asize &&
1399             (vd->vdev_expanding || spa->spa_autoexpand)) ||
1400             (asize < vd->vdev_asize)))
1401                 vd->vdev_asize = asize;
1402
1403         vdev_set_min_asize(vd);
1404
1405         /*
1406          * Ensure we can issue some IO before declaring the
1407          * vdev open for business.
1408          */
1409         if (vd->vdev_ops->vdev_op_leaf &&
1410             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1411                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1412                     VDEV_AUX_ERR_EXCEEDED);
1413                 return (error);
1414         }
1415
1416         /*
1417          * Track the min and max ashift values for normal data devices.
1418          */
1419         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1420             !vd->vdev_islog && vd->vdev_aux == NULL) {
1421                 if (vd->vdev_ashift > spa->spa_max_ashift)
1422                         spa->spa_max_ashift = vd->vdev_ashift;
1423                 if (vd->vdev_ashift < spa->spa_min_ashift)
1424                         spa->spa_min_ashift = vd->vdev_ashift;
1425         }
1426
1427         /*
1428          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1429          * resilver.  But don't do this if we are doing a reopen for a scrub,
1430          * since this would just restart the scrub we are already doing.
1431          */
1432         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1433             vdev_resilver_needed(vd, NULL, NULL))
1434                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1435
1436         return (0);
1437 }
1438
1439 /*
1440  * Called once the vdevs are all opened, this routine validates the label
1441  * contents.  This needs to be done before vdev_load() so that we don't
1442  * inadvertently do repair I/Os to the wrong device.
1443  *
1444  * If 'strict' is false ignore the spa guid check. This is necessary because
1445  * if the machine crashed during a re-guid the new guid might have been written
1446  * to all of the vdev labels, but not the cached config. The strict check
1447  * will be performed when the pool is opened again using the mos config.
1448  *
1449  * This function will only return failure if one of the vdevs indicates that it
1450  * has since been destroyed or exported.  This is only possible if
1451  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1452  * will be updated but the function will return 0.
1453  */
1454 int
1455 vdev_validate(vdev_t *vd, boolean_t strict)
1456 {
1457         spa_t *spa = vd->vdev_spa;
1458         nvlist_t *label;
1459         uint64_t guid = 0, top_guid;
1460         uint64_t state;
1461         int c;
1462
1463         for (c = 0; c < vd->vdev_children; c++)
1464                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1465                         return (SET_ERROR(EBADF));
1466
1467         /*
1468          * If the device has already failed, or was marked offline, don't do
1469          * any further validation.  Otherwise, label I/O will fail and we will
1470          * overwrite the previous state.
1471          */
1472         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1473                 uint64_t aux_guid = 0;
1474                 nvlist_t *nvl;
1475                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1476                     spa_last_synced_txg(spa) : -1ULL;
1477
1478                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1479                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1480                             VDEV_AUX_BAD_LABEL);
1481                         return (0);
1482                 }
1483
1484                 /*
1485                  * Determine if this vdev has been split off into another
1486                  * pool.  If so, then refuse to open it.
1487                  */
1488                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1489                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1490                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1491                             VDEV_AUX_SPLIT_POOL);
1492                         nvlist_free(label);
1493                         return (0);
1494                 }
1495
1496                 if (strict && (nvlist_lookup_uint64(label,
1497                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1498                     guid != spa_guid(spa))) {
1499                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1500                             VDEV_AUX_CORRUPT_DATA);
1501                         nvlist_free(label);
1502                         return (0);
1503                 }
1504
1505                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1506                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1507                     &aux_guid) != 0)
1508                         aux_guid = 0;
1509
1510                 /*
1511                  * If this vdev just became a top-level vdev because its
1512                  * sibling was detached, it will have adopted the parent's
1513                  * vdev guid -- but the label may or may not be on disk yet.
1514                  * Fortunately, either version of the label will have the
1515                  * same top guid, so if we're a top-level vdev, we can
1516                  * safely compare to that instead.
1517                  *
1518                  * If we split this vdev off instead, then we also check the
1519                  * original pool's guid.  We don't want to consider the vdev
1520                  * corrupt if it is partway through a split operation.
1521                  */
1522                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1523                     &guid) != 0 ||
1524                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1525                     &top_guid) != 0 ||
1526                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1527                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1528                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1529                             VDEV_AUX_CORRUPT_DATA);
1530                         nvlist_free(label);
1531                         return (0);
1532                 }
1533
1534                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1535                     &state) != 0) {
1536                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1537                             VDEV_AUX_CORRUPT_DATA);
1538                         nvlist_free(label);
1539                         return (0);
1540                 }
1541
1542                 nvlist_free(label);
1543
1544                 /*
1545                  * If this is a verbatim import, no need to check the
1546                  * state of the pool.
1547                  */
1548                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1549                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1550                     state != POOL_STATE_ACTIVE)
1551                         return (SET_ERROR(EBADF));
1552
1553                 /*
1554                  * If we were able to open and validate a vdev that was
1555                  * previously marked permanently unavailable, clear that state
1556                  * now.
1557                  */
1558                 if (vd->vdev_not_present)
1559                         vd->vdev_not_present = 0;
1560         }
1561
1562         return (0);
1563 }
1564
1565 /*
1566  * Close a virtual device.
1567  */
1568 void
1569 vdev_close(vdev_t *vd)
1570 {
1571         vdev_t *pvd = vd->vdev_parent;
1572         ASSERTV(spa_t *spa = vd->vdev_spa);
1573
1574         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1575
1576         /*
1577          * If our parent is reopening, then we are as well, unless we are
1578          * going offline.
1579          */
1580         if (pvd != NULL && pvd->vdev_reopening)
1581                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1582
1583         vd->vdev_ops->vdev_op_close(vd);
1584
1585         vdev_cache_purge(vd);
1586
1587         /*
1588          * We record the previous state before we close it, so that if we are
1589          * doing a reopen(), we don't generate FMA ereports if we notice that
1590          * it's still faulted.
1591          */
1592         vd->vdev_prevstate = vd->vdev_state;
1593
1594         if (vd->vdev_offline)
1595                 vd->vdev_state = VDEV_STATE_OFFLINE;
1596         else
1597                 vd->vdev_state = VDEV_STATE_CLOSED;
1598         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1599 }
1600
1601 void
1602 vdev_hold(vdev_t *vd)
1603 {
1604         spa_t *spa = vd->vdev_spa;
1605         int c;
1606
1607         ASSERT(spa_is_root(spa));
1608         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1609                 return;
1610
1611         for (c = 0; c < vd->vdev_children; c++)
1612                 vdev_hold(vd->vdev_child[c]);
1613
1614         if (vd->vdev_ops->vdev_op_leaf)
1615                 vd->vdev_ops->vdev_op_hold(vd);
1616 }
1617
1618 void
1619 vdev_rele(vdev_t *vd)
1620 {
1621         int c;
1622
1623         ASSERT(spa_is_root(vd->vdev_spa));
1624         for (c = 0; c < vd->vdev_children; c++)
1625                 vdev_rele(vd->vdev_child[c]);
1626
1627         if (vd->vdev_ops->vdev_op_leaf)
1628                 vd->vdev_ops->vdev_op_rele(vd);
1629 }
1630
1631 /*
1632  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1633  * reopen leaf vdevs which had previously been opened as they might deadlock
1634  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1635  * If the leaf has never been opened then open it, as usual.
1636  */
1637 void
1638 vdev_reopen(vdev_t *vd)
1639 {
1640         spa_t *spa = vd->vdev_spa;
1641
1642         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1643
1644         /* set the reopening flag unless we're taking the vdev offline */
1645         vd->vdev_reopening = !vd->vdev_offline;
1646         vdev_close(vd);
1647         (void) vdev_open(vd);
1648
1649         /*
1650          * Call vdev_validate() here to make sure we have the same device.
1651          * Otherwise, a device with an invalid label could be successfully
1652          * opened in response to vdev_reopen().
1653          */
1654         if (vd->vdev_aux) {
1655                 (void) vdev_validate_aux(vd);
1656                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1657                     vd->vdev_aux == &spa->spa_l2cache &&
1658                     !l2arc_vdev_present(vd))
1659                         l2arc_add_vdev(spa, vd);
1660         } else {
1661                 (void) vdev_validate(vd, B_TRUE);
1662         }
1663
1664         /*
1665          * Reassess parent vdev's health.
1666          */
1667         vdev_propagate_state(vd);
1668 }
1669
1670 int
1671 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1672 {
1673         int error;
1674
1675         /*
1676          * Normally, partial opens (e.g. of a mirror) are allowed.
1677          * For a create, however, we want to fail the request if
1678          * there are any components we can't open.
1679          */
1680         error = vdev_open(vd);
1681
1682         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1683                 vdev_close(vd);
1684                 return (error ? error : ENXIO);
1685         }
1686
1687         /*
1688          * Recursively load DTLs and initialize all labels.
1689          */
1690         if ((error = vdev_dtl_load(vd)) != 0 ||
1691             (error = vdev_label_init(vd, txg, isreplacing ?
