]> granicus.if.org Git - zfs/blob - module/zfs/vdev.c
2554f96a96da0d6614a4df7b20fca8d8f5603f2c
[zfs] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/spa_impl.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/uberblock_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/space_map.h>
38 #include <sys/zio.h>
39 #include <sys/zap.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/arc.h>
42
43 /*
44  * Virtual device management.
45  */
46
47 static vdev_ops_t *vdev_ops_table[] = {
48         &vdev_root_ops,
49         &vdev_raidz_ops,
50         &vdev_mirror_ops,
51         &vdev_replacing_ops,
52         &vdev_spare_ops,
53         &vdev_disk_ops,
54         &vdev_file_ops,
55         &vdev_missing_ops,
56         NULL
57 };
58
59 /* maximum scrub/resilver I/O queue per leaf vdev */
60 int zfs_scrub_limit = 10;
61
62 /*
63  * Given a vdev type, return the appropriate ops vector.
64  */
65 static vdev_ops_t *
66 vdev_getops(const char *type)
67 {
68         vdev_ops_t *ops, **opspp;
69
70         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
71                 if (strcmp(ops->vdev_op_type, type) == 0)
72                         break;
73
74         return (ops);
75 }
76
77 /*
78  * Default asize function: return the MAX of psize with the asize of
79  * all children.  This is what's used by anything other than RAID-Z.
80  */
81 uint64_t
82 vdev_default_asize(vdev_t *vd, uint64_t psize)
83 {
84         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
85         uint64_t csize;
86         uint64_t c;
87
88         for (c = 0; c < vd->vdev_children; c++) {
89                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90                 asize = MAX(asize, csize);
91         }
92
93         return (asize);
94 }
95
96 /*
97  * Get the replaceable or attachable device size.
98  * If the parent is a mirror or raidz, the replaceable size is the minimum
99  * psize of all its children. For the rest, just return our own psize.
100  *
101  * e.g.
102  *                      psize   rsize
103  * root                 -       -
104  *      mirror/raidz    -       -
105  *          disk1       20g     20g
106  *          disk2       40g     20g
107  *      disk3           80g     80g
108  */
109 uint64_t
110 vdev_get_rsize(vdev_t *vd)
111 {
112         vdev_t *pvd, *cvd;
113         uint64_t c, rsize;
114
115         pvd = vd->vdev_parent;
116
117         /*
118          * If our parent is NULL or the root, just return our own psize.
119          */
120         if (pvd == NULL || pvd->vdev_parent == NULL)
121                 return (vd->vdev_psize);
122
123         rsize = 0;
124
125         for (c = 0; c < pvd->vdev_children; c++) {
126                 cvd = pvd->vdev_child[c];
127                 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
128         }
129
130         return (rsize);
131 }
132
133 vdev_t *
134 vdev_lookup_top(spa_t *spa, uint64_t vdev)
135 {
136         vdev_t *rvd = spa->spa_root_vdev;
137
138         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
139
140         if (vdev < rvd->vdev_children) {
141                 ASSERT(rvd->vdev_child[vdev] != NULL);
142                 return (rvd->vdev_child[vdev]);
143         }
144
145         return (NULL);
146 }
147
148 vdev_t *
149 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
150 {
151         int c;
152         vdev_t *mvd;
153
154         if (vd->vdev_guid == guid)
155                 return (vd);
156
157         for (c = 0; c < vd->vdev_children; c++)
158                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
159                     NULL)
160                         return (mvd);
161
162         return (NULL);
163 }
164
165 void
166 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
167 {
168         size_t oldsize, newsize;
169         uint64_t id = cvd->vdev_id;
170         vdev_t **newchild;
171
172         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
173         ASSERT(cvd->vdev_parent == NULL);
174
175         cvd->vdev_parent = pvd;
176
177         if (pvd == NULL)
178                 return;
179
180         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
181
182         oldsize = pvd->vdev_children * sizeof (vdev_t *);
183         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
184         newsize = pvd->vdev_children * sizeof (vdev_t *);
185
186         newchild = kmem_zalloc(newsize, KM_SLEEP);
187         if (pvd->vdev_child != NULL) {
188                 bcopy(pvd->vdev_child, newchild, oldsize);
189                 kmem_free(pvd->vdev_child, oldsize);
190         }
191
192         pvd->vdev_child = newchild;
193         pvd->vdev_child[id] = cvd;
194
195         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
196         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
197
198         /*
199          * Walk up all ancestors to update guid sum.