1692             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1693                 vdev_close(vd);
1694                 return (error);
1695         }
1696
1697         return (0);
1698 }
1699
1700 void
1701 vdev_metaslab_set_size(vdev_t *vd)
1702 {
1703         /*
1704          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1705          */
1706         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1707         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1708 }
1709
1710 void
1711 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1712 {
1713         ASSERT(vd == vd->vdev_top);
1714         ASSERT(!vd->vdev_ishole);
1715         ASSERT(ISP2(flags));
1716         ASSERT(spa_writeable(vd->vdev_spa));
1717
1718         if (flags & VDD_METASLAB)
1719                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1720
1721         if (flags & VDD_DTL)
1722                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1723
1724         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1725 }
1726
1727 void
1728 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1729 {
1730         int c;
1731
1732         for (c = 0; c < vd->vdev_children; c++)
1733                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1734
1735         if (vd->vdev_ops->vdev_op_leaf)
1736                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1737 }
1738
1739 /*
1740  * DTLs.
1741  *
1742  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1743  * the vdev has less than perfect replication.  There are four kinds of DTL:
1744  *
1745  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1746  *
1747  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1748  *
1749  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1750  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1751  *      txgs that was scrubbed.
1752  *
1753  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1754  *      persistent errors or just some device being offline.
1755  *      Unlike the other three, the DTL_OUTAGE map is not generally
1756  *      maintained; it's only computed when needed, typically to
1757  *      determine whether a device can be detached.
1758  *
1759  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1760  * either has the data or it doesn't.
1761  *
1762  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1763  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1764  * if any child is less than fully replicated, then so is its parent.
1765  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1766  * comprising only those txgs which appear in 'maxfaults' or more children;
1767  * those are the txgs we don't have enough replication to read.  For example,
1768  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1769  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1770  * two child DTL_MISSING maps.
1771  *
1772  * It should be clear from the above that to compute the DTLs and outage maps
1773  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1774  * Therefore, that is all we keep on disk.  When loading the pool, or after
1775  * a configuration change, we generate all other DTLs from first principles.
1776  */
1777 void
1778 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1779 {
1780         range_tree_t *rt = vd->vdev_dtl[t];
1781
1782         ASSERT(t < DTL_TYPES);
1783         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1784         ASSERT(spa_writeable(vd->vdev_spa));
1785
1786         mutex_enter(rt->rt_lock);
1787         if (!range_tree_contains(rt, txg, size))
1788                 range_tree_add(rt, txg, size);
1789         mutex_exit(rt->rt_lock);
1790 }
1791
1792 boolean_t
1793 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1794 {
1795         range_tree_t *rt = vd->vdev_dtl[t];
1796         boolean_t dirty = B_FALSE;
1797
1798         ASSERT(t < DTL_TYPES);
1799         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1800
1801         mutex_enter(rt->rt_lock);
1802         if (range_tree_space(rt) != 0)
1803                 dirty = range_tree_contains(rt, txg, size);
1804         mutex_exit(rt->rt_lock);
1805
1806         return (dirty);
1807 }
1808
1809 boolean_t
1810 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1811 {
1812         range_tree_t *rt = vd->vdev_dtl[t];
1813         boolean_t empty;
1814
1815         mutex_enter(rt->rt_lock);
1816         empty = (range_tree_space(rt) == 0);
1817         mutex_exit(rt->rt_lock);
1818
1819         return (empty);
1820 }
1821
1822 /*
1823  * Returns the lowest txg in the DTL range.
1824  */
1825 static uint64_t
1826 vdev_dtl_min(vdev_t *vd)
1827 {
1828         range_seg_t *rs;
1829
1830         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1831         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1832         ASSERT0(vd->vdev_children);
1833
1834         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1835         return (rs->rs_start - 1);
1836 }
1837
1838 /*
1839  * Returns the highest txg in the DTL.
1840  */
1841 static uint64_t
1842 vdev_dtl_max(vdev_t *vd)
1843 {
1844         range_seg_t *rs;
1845
1846         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1847         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1848         ASSERT0(vd->vdev_children);
1849
1850         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1851         return (rs->rs_end);
1852 }
1853
1854 /*
1855  * Determine if a resilvering vdev should remove any DTL entries from
1856  * its range. If the vdev was resilvering for the entire duration of the
1857  * scan then it should excise that range from its DTLs. Otherwise, this
1858  * vdev is considered partially resilvered and should leave its DTL
1859  * entries intact. The comment in vdev_dtl_reassess() describes how we
1860  * excise the DTLs.
1861  */
1862 static boolean_t
1863 vdev_dtl_should_excise(vdev_t *vd)
1864 {
1865         spa_t *spa = vd->vdev_spa;
1866         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1867
1868         ASSERT0(scn->scn_phys.scn_errors);
1869         ASSERT0(vd->vdev_children);
1870
1871         if (vd->vdev_state < VDEV_STATE_DEGRADED)
1872                 return (B_FALSE);
1873
1874         if (vd->vdev_resilver_txg == 0 ||
1875             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1876                 return (B_TRUE);
1877
1878         /*
1879          * When a resilver is initiated the scan will assign the scn_max_txg
1880          * value to the highest txg value that exists in all DTLs. If this
1881          * device's max DTL is not part of this scan (i.e. it is not in
1882          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1883          * for excision.
1884          */
1885         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1886                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1887                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1888                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1889                 return (B_TRUE);
1890         }
1891         return (B_FALSE);
1892 }
1893
1894 /*
1895  * Reassess DTLs after a config change or scrub completion.
1896  */
1897 void
1898 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1899 {
1900         spa_t *spa = vd->vdev_spa;
1901         avl_tree_t reftree;
1902         int c, t, minref;
1903
1904         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1905
1906         for (c = 0; c < vd->vdev_children; c++)
1907                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1908                     scrub_txg, scrub_done);
1909
1910         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1911                 return;
1912
1913         if (vd->vdev_ops->vdev_op_leaf) {
1914                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1915
1916                 mutex_enter(&vd->vdev_dtl_lock);
1917
1918                 /*
1919                  * If we've completed a scan cleanly then determine
1920                  * if this vdev should remove any DTLs. We only want to
1921                  * excise regions on vdevs that were available during
1922                  * the entire duration of this scan.
1923                  */
1924                 if (scrub_txg != 0 &&
1925                     (spa->spa_scrub_started ||
1926                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1927                     vdev_dtl_should_excise(vd)) {
1928                         /*
1929                          * We completed a scrub up to scrub_txg.  If we
1930                          * did it without rebooting, then the scrub dtl
1931                          * will be valid, so excise the old region and
1932                          * fold in the scrub dtl.  Otherwise, leave the
1933                          * dtl as-is if there was an error.
1934                          *
1935                          * There's little trick here: to excise the beginning
1936                          * of the DTL_MISSING map, we put it into a reference
1937                          * tree and then add a segment with refcnt -1 that
1938                          * covers the range [0, scrub_txg).  This means
1939                          * that each txg in that range has refcnt -1 or 0.
1940                          * We then add DTL_SCRUB with a refcnt of 2, so that
1941                          * entries in the range [0, scrub_txg) will have a
1942                          * positive refcnt -- either 1 or 2.  We then convert
1943                          * the reference tree into the new DTL_MISSING map.
1944                          */
1945                         space_reftree_create(&reftree);
1946                         space_reftree_add_map(&reftree,
1947                             vd->vdev_dtl[DTL_MISSING], 1);
1948                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1949                         space_reftree_add_map(&reftree,
1950                             vd->vdev_dtl[DTL_SCRUB], 2);
1951                         space_reftree_generate_map(&reftree,
1952                             vd->vdev_dtl[DTL_MISSING], 1);
1953                         space_reftree_destroy(&reftree);
1954                 }
1955                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1956                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1957                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1958                 if (scrub_done)
1959                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1960                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1961                 if (!vdev_readable(vd))
1962                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1963                 else
1964                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1965                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1966
1967                 /*
1968                  * If the vdev was resilvering and no longer has any
1969                  * DTLs then reset its resilvering flag and dirty
1970                  * the top level so that we persist the change.