200          */
201         for (; pvd != NULL; pvd = pvd->vdev_parent)
202                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
203
204         if (cvd->vdev_ops->vdev_op_leaf)
205                 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
206 }
207
208 void
209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
210 {
211         int c;
212         uint_t id = cvd->vdev_id;
213
214         ASSERT(cvd->vdev_parent == pvd);
215
216         if (pvd == NULL)
217                 return;
218
219         ASSERT(id < pvd->vdev_children);
220         ASSERT(pvd->vdev_child[id] == cvd);
221
222         pvd->vdev_child[id] = NULL;
223         cvd->vdev_parent = NULL;
224
225         for (c = 0; c < pvd->vdev_children; c++)
226                 if (pvd->vdev_child[c])
227                         break;
228
229         if (c == pvd->vdev_children) {
230                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
231                 pvd->vdev_child = NULL;
232                 pvd->vdev_children = 0;
233         }
234
235         /*
236          * Walk up all ancestors to update guid sum.
237          */
238         for (; pvd != NULL; pvd = pvd->vdev_parent)
239                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
240
241         if (cvd->vdev_ops->vdev_op_leaf)
242                 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
243 }
244
245 /*
246  * Remove any holes in the child array.
247  */
248 void
249 vdev_compact_children(vdev_t *pvd)
250 {
251         vdev_t **newchild, *cvd;
252         int oldc = pvd->vdev_children;
253         int newc, c;
254
255         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
256
257         for (c = newc = 0; c < oldc; c++)
258                 if (pvd->vdev_child[c])
259                         newc++;
260
261         newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
262
263         for (c = newc = 0; c < oldc; c++) {
264                 if ((cvd = pvd->vdev_child[c]) != NULL) {
265                         newchild[newc] = cvd;
266                         cvd->vdev_id = newc++;
267                 }
268         }
269
270         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
271         pvd->vdev_child = newchild;
272         pvd->vdev_children = newc;
273 }
274
275 /*
276  * Allocate and minimally initialize a vdev_t.
277  */
278 static vdev_t *
279 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
280 {
281         vdev_t *vd;
282
283         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
284
285         if (spa->spa_root_vdev == NULL) {
286                 ASSERT(ops == &vdev_root_ops);
287                 spa->spa_root_vdev = vd;
288         }
289
290         if (guid == 0) {
291                 if (spa->spa_root_vdev == vd) {
292                         /*
293                          * The root vdev's guid will also be the pool guid,
294                          * which must be unique among all pools.
295                          */
296                         while (guid == 0 || spa_guid_exists(guid, 0))
297                                 guid = spa_get_random(-1ULL);
298                 } else {
299                         /*
300                          * Any other vdev's guid must be unique within the pool.
301                          */
302                         while (guid == 0 ||
303                             spa_guid_exists(spa_guid(spa), guid))
304                                 guid = spa_get_random(-1ULL);
305                 }
306                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
307         }
308
309         vd->vdev_spa = spa;
310         vd->vdev_id = id;
311         vd->vdev_guid = guid;
312         vd->vdev_guid_sum = guid;
313         vd->vdev_ops = ops;
314         vd->vdev_state = VDEV_STATE_CLOSED;
315
316         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
317         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
318         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
319         for (int t = 0; t < DTL_TYPES; t++) {
320                 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
321                     &vd->vdev_dtl_lock);
322         }
323         txg_list_create(&vd->vdev_ms_list,
324             offsetof(struct metaslab, ms_txg_node));
325         txg_list_create(&vd->vdev_dtl_list,
326             offsetof(struct vdev, vdev_dtl_node));
327         vd->vdev_stat.vs_timestamp = gethrtime();
328         vdev_queue_init(vd);
329         vdev_cache_init(vd);
330
331         return (vd);
332 }
333
334 /*
335  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
336  * creating a new vdev or loading an existing one - the behavior is slightly
337  * different for each case.