1971                  */
1972                 if (vd->vdev_resilver_txg != 0 &&
1973                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1974                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1975                         vd->vdev_resilver_txg = 0;
1976                         vdev_config_dirty(vd->vdev_top);
1977                 }
1978
1979                 mutex_exit(&vd->vdev_dtl_lock);
1980
1981                 if (txg != 0)
1982                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1983                 return;
1984         }
1985
1986         mutex_enter(&vd->vdev_dtl_lock);
1987         for (t = 0; t < DTL_TYPES; t++) {
1988                 int c;
1989
1990                 /* account for child's outage in parent's missing map */
1991                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1992                 if (t == DTL_SCRUB)
1993                         continue;                       /* leaf vdevs only */
1994                 if (t == DTL_PARTIAL)
1995                         minref = 1;                     /* i.e. non-zero */
1996                 else if (vd->vdev_nparity != 0)
1997                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1998                 else
1999                         minref = vd->vdev_children;     /* any kind of mirror */
2000                 space_reftree_create(&reftree);
2001                 for (c = 0; c < vd->vdev_children; c++) {
2002                         vdev_t *cvd = vd->vdev_child[c];
2003                         mutex_enter(&cvd->vdev_dtl_lock);
2004                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2005                         mutex_exit(&cvd->vdev_dtl_lock);
2006                 }
2007                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2008                 space_reftree_destroy(&reftree);
2009         }
2010         mutex_exit(&vd->vdev_dtl_lock);
2011 }
2012
2013 int
2014 vdev_dtl_load(vdev_t *vd)
2015 {
2016         spa_t *spa = vd->vdev_spa;
2017         objset_t *mos = spa->spa_meta_objset;
2018         int error = 0;
2019         int c;
2020
2021         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2022                 ASSERT(!vd->vdev_ishole);
2023
2024                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2025                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2026                 if (error)
2027                         return (error);
2028                 ASSERT(vd->vdev_dtl_sm != NULL);
2029
2030                 mutex_enter(&vd->vdev_dtl_lock);
2031
2032                 /*
2033                  * Now that we've opened the space_map we need to update
2034                  * the in-core DTL.
2035                  */
2036                 space_map_update(vd->vdev_dtl_sm);
2037
2038                 error = space_map_load(vd->vdev_dtl_sm,
2039                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2040                 mutex_exit(&vd->vdev_dtl_lock);
2041
2042                 return (error);
2043         }
2044
2045         for (c = 0; c < vd->vdev_children; c++) {
2046                 error = vdev_dtl_load(vd->vdev_child[c]);
2047                 if (error != 0)
2048                         break;
2049         }
2050
2051         return (error);
2052 }
2053
2054 void
2055 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2056 {
2057         spa_t *spa = vd->vdev_spa;
2058
2059         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2060         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2061             zapobj, tx));
2062 }
2063
2064 uint64_t
2065 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2066 {
2067         spa_t *spa = vd->vdev_spa;
2068         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2069             DMU_OT_NONE, 0, tx);
2070
2071         ASSERT(zap != 0);
2072         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2073             zap, tx));
2074
2075         return (zap);
2076 }
2077
2078 void
2079 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2080 {
2081         uint64_t i;
2082
2083         if (vd->vdev_ops != &vdev_hole_ops &&
2084             vd->vdev_ops != &vdev_missing_ops &&
2085             vd->vdev_ops != &vdev_root_ops &&
2086             !vd->vdev_top->vdev_removing) {
2087                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2088                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2089                 }
2090                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2091                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2092                 }
2093         }
2094         for (i = 0; i < vd->vdev_children; i++) {
2095                 vdev_construct_zaps(vd->vdev_child[i], tx);
2096         }
2097 }
2098
2099 void
2100 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2101 {
2102         spa_t *spa = vd->vdev_spa;
2103         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2104         objset_t *mos = spa->spa_meta_objset;
2105         range_tree_t *rtsync;
2106         kmutex_t rtlock;
2107         dmu_tx_t *tx;
2108         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2109
2110         ASSERT(!vd->vdev_ishole);
2111         ASSERT(vd->vdev_ops->vdev_op_leaf);
2112
2113         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2114
2115         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2116                 mutex_enter(&vd->vdev_dtl_lock);
2117                 space_map_free(vd->vdev_dtl_sm, tx);
2118                 space_map_close(vd->vdev_dtl_sm);
2119                 vd->vdev_dtl_sm = NULL;
2120                 mutex_exit(&vd->vdev_dtl_lock);
2121
2122                 /*
2123                  * We only destroy the leaf ZAP for detached leaves or for
2124                  * removed log devices. Removed data devices handle leaf ZAP
2125                  * cleanup later, once cancellation is no longer possible.
2126                  */
2127                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2128                     vd->vdev_top->vdev_islog)) {
2129                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2130                         vd->vdev_leaf_zap = 0;
2131                 }
2132
2133                 dmu_tx_commit(tx);
2134                 return;
2135         }
2136
2137         if (vd->vdev_dtl_sm == NULL) {
2138                 uint64_t new_object;
2139
2140                 new_object = space_map_alloc(mos, tx);
2141                 VERIFY3U(new_object, !=, 0);
2142
2143                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2144                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2145                 ASSERT(vd->vdev_dtl_sm != NULL);
2146         }
2147
2148         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2149
2150         rtsync = range_tree_create(NULL, NULL, &rtlock);
2151
2152         mutex_enter(&rtlock);
2153
2154         mutex_enter(&vd->vdev_dtl_lock);
2155         range_tree_walk(rt, range_tree_add, rtsync);
2156         mutex_exit(&vd->vdev_dtl_lock);
2157
2158         space_map_truncate(vd->vdev_dtl_sm, tx);
2159         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2160         range_tree_vacate(rtsync, NULL, NULL);
2161
2162         range_tree_destroy(rtsync);
2163
2164         mutex_exit(&rtlock);
2165         mutex_destroy(&rtlock);
2166
2167         /*
2168          * If the object for the space map has changed then dirty
2169          * the top level so that we update the config.
2170          */
2171         if (object != space_map_object(vd->vdev_dtl_sm)) {
2172                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2173                     "new object %llu", txg, spa_name(spa), object,
2174                     space_map_object(vd->vdev_dtl_sm));
2175                 vdev_config_dirty(vd->vdev_top);
2176         }
2177
2178         dmu_tx_commit(tx);
2179
2180         mutex_enter(&vd->vdev_dtl_lock);
2181         space_map_update(vd->vdev_dtl_sm);
2182         mutex_exit(&vd->vdev_dtl_lock);
2183 }
2184
2185 /*
2186  * Determine whether the specified vdev can be offlined/detached/removed
2187  * without losing data.
2188  */
2189 boolean_t
2190 vdev_dtl_required(vdev_t *vd)
2191 {
2192         spa_t *spa = vd->vdev_spa;
2193         vdev_t *tvd = vd->vdev_top;
2194         uint8_t cant_read = vd->vdev_cant_read;
2195         boolean_t required;
2196
2197         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2198
2199         if (vd == spa->spa_root_vdev || vd == tvd)
2200                 return (B_TRUE);
2201
2202         /*
2203          * Temporarily mark the device as unreadable, and then determine
2204          * whether this results in any DTL outages in the top-level vdev.
2205          * If not, we can safely offline/detach/remove the device.
2206          */
2207         vd->vdev_cant_read = B_TRUE;
2208         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2209         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2210         vd->vdev_cant_read = cant_read;
2211         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2212
2213         if (!required && zio_injection_enabled)
2214                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2215
2216         return (required);
2217 }
2218
2219 /*
2220  * Determine if resilver is needed, and if so the txg range.
2221  */
2222 boolean_t
2223 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2224 {
2225         boolean_t needed = B_FALSE;
2226         uint64_t thismin = UINT64_MAX;
2227         uint64_t thismax = 0;
2228         int c;
2229
2230         if (vd->vdev_children == 0) {
2231                 mutex_enter(&vd->vdev_dtl_lock);
2232                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2233                     vdev_writeable(vd)) {
2234
2235                         thismin = vdev_dtl_min(vd);
2236                         thismax = vdev_dtl_max(vd);
2237                         needed = B_TRUE;
2238                 }
2239                 mutex_exit(&vd->vdev_dtl_lock);
2240         } else {
2241                 for (c = 0; c < vd->vdev_children; c++) {
2242                         vdev_t *cvd = vd->vdev_child[c];
2243                         uint64_t cmin, cmax;
2244
2245                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2246                                 thismin = MIN(thismin, cmin);
2247                                 thismax = MAX(thismax, cmax);
2248                                 needed = B_TRUE;
2249                         }
2250                 }
2251         }
2252
2253         if (needed && minp) {
2254                 *minp = thismin;
2255                 *maxp = thismax;
2256         }
2257         return (needed);
2258 }
2259
2260 void
2261 vdev_load(vdev_t *vd)
2262 {
2263         int c;
2264
2265         /*
2266          * Recursively load all children.
2267          */
2268         for (c = 0; c < vd->vdev_children; c++)
2269                 vdev_load(vd->vdev_child[c]);
2270
2271         /*
2272          * If this is a top-level vdev, initialize its metaslabs.
2273          */
2274         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2275             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2276             vdev_metaslab_init(vd, 0) != 0))
2277                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2278                     VDEV_AUX_CORRUPT_DATA);
2279         /*
2280          * If this is a leaf vdev, load its DTL.
2281          */
2282         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2283                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2284                     VDEV_AUX_CORRUPT_DATA);
2285 }
2286
2287 /*
2288  * The special vdev case is used for hot spares and l2cache devices.  Its
2289  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2290  * we make sure that we can open the underlying device, then try to read the
2291  * label, and make sure that the label is sane and that it hasn't been
2292  * repurposed to another pool.
2293  */
2294 int
2295 vdev_validate_aux(vdev_t *vd)
2296 {
2297         nvlist_t *label;
2298         uint64_t guid, version;
2299         uint64_t state;
2300
2301         if (!vdev_readable(vd))
2302                 return (0);
2303
2304         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2305                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2306                     VDEV_AUX_CORRUPT_DATA);
2307                 return (-1);
2308         }
2309
2310         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2311             !SPA_VERSION_IS_SUPPORTED(version) ||
2312             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2313             guid != vd->vdev_guid ||
2314             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2315                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2316                     VDEV_AUX_CORRUPT_DATA);
2317                 nvlist_free(label);
2318                 return (-1);
2319         }
2320
2321         /*
2322          * We don't actually check the pool state here.  If it's in fact in
2323          * use by another pool, we update this fact on the fly when requested.
2324          */
2325         nvlist_free(label);
2326         return (0);
2327 }
2328
2329 void
2330 vdev_remove(vdev_t *vd, uint64_t txg)
2331 {
2332         spa_t *spa = vd->vdev_spa;
2333         objset_t *mos = spa->spa_meta_objset;
2334         dmu_tx_t *tx;
2335         int m, i;
2336
2337         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2338         ASSERT(vd == vd->vdev_top);
2339         ASSERT3U(txg, ==, spa_syncing_txg(spa));
2340
2341         if (vd->vdev_ms != NULL) {
2342                 metaslab_group_t *mg = vd->vdev_mg;
2343
2344                 metaslab_group_histogram_verify(mg);
2345                 metaslab_class_histogram_verify(mg->mg_class);
2346
2347                 for (m = 0; m < vd->vdev_ms_count; m++) {
2348                         metaslab_t *msp = vd->vdev_ms[m];
2349
2350                         if (msp == NULL || msp->ms_sm == NULL)
2351                                 continue;
2352
2353                         mutex_enter(&msp->ms_lock);
2354                         /*
2355                          * If the metaslab was not loaded when the vdev
2356                          * was removed then the histogram accounting may
2357                          * not be accurate. Update the histogram information
2358                          * here so that we ensure that the metaslab group
2359                          * and metaslab class are up-to-date.
2360                          */
2361                         metaslab_group_histogram_remove(mg, msp);
2362
2363                         VERIFY0(space_map_allocated(msp->ms_sm));
2364                         space_map_free(msp->ms_sm, tx);
2365                         space_map_close(msp->ms_sm);
2366                         msp->ms_sm = NULL;
2367                         mutex_exit(&msp->ms_lock);
2368                 }
2369
2370                 metaslab_group_histogram_verify(mg);
2371                 metaslab_class_histogram_verify(mg->mg_class);
2372                 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2373                         ASSERT0(mg->mg_histogram[i]);
2374
2375         }
2376
2377         if (vd->vdev_ms_array) {
2378                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2379                 vd->vdev_ms_array = 0;
2380         }
2381
2382         if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2383                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2384                 vd->vdev_top_zap = 0;
2385         }
2386         dmu_tx_commit(tx);
2387 }
2388
2389 void
2390 vdev_sync_done(vdev_t *vd, uint64_t txg)
2391 {
2392         metaslab_t *msp;
2393         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2394
2395         ASSERT(!vd->vdev_ishole);
2396
2397         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2398                 metaslab_sync_done(msp, txg);
2399
2400         if (reassess)
2401                 metaslab_sync_reassess(vd->vdev_mg);
2402 }
2403
2404 void
2405 vdev_sync(vdev_t *vd, uint64_t txg)
2406 {
2407         spa_t *spa = vd->vdev_spa;
2408         vdev_t *lvd;
2409         metaslab_t *msp;
2410         dmu_tx_t *tx;
2411
2412         ASSERT(!vd->vdev_ishole);
2413
2414         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2415                 ASSERT(vd == vd->vdev_top);
2416                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2417                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2418                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2419                 ASSERT(vd->vdev_ms_array != 0);
2420                 vdev_config_dirty(vd);
2421                 dmu_tx_commit(tx);
2422         }
2423
2424         /*
2425          * Remove the metadata associated with this vdev once it's empty.
2426          */
2427         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2428                 vdev_remove(vd, txg);
2429
2430         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2431                 metaslab_sync(msp, txg);
2432                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2433         }
2434
2435         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2436                 vdev_dtl_sync(lvd, txg);
2437
2438         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2439 }
2440
2441 uint64_t
2442 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2443 {
2444         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2445 }
2446
2447 /*
2448  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2449  * not be opened, and no I/O is attempted.
2450  */
2451 int
2452 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2453 {
2454         vdev_t *vd, *tvd;
2455
2456         spa_vdev_state_enter(spa, SCL_NONE);
2457
2458         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2459                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2460
2461         if (!vd->vdev_ops->vdev_op_leaf)
2462                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2463
2464         tvd = vd->vdev_top;
2465
2466         /*
2467          * We don't directly use the aux state here, but if we do a
2468          * vdev_reopen(), we need this value to be present to remember why we
2469          * were faulted.
2470          */
2471         vd->vdev_label_aux = aux;
2472
2473         /*
2474          * Faulted state takes precedence over degraded.
2475          */
2476         vd->vdev_delayed_close = B_FALSE;
2477         vd->vdev_faulted = 1ULL;
2478         vd->vdev_degraded = 0ULL;
2479         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2480
2481         /*
2482          * If this device has the only valid copy of the data, then
2483          * back off and simply mark the vdev as degraded instead.
2484          */
2485         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2486                 vd->vdev_degraded = 1ULL;
2487                 vd->vdev_faulted = 0ULL;
2488
2489                 /*
2490                  * If we reopen the device and it's not dead, only then do we
2491                  * mark it degraded.
2492                  */
2493                 vdev_reopen(tvd);
2494
2495                 if (vdev_readable(vd))
2496                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2497         }
2498
2499         return (spa_vdev_state_exit(spa, vd, 0));
2500 }
2501
2502 /*
2503  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2504  * user that something is wrong.  The vdev continues to operate as normal as far
2505  * as I/O is concerned.
2506  */
2507 int
2508 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2509 {
2510         vdev_t *vd;
2511
2512         spa_vdev_state_enter(spa, SCL_NONE);
2513
2514         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2515                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2516
2517         if (!vd->vdev_ops->vdev_op_leaf)
2518                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2519
2520         /*
2521          * If the vdev is already faulted, then don't do anything.
2522          */
2523         if (vd->vdev_faulted || vd->vdev_degraded)
2524                 return (spa_vdev_state_exit(spa, NULL, 0));
2525
2526         vd->vdev_degraded = 1ULL;
2527         if (!vdev_is_dead(vd))
2528                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2529                     aux);
2530
2531         return (spa_vdev_state_exit(spa, vd, 0));
2532 }
2533
2534 /*
2535  * Online the given vdev.
2536  *
2537  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2538  * spare device should be detached when the device finishes resilvering.
2539  * Second, the online should be treated like a 'test' online case, so no FMA
2540  * events are generated if the device fails to open.
2541  */
2542 int
2543 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2544 {
2545         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2546         boolean_t wasoffline;
2547         vdev_state_t oldstate;
2548
2549         spa_vdev_state_enter(spa, SCL_NONE);
2550
2551         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2552                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2553
2554         if (!vd->vdev_ops->vdev_op_leaf)
2555                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2556
2557         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2558         oldstate = vd->vdev_state;
2559
2560         tvd = vd->vdev_top;
2561         vd->vdev_offline = B_FALSE;
2562         vd->vdev_tmpoffline = B_FALSE;
2563         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2564         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2565
2566         /* XXX - L2ARC 1.0 does not support expansion */
2567         if (!vd->vdev_aux) {
2568                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2569                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2570         }
2571
2572         vdev_reopen(tvd);
2573         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2574
2575         if (!vd->vdev_aux) {
2576                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2577                         pvd->vdev_expanding = B_FALSE;
2578         }
2579
2580         if (newstate)
2581                 *newstate = vd->vdev_state;
2582         if ((flags & ZFS_ONLINE_UNSPARE) &&
2583             !vdev_is_dead(vd) && vd->vdev_parent &&
2584             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2585             vd->vdev_parent->vdev_child[0] == vd)
2586                 vd->vdev_unspare = B_TRUE;
2587
2588         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2589
2590                 /* XXX - L2ARC 1.0 does not support expansion */
2591                 if (vd->vdev_aux)
2592                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2593                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2594         }
2595
2596         if (wasoffline ||
2597             (oldstate < VDEV_STATE_DEGRADED &&
2598             vd->vdev_state >= VDEV_STATE_DEGRADED))
2599                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2600
2601         return (spa_vdev_state_exit(spa, vd, 0));
2602 }
2603
2604 static int
2605 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2606 {
2607         vdev_t *vd, *tvd;
2608         int error = 0;
2609         uint64_t generation;
2610         metaslab_group_t *mg;
2611
2612 top:
2613         spa_vdev_state_enter(spa, SCL_ALLOC);
2614
2615         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2616                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2617
2618         if (!vd->vdev_ops->vdev_op_leaf)
2619                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2620
2621         tvd = vd->vdev_top;
2622         mg = tvd->vdev_mg;
2623         generation = spa->spa_config_generation + 1;
2624
2625         /*
2626          * If the device isn't already offline, try to offline it.