338  */
339 int
340 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
341     int alloctype)
342 {
343         vdev_ops_t *ops;
344         char *type;
345         uint64_t guid = 0, islog, nparity;
346         vdev_t *vd;
347
348         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
349
350         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
351                 return (EINVAL);
352
353         if ((ops = vdev_getops(type)) == NULL)
354                 return (EINVAL);
355
356         /*
357          * If this is a load, get the vdev guid from the nvlist.
358          * Otherwise, vdev_alloc_common() will generate one for us.
359          */
360         if (alloctype == VDEV_ALLOC_LOAD) {
361                 uint64_t label_id;
362
363                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
364                     label_id != id)
365                         return (EINVAL);
366
367                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
368                         return (EINVAL);
369         } else if (alloctype == VDEV_ALLOC_SPARE) {
370                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
371                         return (EINVAL);
372         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
373                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374                         return (EINVAL);
375         }
376
377         /*
378          * The first allocated vdev must be of type 'root'.
379          */
380         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
381                 return (EINVAL);
382
383         /*
384          * Determine whether we're a log vdev.
385          */
386         islog = 0;
387         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
388         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
389                 return (ENOTSUP);
390
391         /*
392          * Set the nparity property for RAID-Z vdevs.
393          */
394         nparity = -1ULL;
395         if (ops == &vdev_raidz_ops) {
396                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
397                     &nparity) == 0) {
398                         /*
399                          * Currently, we can only support 2 parity devices.
400                          */
401                         if (nparity == 0 || nparity > 2)
402                                 return (EINVAL);
403                         /*
404                          * Older versions can only support 1 parity device.
405                          */
406                         if (nparity == 2 &&
407                             spa_version(spa) < SPA_VERSION_RAID6)
408                                 return (ENOTSUP);
409                 } else {
410                         /*
411                          * We require the parity to be specified for SPAs that
412                          * support multiple parity levels.
413                          */
414                         if (spa_version(spa) >= SPA_VERSION_RAID6)
415                                 return (EINVAL);
416                         /*
417                          * Otherwise, we default to 1 parity device for RAID-Z.
418                          */
419                         nparity = 1;
420                 }
421         } else {
422                 nparity = 0;
423         }
424         ASSERT(nparity != -1ULL);
425
426         vd = vdev_alloc_common(spa, id, guid, ops);
427
428         vd->vdev_islog = islog;
429         vd->vdev_nparity = nparity;
430
431         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
432                 vd->vdev_path = spa_strdup(vd->vdev_path);
433         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
434                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
435         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
436             &vd->vdev_physpath) == 0)
437                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
438
439         /*
440          * Set the whole_disk property.  If it's not specified, leave the value
441          * as -1.
442          */
443         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
444             &vd->vdev_wholedisk) != 0)
445                 vd->vdev_wholedisk = -1ULL;
446
447         /*
448          * Look for the 'not present' flag.  This will only be set if the device
449          * was not present at the time of import.
450          */
451         if (!spa->spa_import_faulted)
452                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
453                     &vd->vdev_not_present);
454
455         /*
456          * Get the alignment requirement.
457          */
458         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
459
460         /*
461          * If we're a top-level vdev, try to load the allocation parameters.
462          */
463         if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
464                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
465                     &vd->vdev_ms_array);
466                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
467                     &vd->vdev_ms_shift);
468                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
469                     &vd->vdev_asize);
470         }
471
472         /*
473          * If we're a leaf vdev, try to load the DTL object and other state.