2627          */
2628         if (!vd->vdev_offline) {
2629                 /*
2630                  * If this device has the only valid copy of some data,
2631                  * don't allow it to be offlined. Log devices are always
2632                  * expendable.
2633                  */
2634                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2635                     vdev_dtl_required(vd))
2636                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2637
2638                 /*
2639                  * If the top-level is a slog and it has had allocations
2640                  * then proceed.  We check that the vdev's metaslab group
2641                  * is not NULL since it's possible that we may have just
2642                  * added this vdev but not yet initialized its metaslabs.
2643                  */
2644                 if (tvd->vdev_islog && mg != NULL) {
2645                         /*
2646                          * Prevent any future allocations.
2647                          */
2648                         metaslab_group_passivate(mg);
2649                         (void) spa_vdev_state_exit(spa, vd, 0);
2650
2651                         error = spa_offline_log(spa);
2652
2653                         spa_vdev_state_enter(spa, SCL_ALLOC);
2654
2655                         /*
2656                          * Check to see if the config has changed.
2657                          */
2658                         if (error || generation != spa->spa_config_generation) {
2659                                 metaslab_group_activate(mg);
2660                                 if (error)
2661                                         return (spa_vdev_state_exit(spa,
2662                                             vd, error));
2663                                 (void) spa_vdev_state_exit(spa, vd, 0);
2664                                 goto top;
2665                         }
2666                         ASSERT0(tvd->vdev_stat.vs_alloc);
2667                 }
2668
2669                 /*
2670                  * Offline this device and reopen its top-level vdev.
2671                  * If the top-level vdev is a log device then just offline
2672                  * it. Otherwise, if this action results in the top-level
2673                  * vdev becoming unusable, undo it and fail the request.
2674                  */
2675                 vd->vdev_offline = B_TRUE;
2676                 vdev_reopen(tvd);
2677
2678                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2679                     vdev_is_dead(tvd)) {
2680                         vd->vdev_offline = B_FALSE;
2681                         vdev_reopen(tvd);
2682                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2683                 }
2684
2685                 /*
2686                  * Add the device back into the metaslab rotor so that
2687                  * once we online the device it's open for business.
2688                  */
2689                 if (tvd->vdev_islog && mg != NULL)
2690                         metaslab_group_activate(mg);
2691         }
2692
2693         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2694
2695         return (spa_vdev_state_exit(spa, vd, 0));
2696 }
2697
2698 int
2699 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2700 {
2701         int error;
2702
2703         mutex_enter(&spa->spa_vdev_top_lock);
2704         error = vdev_offline_locked(spa, guid, flags);
2705         mutex_exit(&spa->spa_vdev_top_lock);
2706
2707         return (error);
2708 }
2709
2710 /*
2711  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2712  * vdev_offline(), we assume the spa config is locked.  We also clear all
2713  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2714  */
2715 void
2716 vdev_clear(spa_t *spa, vdev_t *vd)
2717 {
2718         vdev_t *rvd = spa->spa_root_vdev;
2719         int c;
2720
2721         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2722
2723         if (vd == NULL)
2724                 vd = rvd;
2725
2726         vd->vdev_stat.vs_read_errors = 0;
2727         vd->vdev_stat.vs_write_errors = 0;
2728         vd->vdev_stat.vs_checksum_errors = 0;
2729
2730         for (c = 0; c < vd->vdev_children; c++)
2731                 vdev_clear(spa, vd->vdev_child[c]);
2732
2733         /*
2734          * If we're in the FAULTED state or have experienced failed I/O, then
2735          * clear the persistent state and attempt to reopen the device.  We
2736          * also mark the vdev config dirty, so that the new faulted state is
2737          * written out to disk.
2738          */
2739         if (vd->vdev_faulted || vd->vdev_degraded ||
2740             !vdev_readable(vd) || !vdev_writeable(vd)) {
2741
2742                 /*
2743                  * When reopening in response to a clear event, it may be due to
2744                  * a fmadm repair request.  In this case, if the device is
2745                  * still broken, we want to still post the ereport again.
2746                  */
2747                 vd->vdev_forcefault = B_TRUE;
2748
2749                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2750                 vd->vdev_cant_read = B_FALSE;
2751                 vd->vdev_cant_write = B_FALSE;
2752
2753                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2754
2755                 vd->vdev_forcefault = B_FALSE;
2756
2757                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2758                         vdev_state_dirty(vd->vdev_top);
2759
2760                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2761                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2762
2763                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2764         }
2765
2766         /*
2767          * When clearing a FMA-diagnosed fault, we always want to
2768          * unspare the device, as we assume that the original spare was
2769          * done in response to the FMA fault.
2770          */
2771         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2772             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2773             vd->vdev_parent->vdev_child[0] == vd)
2774                 vd->vdev_unspare = B_TRUE;
2775 }
2776
2777 boolean_t
2778 vdev_is_dead(vdev_t *vd)
2779 {
2780         /*
2781          * Holes and missing devices are always considered "dead".
2782          * This simplifies the code since we don't have to check for
2783          * these types of devices in the various code paths.
2784          * Instead we rely on the fact that we skip over dead devices
2785          * before issuing I/O to them.
2786          */
2787         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2788             vd->vdev_ops == &vdev_missing_ops);
2789 }
2790
2791 boolean_t
2792 vdev_readable(vdev_t *vd)
2793 {
2794         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2795 }
2796
2797 boolean_t
2798 vdev_writeable(vdev_t *vd)
2799 {
2800         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2801 }
2802
2803 boolean_t
2804 vdev_allocatable(vdev_t *vd)
2805 {
2806         uint64_t state = vd->vdev_state;
2807
2808         /*
2809          * We currently allow allocations from vdevs which may be in the
2810          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2811          * fails to reopen then we'll catch it later when we're holding
2812          * the proper locks.  Note that we have to get the vdev state
2813          * in a local variable because although it changes atomically,
2814          * we're asking two separate questions about it.
2815          */
2816         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2817             !vd->vdev_cant_write && !vd->vdev_ishole &&
2818             vd->vdev_mg->mg_initialized);
2819 }
2820
2821 boolean_t
2822 vdev_accessible(vdev_t *vd, zio_t *zio)
2823 {
2824         ASSERT(zio->io_vd == vd);
2825
2826         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2827                 return (B_FALSE);
2828
2829         if (zio->io_type == ZIO_TYPE_READ)
2830                 return (!vd->vdev_cant_read);
2831
2832         if (zio->io_type == ZIO_TYPE_WRITE)
2833                 return (!vd->vdev_cant_write);
2834
2835         return (B_TRUE);
2836 }
2837
2838 static void
2839 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2840 {
2841         int t;
2842         for (t = 0; t < ZIO_TYPES; t++) {
2843                 vs->vs_ops[t] += cvs->vs_ops[t];
2844                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2845         }
2846
2847         cvs->vs_scan_removing = cvd->vdev_removing;
2848 }
2849
2850 /*
2851  * Get extended stats
2852  */
2853 static void
2854 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2855 {
2856         int t, b;
2857         for (t = 0; t < ZIO_TYPES; t++) {
2858                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2859                         vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2860
2861                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2862                         vsx->vsx_total_histo[t][b] +=
2863                             cvsx->vsx_total_histo[t][b];
2864                 }
2865         }
2866
2867         for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2868                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2869                         vsx->vsx_queue_histo[t][b] +=
2870                             cvsx->vsx_queue_histo[t][b];
2871                 }
2872                 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2873                 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2874
2875                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2876                         vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2877
2878                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2879                         vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2880         }
2881
2882 }
2883
2884 /*
2885  * Get statistics for the given vdev.
2886  */
2887 static void
2888 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2889 {
2890         int c, t;
2891         /*
2892          * If we're getting stats on the root vdev, aggregate the I/O counts
2893          * over all top-level vdevs (i.e. the direct children of the root).
2894          */
2895         if (!vd->vdev_ops->vdev_op_leaf) {
2896                 if (vs) {
2897                         memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2898                         memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2899                 }
2900                 if (vsx)
2901                         memset(vsx, 0, sizeof (*vsx));
2902
2903                 for (c = 0; c < vd->vdev_children; c++) {
2904                         vdev_t *cvd = vd->vdev_child[c];
2905                         vdev_stat_t *cvs = &cvd->vdev_stat;
2906                         vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2907
2908                         vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2909                         if (vs)
2910                                 vdev_get_child_stat(cvd, vs, cvs);
2911                         if (vsx)
2912                                 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2913
2914                 }
2915         } else {
2916                 /*
2917                  * We're a leaf.  Just copy our ZIO active queue stats in.  The
2918                  * other leaf stats are updated in vdev_stat_update().