474          */
475         if (vd->vdev_ops->vdev_op_leaf &&
476             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
477                 if (alloctype == VDEV_ALLOC_LOAD) {
478                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
479                             &vd->vdev_dtl_smo.smo_object);
480                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
481                             &vd->vdev_unspare);
482                 }
483                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
484                     &vd->vdev_offline);
485
486                 /*
487                  * When importing a pool, we want to ignore the persistent fault
488                  * state, as the diagnosis made on another system may not be
489                  * valid in the current context.
490                  */
491                 if (spa->spa_load_state == SPA_LOAD_OPEN) {
492                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
493                             &vd->vdev_faulted);
494                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
495                             &vd->vdev_degraded);
496                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
497                             &vd->vdev_removed);
498                 }
499         }
500
501         /*
502          * Add ourselves to the parent's list of children.
503          */
504         vdev_add_child(parent, vd);
505
506         *vdp = vd;
507
508         return (0);
509 }
510
511 void
512 vdev_free(vdev_t *vd)
513 {
514         int c;
515         spa_t *spa = vd->vdev_spa;
516
517         /*
518          * vdev_free() implies closing the vdev first.  This is simpler than
519          * trying to ensure complicated semantics for all callers.
520          */
521         vdev_close(vd);
522
523         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
524
525         /*
526          * Free all children.
527          */
528         for (c = 0; c < vd->vdev_children; c++)
529                 vdev_free(vd->vdev_child[c]);
530
531         ASSERT(vd->vdev_child == NULL);
532         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
533
534         /*
535          * Discard allocation state.
536          */
537         if (vd == vd->vdev_top)
538                 vdev_metaslab_fini(vd);
539
540         ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
541         ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
542         ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
543
544         /*
545          * Remove this vdev from its parent's child list.
546          */
547         vdev_remove_child(vd->vdev_parent, vd);
548
549         ASSERT(vd->vdev_parent == NULL);
550
551         /*
552          * Clean up vdev structure.
553          */
554         vdev_queue_fini(vd);
555         vdev_cache_fini(vd);
556
557         if (vd->vdev_path)
558                 spa_strfree(vd->vdev_path);
559         if (vd->vdev_devid)
560                 spa_strfree(vd->vdev_devid);
561         if (vd->vdev_physpath)
562                 spa_strfree(vd->vdev_physpath);
563
564         if (vd->vdev_isspare)
565                 spa_spare_remove(vd);
566         if (vd->vdev_isl2cache)
567                 spa_l2cache_remove(vd);
568
569         txg_list_destroy(&vd->vdev_ms_list);
570         txg_list_destroy(&vd->vdev_dtl_list);
571
572         mutex_enter(&vd->vdev_dtl_lock);
573         for (int t = 0; t < DTL_TYPES; t++) {
574                 space_map_unload(&vd->vdev_dtl[t]);
575                 space_map_destroy(&vd->vdev_dtl[t]);
576         }
577         mutex_exit(&vd->vdev_dtl_lock);
578
579         mutex_destroy(&vd->vdev_dtl_lock);
580         mutex_destroy(&vd->vdev_stat_lock);
581         mutex_destroy(&vd->vdev_probe_lock);
582
583         if (vd == spa->spa_root_vdev)
584                 spa->spa_root_vdev = NULL;
585
586         kmem_free(vd, sizeof (vdev_t));
587 }
588
589 /*
590  * Transfer top-level vdev state from svd to tvd.
591  */
592 static void
593 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
594 {
595         spa_t *spa = svd->vdev_spa;
596         metaslab_t *msp;
597         vdev_t *vd;
598         int t;
599
600         ASSERT(tvd == tvd->vdev_top);
601
602         tvd->vdev_ms_array = svd->vdev_ms_array;
603         tvd->vdev_ms_shift = svd->vdev_ms_shift;
604         tvd->vdev_ms_count = svd->vdev_ms_count;
605
606         svd->vdev_ms_array = 0;
607         svd->vdev_ms_shift = 0;
608         svd->vdev_ms_count = 0;
609
610         tvd->vdev_mg = svd->vdev_mg;
611         tvd->vdev_ms = svd->vdev_ms;
612
613         svd->vdev_mg = NULL;
614         svd->vdev_ms = NULL;
615
616         if (tvd->vdev_mg != NULL)
617                 tvd->vdev_mg->mg_vd = tvd;
618
619         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
620         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
621         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
622
623         svd->vdev_stat.vs_alloc = 0;
624         svd->vdev_stat.vs_space = 0;
625         svd->vdev_stat.vs_dspace = 0;
626
627         for (t = 0; t < TXG_SIZE; t++) {
628                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
629                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
630                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
631                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
632                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
633                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
634         }
635
636         if (list_link_active(&svd->vdev_config_dirty_node)) {
637                 vdev_config_clean(svd);
638                 vdev_config_dirty(tvd);
639         }
640
641         if (list_link_active(&svd->vdev_state_dirty_node)) {
642                 vdev_state_clean(svd);
643                 vdev_state_dirty(tvd);
644         }
645
646         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
647         svd->vdev_deflate_ratio = 0;
648
649         tvd->vdev_islog = svd->vdev_islog;
650         svd->vdev_islog = 0;
651 }
652
653 static void
654 vdev_top_update(vdev_t *tvd, vdev_t *vd)
655 {
656         int c;
657
658         if (vd == NULL)
659                 return;
660
661         vd->vdev_top = tvd;
662
663         for (c = 0; c < vd->vdev_children; c++)
664                 vdev_top_update(tvd, vd->vdev_child[c]);
665 }
666
667 /*
668  * Add a mirror/replacing vdev above an existing vdev.
669  */
670 vdev_t *
671 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
672 {
673         spa_t *spa = cvd->vdev_spa;
674         vdev_t *pvd = cvd->vdev_parent;
675         vdev_t *mvd;
676
677         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
678
679         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
680
681         mvd->vdev_asize = cvd->vdev_asize;
682         mvd->vdev_ashift = cvd->vdev_ashift;
683         mvd->vdev_state = cvd->vdev_state;
684
685         vdev_remove_child(pvd, cvd);
686         vdev_add_child(pvd, mvd);
687         cvd->vdev_id = mvd->vdev_children;
688         vdev_add_child(mvd, cvd);
689         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
690
691         if (mvd == mvd->vdev_top)
692                 vdev_top_transfer(cvd, mvd);
693
694         return (mvd);
695 }
696
697 /*
698  * Remove a 1-way mirror/replacing vdev from the tree.
699  */
700 void
701 vdev_remove_parent(vdev_t *cvd)
702 {
703         vdev_t *mvd = cvd->vdev_parent;
704         vdev_t *pvd = mvd->vdev_parent;
705
706         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
707
708         ASSERT(mvd->vdev_children == 1);
709         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
710             mvd->vdev_ops == &vdev_replacing_ops ||
711             mvd->vdev_ops == &vdev_spare_ops);
712         cvd->vdev_ashift = mvd->vdev_ashift;
713
714         vdev_remove_child(mvd, cvd);
715         vdev_remove_child(pvd, mvd);
716
717         /*
718          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
719          * Otherwise, we could have detached an offline device, and when we
720          * go to import the pool we'll think we have two top-level vdevs,
721          * instead of a different version of the same top-level vdev.