2919                  */
2920                 if (!vsx)
2921                         return;
2922
2923                 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2924
2925                 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2926                         vsx->vsx_active_queue[t] =
2927                             vd->vdev_queue.vq_class[t].vqc_active;
2928                         vsx->vsx_pend_queue[t] = avl_numnodes(
2929                             &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2930                 }
2931         }
2932 }
2933
2934 void
2935 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2936 {
2937         vdev_t *tvd = vd->vdev_top;
2938         mutex_enter(&vd->vdev_stat_lock);
2939         if (vs) {
2940                 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2941                 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2942                 vs->vs_state = vd->vdev_state;
2943                 vs->vs_rsize = vdev_get_min_asize(vd);
2944                 if (vd->vdev_ops->vdev_op_leaf)
2945                         vs->vs_rsize += VDEV_LABEL_START_SIZE +
2946                             VDEV_LABEL_END_SIZE;
2947                 /*
2948                  * Report expandable space on top-level, non-auxillary devices
2949                  * only. The expandable space is reported in terms of metaslab
2950                  * sized units since that determines how much space the pool
2951                  * can expand.
2952                  */
2953                 if (vd->vdev_aux == NULL && tvd != NULL) {
2954                         vs->vs_esize = P2ALIGN(
2955                             vd->vdev_max_asize - vd->vdev_asize,
2956                             1ULL << tvd->vdev_ms_shift);
2957                 }
2958                 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2959                 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2960                     !vd->vdev_ishole) {
2961                         vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2962                 }
2963         }
2964
2965         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
2966         vdev_get_stats_ex_impl(vd, vs, vsx);
2967         mutex_exit(&vd->vdev_stat_lock);
2968 }
2969
2970 void
2971 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2972 {
2973         return (vdev_get_stats_ex(vd, vs, NULL));
2974 }
2975
2976 void
2977 vdev_clear_stats(vdev_t *vd)
2978 {
2979         mutex_enter(&vd->vdev_stat_lock);
2980         vd->vdev_stat.vs_space = 0;
2981         vd->vdev_stat.vs_dspace = 0;
2982         vd->vdev_stat.vs_alloc = 0;
2983         mutex_exit(&vd->vdev_stat_lock);
2984 }
2985
2986 void
2987 vdev_scan_stat_init(vdev_t *vd)
2988 {
2989         vdev_stat_t *vs = &vd->vdev_stat;
2990         int c;
2991
2992         for (c = 0; c < vd->vdev_children; c++)
2993                 vdev_scan_stat_init(vd->vdev_child[c]);
2994
2995         mutex_enter(&vd->vdev_stat_lock);
2996         vs->vs_scan_processed = 0;
2997         mutex_exit(&vd->vdev_stat_lock);
2998 }
2999
3000 void
3001 vdev_stat_update(zio_t *zio, uint64_t psize)
3002 {
3003         spa_t *spa = zio->io_spa;
3004         vdev_t *rvd = spa->spa_root_vdev;
3005         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3006         vdev_t *pvd;
3007         uint64_t txg = zio->io_txg;
3008         vdev_stat_t *vs = &vd->vdev_stat;
3009         vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
3010         zio_type_t type = zio->io_type;
3011         int flags = zio->io_flags;
3012
3013         /*
3014          * If this i/o is a gang leader, it didn't do any actual work.
3015          */
3016         if (zio->io_gang_tree)
3017                 return;
3018
3019         if (zio->io_error == 0) {
3020                 /*
3021                  * If this is a root i/o, don't count it -- we've already
3022                  * counted the top-level vdevs, and vdev_get_stats() will
3023                  * aggregate them when asked.  This reduces contention on
3024                  * the root vdev_stat_lock and implicitly handles blocks
3025                  * that compress away to holes, for which there is no i/o.
3026                  * (Holes never create vdev children, so all the counters
3027                  * remain zero, which is what we want.)
3028                  *
3029                  * Note: this only applies to successful i/o (io_error == 0)
3030                  * because unlike i/o counts, errors are not additive.
3031                  * When reading a ditto block, for example, failure of
3032                  * one top-level vdev does not imply a root-level error.
3033                  */
3034                 if (vd == rvd)
3035                         return;
3036
3037                 ASSERT(vd == zio->io_vd);
3038
3039                 if (flags & ZIO_FLAG_IO_BYPASS)
3040                         return;
3041
3042                 mutex_enter(&vd->vdev_stat_lock);
3043
3044                 if (flags & ZIO_FLAG_IO_REPAIR) {
3045                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3046                                 dsl_scan_phys_t *scn_phys =
3047                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
3048                                 uint64_t *processed = &scn_phys->scn_processed;
3049
3050                                 /* XXX cleanup? */
3051                                 if (vd->vdev_ops->vdev_op_leaf)
3052                                         atomic_add_64(processed, psize);
3053                                 vs->vs_scan_processed += psize;
3054                         }
3055
3056                         if (flags & ZIO_FLAG_SELF_HEAL)
3057                                 vs->vs_self_healed += psize;
3058                 }
3059
3060                 /*
3061                  * The bytes/ops/histograms are recorded at the leaf level and
3062                  * aggregated into the higher level vdevs in vdev_get_stats().
3063                  */
3064                 if (vd->vdev_ops->vdev_op_leaf &&
3065                     (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3066
3067                         vs->vs_ops[type]++;
3068                         vs->vs_bytes[type] += psize;
3069
3070                         if (flags & ZIO_FLAG_DELEGATED) {
3071                                 vsx->vsx_agg_histo[zio->io_priority]
3072                                     [RQ_HISTO(zio->io_size)]++;
3073                         } else {
3074                                 vsx->vsx_ind_histo[zio->io_priority]
3075                                     [RQ_HISTO(zio->io_size)]++;
3076                         }
3077
3078                         if (zio->io_delta && zio->io_delay) {
3079                                 vsx->vsx_queue_histo[zio->io_priority]
3080                                     [L_HISTO(zio->io_delta - zio->io_delay)]++;
3081                                 vsx->vsx_disk_histo[type]
3082                                     [L_HISTO(zio->io_delay)]++;
3083                                 vsx->vsx_total_histo[type]
3084                                     [L_HISTO(zio->io_delta)]++;
3085                         }
3086                 }
3087
3088                 mutex_exit(&vd->vdev_stat_lock);
3089                 return;
3090         }
3091
3092         if (flags & ZIO_FLAG_SPECULATIVE)
3093                 return;
3094
3095         /*
3096          * If this is an I/O error that is going to be retried, then ignore the
3097          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3098          * hard errors, when in reality they can happen for any number of
3099          * innocuous reasons (bus resets, MPxIO link failure, etc).
3100          */
3101         if (zio->io_error == EIO &&
3102             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3103                 return;
3104
3105         /*
3106          * Intent logs writes won't propagate their error to the root
3107          * I/O so don't mark these types of failures as pool-level
3108          * errors.
3109          */
3110         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3111                 return;
3112
3113         mutex_enter(&vd->vdev_stat_lock);
3114         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3115                 if (zio->io_error == ECKSUM)
3116                         vs->vs_checksum_errors++;
3117                 else
3118                         vs->vs_read_errors++;
3119         }
3120         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3121                 vs->vs_write_errors++;
3122         mutex_exit(&vd->vdev_stat_lock);
3123
3124         if (type == ZIO_TYPE_WRITE && txg != 0 &&
3125             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3126             (flags & ZIO_FLAG_SCAN_THREAD) ||
3127             spa->spa_claiming)) {
3128                 /*
3129                  * This is either a normal write (not a repair), or it's
3130                  * a repair induced by the scrub thread, or it's a repair
3131                  * made by zil_claim() during spa_load() in the first txg.
3132                  * In the normal case, we commit the DTL change in the same
3133                  * txg as the block was born.  In the scrub-induced repair
3134                  * case, we know that scrubs run in first-pass syncing context,
3135                  * so we commit the DTL change in spa_syncing_txg(spa).
3136                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3137                  *
3138                  * We currently do not make DTL entries for failed spontaneous
3139                  * self-healing writes triggered by normal (non-scrubbing)
3140                  * reads, because we have no transactional context in which to
3141                  * do so -- and it's not clear that it'd be desirable anyway.
3142                  */
3143                 if (vd->vdev_ops->vdev_op_leaf) {
3144                         uint64_t commit_txg = txg;
3145                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3146                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3147                                 ASSERT(spa_sync_pass(spa) == 1);
3148                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3149                                 commit_txg = spa_syncing_txg(spa);
3150                         } else if (spa->spa_claiming) {
3151                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3152                                 commit_txg = spa_first_txg(spa);
3153                         }
3154                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3155                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3156                                 return;
3157                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3158                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3159                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3160                 }
3161                 if (vd != rvd)
3162                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3163         }
3164 }
3165
3166 /*
3167  * Update the in-core space usage stats for this vdev, its metaslab class,
3168  * and the root vdev.
3169  */
3170 void
3171 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3172     int64_t space_delta)
3173 {
3174         int64_t dspace_delta = space_delta;
3175         spa_t *spa = vd->vdev_spa;
3176         vdev_t *rvd = spa->spa_root_vdev;
3177         metaslab_group_t *mg = vd->vdev_mg;
3178         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3179
3180         ASSERT(vd == vd->vdev_top);
3181
3182         /*
3183          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3184          * factor.  We must calculate this here and not at the root vdev
3185          * because the root vdev's psize-to-asize is simply the max of its
3186          * childrens', thus not accurate enough for us.
3187          */
3188         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3189         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3190         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3191             vd->vdev_deflate_ratio;
3192
3193         mutex_enter(&vd->vdev_stat_lock);
3194         vd->vdev_stat.vs_alloc += alloc_delta;
3195         vd->vdev_stat.vs_space += space_delta;
3196         vd->vdev_stat.vs_dspace += dspace_delta;
3197         mutex_exit(&vd->vdev_stat_lock);
3198
3199         if (mc == spa_normal_class(spa)) {
3200                 mutex_enter(&rvd->vdev_stat_lock);
3201                 rvd->vdev_stat.vs_alloc += alloc_delta;
3202                 rvd->vdev_stat.vs_space += space_delta;
3203                 rvd->vdev_stat.vs_dspace += dspace_delta;
3204                 mutex_exit(&rvd->vdev_stat_lock);
3205         }
3206
3207         if (mc != NULL) {
3208                 ASSERT(rvd == vd->vdev_parent);
3209                 ASSERT(vd->vdev_ms_count != 0);
3210
3211                 metaslab_class_space_update(mc,
3212                     alloc_delta, defer_delta, space_delta, dspace_delta);
3213         }
3214 }
3215
3216 /*
3217  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3218  * so that it will be written out next time the vdev configuration is synced.
3219  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3220  */
3221 void
3222 vdev_config_dirty(vdev_t *vd)
3223 {
3224         spa_t *spa = vd->vdev_spa;
3225         vdev_t *rvd = spa->spa_root_vdev;
3226         int c;
3227
3228         ASSERT(spa_writeable(spa));
3229
3230         /*
3231          * If this is an aux vdev (as with l2cache and spare devices), then we
3232          * update the vdev config manually and set the sync flag.
3233          */
3234         if (vd->vdev_aux != NULL) {
3235                 spa_aux_vdev_t *sav = vd->vdev_aux;
3236                 nvlist_t **aux;
3237                 uint_t naux;
3238
3239                 for (c = 0; c < sav->sav_count; c++) {
3240                         if (sav->sav_vdevs[c] == vd)
3241                                 break;
3242                 }
3243
3244                 if (c == sav->sav_count) {
3245                         /*
3246                          * We're being removed.  There's nothing more to do.
3247                          */
3248                         ASSERT(sav->sav_sync == B_TRUE);
3249                         return;
3250                 }
3251
3252                 sav->sav_sync = B_TRUE;
3253
3254                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3255                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3256                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3257                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3258                 }
3259
3260                 ASSERT(c < naux);
3261
3262                 /*
3263                  * Setting the nvlist in the middle if the array is a little
3264                  * sketchy, but it will work.
3265                  */
3266                 nvlist_free(aux[c]);
3267                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3268
3269                 return;
3270         }
3271
3272         /*
3273          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3274          * must either hold SCL_CONFIG as writer, or must be the sync thread
3275          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3276          * so this is sufficient to ensure mutual exclusion.
3277          */
3278         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3279             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3280             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3281
3282         if (vd == rvd) {
3283                 for (c = 0; c < rvd->vdev_children; c++)
3284                         vdev_config_dirty(rvd->vdev_child[c]);
3285         } else {
3286                 ASSERT(vd == vd->vdev_top);
3287
3288                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3289                     !vd->vdev_ishole)
3290                         list_insert_head(&spa->spa_config_dirty_list, vd);
3291         }
3292 }
3293
3294 void
3295 vdev_config_clean(vdev_t *vd)
3296 {
3297         spa_t *spa = vd->vdev_spa;
3298
3299         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3300             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3301             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3302
3303         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3304         list_remove(&spa->spa_config_dirty_list, vd);
3305 }
3306
3307 /*
3308  * Mark a top-level vdev's state as dirty, so that the next pass of
3309  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3310  * the state changes from larger config changes because they require
3311  * much less locking, and are often needed for administrative actions.
3312  */
3313 void
3314 vdev_state_dirty(vdev_t *vd)
3315 {
3316         spa_t *spa = vd->vdev_spa;
3317
3318         ASSERT(spa_writeable(spa));
3319         ASSERT(vd == vd->vdev_top);
3320
3321         /*
3322          * The state list is protected by the SCL_STATE lock.  The caller
3323          * must either hold SCL_STATE as writer, or must be the sync thread
3324          * (which holds SCL_STATE as reader).  There's only one sync thread,
3325          * so this is sufficient to ensure mutual exclusion.
3326          */
3327         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3328             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3329             spa_config_held(spa, SCL_STATE, RW_READER)));
3330
3331         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3332                 list_insert_head(&spa->spa_state_dirty_list, vd);
3333 }
3334
3335 void
3336 vdev_state_clean(vdev_t *vd)
3337 {
3338         spa_t *spa = vd->vdev_spa;
3339
3340         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3341             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3342             spa_config_held(spa, SCL_STATE, RW_READER)));
3343
3344         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3345         list_remove(&spa->spa_state_dirty_list, vd);
3346 }
3347
3348 /*
3349  * Propagate vdev state up from children to parent.
3350  */
3351 void
3352 vdev_propagate_state(vdev_t *vd)
3353 {
3354         spa_t *spa = vd->vdev_spa;
3355         vdev_t *rvd = spa->spa_root_vdev;
3356         int degraded = 0, faulted = 0;
3357         int corrupted = 0;
3358         vdev_t *child;
3359         int c;
3360
3361         if (vd->vdev_children > 0) {
3362                 for (c = 0; c < vd->vdev_children; c++) {
3363                         child = vd->vdev_child[c];
3364
3365                         /*
3366                          * Don't factor holes into the decision.
3367                          */
3368                         if (child->vdev_ishole)
3369                                 continue;
3370
3371                         if (!vdev_readable(child) ||
3372                             (!vdev_writeable(child) && spa_writeable(spa))) {
3373                                 /*
3374                                  * Root special: if there is a top-level log
3375                                  * device, treat the root vdev as if it were
3376                                  * degraded.
3377                                  */
3378                                 if (child->vdev_islog && vd == rvd)
3379                                         degraded++;
3380                                 else
3381                                         faulted++;
3382                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3383                                 degraded++;
3384                         }
3385
3386                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3387                                 corrupted++;
3388                 }
3389
3390                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3391
3392                 /*
3393                  * Root special: if there is a top-level vdev that cannot be
3394                  * opened due to corrupted metadata, then propagate the root
3395                  * vdev's aux state as 'corrupt' rather than 'insufficient
3396                  * replicas'.
3397                  */
3398                 if (corrupted && vd == rvd &&
3399                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3400                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3401                             VDEV_AUX_CORRUPT_DATA);
3402         }
3403
3404         if (vd->vdev_parent)
3405                 vdev_propagate_state(vd->vdev_parent);
3406 }
3407
3408 /*
3409  * Set a vdev's state.  If this is during an open, we don't update the parent
3410  * state, because we're in the process of opening children depth-first.
3411  * Otherwise, we propagate the change to the parent.
3412  *
3413  * If this routine places a device in a faulted state, an appropriate ereport is
3414  * generated.
3415  */
3416 void
3417 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3418 {
3419         uint64_t save_state;
3420         spa_t *spa = vd->vdev_spa;
3421
3422         if (state == vd->vdev_state) {
3423                 /*
3424                  * Since vdev_offline() code path is already in an offline
3425                  * state we can miss a statechange event to OFFLINE. Check
3426                  * the previous state to catch this condition.
3427                  */
3428                 if (vd->vdev_ops->vdev_op_leaf &&
3429                     (state == VDEV_STATE_OFFLINE) &&
3430                     (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
3431                         /* post an offline state change */
3432                         zfs_post_state_change(spa, vd, vd->vdev_prevstate);
3433                 }
3434                 vd->vdev_stat.vs_aux = aux;
3435                 return;
3436         }
3437
3438         save_state = vd->vdev_state;
3439
3440         vd->vdev_state = state;
3441         vd->vdev_stat.vs_aux = aux;
3442
3443         /*
3444          * If we are setting the vdev state to anything but an open state, then
3445          * always close the underlying device unless the device has requested
3446          * a delayed close (i.e. we're about to remove or fault the device).
3447          * Otherwise, we keep accessible but invalid devices open forever.
3448          * We don't call vdev_close() itself, because that implies some extra
3449          * checks (offline, etc) that we don't want here.  This is limited to
3450          * leaf devices, because otherwise closing the device will affect other
3451          * children.