722          */
723         if (mvd->vdev_top == mvd) {
724                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
725                 cvd->vdev_guid += guid_delta;
726                 cvd->vdev_guid_sum += guid_delta;
727         }
728         cvd->vdev_id = mvd->vdev_id;
729         vdev_add_child(pvd, cvd);
730         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
731
732         if (cvd == cvd->vdev_top)
733                 vdev_top_transfer(mvd, cvd);
734
735         ASSERT(mvd->vdev_children == 0);
736         vdev_free(mvd);
737 }
738
739 int
740 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
741 {
742         spa_t *spa = vd->vdev_spa;
743         objset_t *mos = spa->spa_meta_objset;
744         metaslab_class_t *mc;
745         uint64_t m;
746         uint64_t oldc = vd->vdev_ms_count;
747         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
748         metaslab_t **mspp;
749         int error;
750
751         if (vd->vdev_ms_shift == 0)     /* not being allocated from yet */
752                 return (0);
753
754         ASSERT(oldc <= newc);
755
756         if (vd->vdev_islog)
757                 mc = spa->spa_log_class;
758         else
759                 mc = spa->spa_normal_class;
760
761         if (vd->vdev_mg == NULL)
762                 vd->vdev_mg = metaslab_group_create(mc, vd);
763
764         mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
765
766         if (oldc != 0) {
767                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
768                 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
769         }
770
771         vd->vdev_ms = mspp;
772         vd->vdev_ms_count = newc;
773
774         for (m = oldc; m < newc; m++) {
775                 space_map_obj_t smo = { 0, 0, 0 };
776                 if (txg == 0) {
777                         uint64_t object = 0;
778                         error = dmu_read(mos, vd->vdev_ms_array,
779                             m * sizeof (uint64_t), sizeof (uint64_t), &object);
780                         if (error)
781                                 return (error);
782                         if (object != 0) {
783                                 dmu_buf_t *db;
784                                 error = dmu_bonus_hold(mos, object, FTAG, &db);
785                                 if (error)
786                                         return (error);
787                                 ASSERT3U(db->db_size, >=, sizeof (smo));
788                                 bcopy(db->db_data, &smo, sizeof (smo));
789                                 ASSERT3U(smo.smo_object, ==, object);
790                                 dmu_buf_rele(db, FTAG);
791                         }
792                 }
793                 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
794                     m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
795         }
796
797         return (0);
798 }
799
800 void
801 vdev_metaslab_fini(vdev_t *vd)
802 {
803         uint64_t m;
804         uint64_t count = vd->vdev_ms_count;
805
806         if (vd->vdev_ms != NULL) {
807                 for (m = 0; m < count; m++)
808                         if (vd->vdev_ms[m] != NULL)
809                                 metaslab_fini(vd->vdev_ms[m]);
810                 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
811                 vd->vdev_ms = NULL;
812         }
813 }
814
815 typedef struct vdev_probe_stats {
816         boolean_t       vps_readable;
817         boolean_t       vps_writeable;
818         int             vps_flags;
819 } vdev_probe_stats_t;
820
821 static void
822 vdev_probe_done(zio_t *zio)
823 {
824         spa_t *spa = zio->io_spa;
825         vdev_t *vd = zio->io_vd;
826         vdev_probe_stats_t *vps = zio->io_private;
827
828         ASSERT(vd->vdev_probe_zio != NULL);
829
830         if (zio->io_type == ZIO_TYPE_READ) {
831                 if (zio->io_error == 0)
832                         vps->vps_readable = 1;
833                 if (zio->io_error == 0 && spa_writeable(spa)) {
834                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
835                             zio->io_offset, zio->io_size, zio->io_data,
836                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
837                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
838                 } else {
839                         zio_buf_free(zio->io_data, zio->io_size);
840                 }
841         } else if (zio->io_type == ZIO_TYPE_WRITE) {
842                 if (zio->io_error == 0)
843                         vps->vps_writeable = 1;
844                 zio_buf_free(zio->io_data, zio->io_size);
845         } else if (zio->io_type == ZIO_TYPE_NULL) {
846                 zio_t *pio;
847
848                 vd->vdev_cant_read |= !vps->vps_readable;
849                 vd->vdev_cant_write |= !vps->vps_writeable;
850
851                 if (vdev_readable(vd) &&
852                     (vdev_writeable(vd) || !spa_writeable(spa))) {
853                         zio->io_error = 0;
854                 } else {
855                         ASSERT(zio->io_error != 0);
856                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
857                             spa, vd, NULL, 0, 0);
858                         zio->io_error = ENXIO;
859                 }
860
861                 mutex_enter(&vd->vdev_probe_lock);
862                 ASSERT(vd->vdev_probe_zio == zio);
863                 vd->vdev_probe_zio = NULL;
864                 mutex_exit(&vd->vdev_probe_lock);
865
866                 while ((pio = zio_walk_parents(zio)) != NULL)
867                         if (!vdev_accessible(vd, pio))
868                                 pio->io_error = ENXIO;
869
870                 kmem_free(vps, sizeof (*vps));
871         }
872 }
873
874 /*
875  * Determine whether this device is accessible by reading and writing
876  * to several known locations: the pad regions of each vdev label
877  * but the first (which we leave alone in case it contains a VTOC).