3452          */
3453         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3454             vd->vdev_ops->vdev_op_leaf)
3455                 vd->vdev_ops->vdev_op_close(vd);
3456
3457         if (vd->vdev_removed &&
3458             state == VDEV_STATE_CANT_OPEN &&
3459             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3460                 /*
3461                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3462                  * device was previously marked removed and someone attempted to
3463                  * reopen it.  If this failed due to a nonexistent device, then
3464                  * keep the device in the REMOVED state.  We also let this be if
3465                  * it is one of our special test online cases, which is only
3466                  * attempting to online the device and shouldn't generate an FMA
3467                  * fault.
3468                  */
3469                 vd->vdev_state = VDEV_STATE_REMOVED;
3470                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3471         } else if (state == VDEV_STATE_REMOVED) {
3472                 vd->vdev_removed = B_TRUE;
3473         } else if (state == VDEV_STATE_CANT_OPEN) {
3474                 /*
3475                  * If we fail to open a vdev during an import or recovery, we
3476                  * mark it as "not available", which signifies that it was
3477                  * never there to begin with.  Failure to open such a device
3478                  * is not considered an error.
3479                  */
3480                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3481                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3482                     vd->vdev_ops->vdev_op_leaf)
3483                         vd->vdev_not_present = 1;
3484
3485                 /*
3486                  * Post the appropriate ereport.  If the 'prevstate' field is
3487                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3488                  * that this is part of a vdev_reopen().  In this case, we don't
3489                  * want to post the ereport if the device was already in the
3490                  * CANT_OPEN state beforehand.
3491                  *
3492                  * If the 'checkremove' flag is set, then this is an attempt to
3493                  * online the device in response to an insertion event.  If we
3494                  * hit this case, then we have detected an insertion event for a
3495                  * faulted or offline device that wasn't in the removed state.
3496                  * In this scenario, we don't post an ereport because we are
3497                  * about to replace the device, or attempt an online with
3498                  * vdev_forcefault, which will generate the fault for us.
3499                  */
3500                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3501                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3502                     vd != spa->spa_root_vdev) {
3503                         const char *class;
3504
3505                         switch (aux) {
3506                         case VDEV_AUX_OPEN_FAILED:
3507                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3508                                 break;
3509                         case VDEV_AUX_CORRUPT_DATA:
3510                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3511                                 break;
3512                         case VDEV_AUX_NO_REPLICAS:
3513                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3514                                 break;
3515                         case VDEV_AUX_BAD_GUID_SUM:
3516                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3517                                 break;
3518                         case VDEV_AUX_TOO_SMALL:
3519                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3520                                 break;
3521                         case VDEV_AUX_BAD_LABEL:
3522                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3523                                 break;
3524                         case VDEV_AUX_BAD_ASHIFT:
3525                                 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
3526                                 break;
3527                         default:
3528                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3529                         }
3530
3531                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3532                 }
3533
3534                 /* Erase any notion of persistent removed state */
3535                 vd->vdev_removed = B_FALSE;
3536         } else {
3537                 vd->vdev_removed = B_FALSE;
3538         }
3539
3540         /*
3541          * Notify ZED of any significant state-change on a leaf vdev.
3542          *
3543          */
3544         if (vd->vdev_ops->vdev_op_leaf) {
3545                 /* preserve original state from a vdev_reopen() */
3546                 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3547                     (vd->vdev_prevstate != vd->vdev_state) &&
3548                     (save_state <= VDEV_STATE_CLOSED))
3549                         save_state = vd->vdev_prevstate;
3550
3551                 /* filter out state change due to initial vdev_open */
3552                 if (save_state > VDEV_STATE_CLOSED)
3553                         zfs_post_state_change(spa, vd, save_state);
3554         }
3555
3556         if (!isopen && vd->vdev_parent)
3557                 vdev_propagate_state(vd->vdev_parent);
3558 }
3559
3560 /*
3561  * Check the vdev configuration to ensure that it's capable of supporting
3562  * a root pool. We do not support partial configuration.
3563  */
3564 boolean_t
3565 vdev_is_bootable(vdev_t *vd)
3566 {
3567         if (!vd->vdev_ops->vdev_op_leaf) {
3568                 const char *vdev_type = vd->vdev_ops->vdev_op_type;
3569
3570                 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
3571                         return (B_FALSE);
3572         }
3573
3574         for (int c = 0; c < vd->vdev_children; c++) {
3575                 if (!vdev_is_bootable(vd->vdev_child[c]))
3576                         return (B_FALSE);
3577         }
3578         return (B_TRUE);
3579 }
3580
3581 /*
3582  * Load the state from the original vdev tree (ovd) which
3583  * we've retrieved from the MOS config object. If the original
3584  * vdev was offline or faulted then we transfer that state to the
3585  * device in the current vdev tree (nvd).
3586  */
3587 void
3588 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3589 {
3590         int c;
3591
3592         ASSERT(nvd->vdev_top->vdev_islog);
3593         ASSERT(spa_config_held(nvd->vdev_spa,
3594             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3595         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3596
3597         for (c = 0; c < nvd->vdev_children; c++)
3598                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3599
3600         if (nvd->vdev_ops->vdev_op_leaf) {
3601                 /*
3602                  * Restore the persistent vdev state
3603                  */
3604                 nvd->vdev_offline = ovd->vdev_offline;
3605                 nvd->vdev_faulted = ovd->vdev_faulted;
3606                 nvd->vdev_degraded = ovd->vdev_degraded;
3607                 nvd->vdev_removed = ovd->vdev_removed;
3608         }
3609 }
3610
3611 /*
3612  * Determine if a log device has valid content.  If the vdev was
3613  * removed or faulted in the MOS config then we know that
3614  * the content on the log device has already been written to the pool.
3615  */
3616 boolean_t
3617 vdev_log_state_valid(vdev_t *vd)
3618 {
3619         int c;
3620
3621         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3622             !vd->vdev_removed)
3623                 return (B_TRUE);
3624
3625         for (c = 0; c < vd->vdev_children; c++)
3626                 if (vdev_log_state_valid(vd->vdev_child[c]))
3627                         return (B_TRUE);
3628
3629         return (B_FALSE);
3630 }
3631
3632 /*
3633  * Expand a vdev if possible.
3634  */
3635 void
3636 vdev_expand(vdev_t *vd, uint64_t txg)
3637 {
3638         ASSERT(vd->vdev_top == vd);
3639         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3640
3641         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3642                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3643                 vdev_config_dirty(vd);
3644         }
3645 }
3646
3647 /*
3648  * Split a vdev.
3649  */
3650 void
3651 vdev_split(vdev_t *vd)
3652 {
3653         vdev_t *cvd, *pvd = vd->vdev_parent;
3654
3655         vdev_remove_child(pvd, vd);
3656         vdev_compact_children(pvd);
3657
3658         cvd = pvd->vdev_child[0];
3659         if (pvd->vdev_children == 1) {
3660                 vdev_remove_parent(cvd);
3661                 cvd->vdev_splitting = B_TRUE;
3662         }
3663         vdev_propagate_state(cvd);
3664 }
3665
3666 void
3667 vdev_deadman(vdev_t *vd)
3668 {
3669         int c;
3670
3671         for (c = 0; c < vd->vdev_children; c++) {
3672                 vdev_t *cvd = vd->vdev_child[c];
3673
3674                 vdev_deadman(cvd);
3675         }
3676
3677         if (vd->vdev_ops->vdev_op_leaf) {
3678                 vdev_queue_t *vq = &vd->vdev_queue;
3679
3680                 mutex_enter(&vq->vq_lock);
3681                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3682                         spa_t *spa = vd->vdev_spa;
3683                         zio_t *fio;
3684                         uint64_t delta;
3685
3686                         /*
3687                          * Look at the head of all the pending queues,
3688                          * if any I/O has been outstanding for longer than
3689                          * the spa_deadman_synctime we log a zevent.
3690                          */
3691                         fio = avl_first(&vq->vq_active_tree);
3692                         delta = gethrtime() - fio->io_timestamp;
3693                         if (delta > spa_deadman_synctime(spa)) {
3694                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3695                                     "delta %lluns, last io %lluns",
3696                                     fio->io_timestamp, delta,
3697                                     vq->vq_io_complete_ts);
3698                                 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3699                                     spa, vd, fio, 0, 0);
3700                         }
3701                 }
3702                 mutex_exit(&vq->vq_lock);
3703         }
3704 }
3705
3706 #if defined(_KERNEL) && defined(HAVE_SPL)
3707 EXPORT_SYMBOL(vdev_fault);
3708 EXPORT_SYMBOL(vdev_degrade);
3709 EXPORT_SYMBOL(vdev_online);
3710 EXPORT_SYMBOL(vdev_offline);
3711 EXPORT_SYMBOL(vdev_clear);
3712 /* BEGIN CSTYLED */
3713 module_param(metaslabs_per_vdev, int, 0644);
3714 MODULE_PARM_DESC(metaslabs_per_vdev,
3715         "Divide added vdev into approximately (but no more than) this number "
3716         "of metaslabs");
3717 /* END CSTYLED */
3718 #endif