878  */
879 zio_t *
880 vdev_probe(vdev_t *vd, zio_t *zio)
881 {
882         spa_t *spa = vd->vdev_spa;
883         vdev_probe_stats_t *vps = NULL;
884         zio_t *pio;
885
886         ASSERT(vd->vdev_ops->vdev_op_leaf);
887
888         /*
889          * Don't probe the probe.
890          */
891         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
892                 return (NULL);
893
894         /*
895          * To prevent 'probe storms' when a device fails, we create
896          * just one probe i/o at a time.  All zios that want to probe
897          * this vdev will become parents of the probe io.
898          */
899         mutex_enter(&vd->vdev_probe_lock);
900
901         if ((pio = vd->vdev_probe_zio) == NULL) {
902                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
903
904                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
905                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
906                     ZIO_FLAG_DONT_RETRY;
907
908                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
909                         /*
910                          * vdev_cant_read and vdev_cant_write can only
911                          * transition from TRUE to FALSE when we have the
912                          * SCL_ZIO lock as writer; otherwise they can only
913                          * transition from FALSE to TRUE.  This ensures that
914                          * any zio looking at these values can assume that
915                          * failures persist for the life of the I/O.  That's
916                          * important because when a device has intermittent
917                          * connectivity problems, we want to ensure that
918                          * they're ascribed to the device (ENXIO) and not
919                          * the zio (EIO).
920                          *
921                          * Since we hold SCL_ZIO as writer here, clear both
922                          * values so the probe can reevaluate from first
923                          * principles.
924                          */
925                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
926                         vd->vdev_cant_read = B_FALSE;
927                         vd->vdev_cant_write = B_FALSE;
928                 }
929
930                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
931                     vdev_probe_done, vps,
932                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
933
934                 if (zio != NULL) {
935                         vd->vdev_probe_wanted = B_TRUE;
936                         spa_async_request(spa, SPA_ASYNC_PROBE);
937                 }
938         }
939
940         if (zio != NULL)
941                 zio_add_child(zio, pio);
942
943         mutex_exit(&vd->vdev_probe_lock);
944
945         if (vps == NULL) {
946                 ASSERT(zio != NULL);
947                 return (NULL);
948         }
949
950         for (int l = 1; l < VDEV_LABELS; l++) {
951                 zio_nowait(zio_read_phys(pio, vd,
952                     vdev_label_offset(vd->vdev_psize, l,
953                     offsetof(vdev_label_t, vl_pad)),
954                     VDEV_SKIP_SIZE, zio_buf_alloc(VDEV_SKIP_SIZE),
955                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
956                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
957         }
958
959         if (zio == NULL)
960                 return (pio);
961
962         zio_nowait(pio);
963         return (NULL);
964 }
965
966 /*
967  * Prepare a virtual device for access.
968  */
969 int
970 vdev_open(vdev_t *vd)
971 {
972         spa_t *spa = vd->vdev_spa;
973         int error;
974         int c;
975         uint64_t osize = 0;
976         uint64_t asize, psize;
977         uint64_t ashift = 0;
978
979         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
980
981         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
982             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
983             vd->vdev_state == VDEV_STATE_OFFLINE);
984
985         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
986
987         if (!vd->vdev_removed && vd->vdev_faulted) {
988                 ASSERT(vd->vdev_children == 0);
989                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
990                     VDEV_AUX_ERR_EXCEEDED);
991                 return (ENXIO);
992         } else if (vd->vdev_offline) {
993                 ASSERT(vd->vdev_children == 0);
994                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
995                 return (ENXIO);
996         }
997
998         error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
999
1000         if (zio_injection_enabled && error == 0)
1001                 error = zio_handle_device_injection(vd, ENXIO);
1002
1003         if (error) {
1004                 if (vd->vdev_removed &&
1005                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1006                         vd->vdev_removed = B_FALSE;
1007
1008                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1009                     vd->vdev_stat.vs_aux);
1010                 return (error);
1011         }
1012
1013         vd->vdev_removed = B_FALSE;
1014
1015         if (vd->vdev_degraded) {
1016                 ASSERT(vd->vdev_children == 0);
1017                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1018                     VDEV_AUX_ERR_EXCEEDED);
1019         } else {
1020                 vd->vdev_state = VDEV_STATE_HEALTHY;
1021         }
1022
1023         for (c = 0; c < vd->vdev_children; c++)
1024                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1025                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1026                             VDEV_AUX_NONE);
1027                         break;
1028                 }
1029
1030         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1031
1032         if (vd->vdev_children == 0) {
1033                 if (osize < SPA_MINDEVSIZE) {
1034                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1035                             VDEV_AUX_TOO_SMALL);
1036                         return (EOVERFLOW);
1037                 }
1038                 psize = osize;
1039                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1040         } else {
1041                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1042                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1043                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1044                             VDEV_AUX_TOO_SMALL);
1045                         return (EOVERFLOW);
1046                 }
1047                 psize = 0;
1048                 asize = osize;
1049         }
1050
1051         vd->vdev_psize = psize;
1052
1053         if (vd->vdev_asize == 0) {
1054                 /*
1055                  * This is the first-ever open, so use the computed values.
1056                  * For testing purposes, a higher ashift can be requested.
1057                  */
1058                 vd->vdev_asize = asize;
1059                 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1060         } else {
1061                 /*
1062                  * Make sure the alignment requirement hasn't increased.
1063                  */
1064                 if (ashift > vd->vdev_top->vdev_ashift) {
1065                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1066                             VDEV_AUX_BAD_LABEL);
1067                         return (EINVAL);
1068                 }
1069
1070                 /*
1071                  * Make sure the device hasn't shrunk.
1072                  */
1073                 if (asize < vd->vdev_asize) {
1074                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1075                             VDEV_AUX_BAD_LABEL);
1076                         return (EINVAL);
1077                 }
1078
1079                 /*
1080                  * If all children are healthy and the asize has increased,
1081                  * then we've experienced dynamic LUN growth.
1082                  */
1083                 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1084                     asize > vd->vdev_asize) {
1085                         vd->vdev_asize = asize;
1086                 }
1087         }
1088
1089         /*
1090          * Ensure we can issue some IO before declaring the
1091          * vdev open for business.
1092          */
1093         if (vd->vdev_ops->vdev_op_leaf &&
1094             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1095                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1096                     VDEV_AUX_IO_FAILURE);
1097                 return (error);
1098         }
1099
1100         /*
1101          * If this is a top-level vdev, compute the raidz-deflation
1102          * ratio.  Note, we hard-code in 128k (1<<17) because it is the
1103          * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
1104          * changes, this algorithm must never change, or we will
1105          * inconsistently account for existing bp's.
1106          */
1107         if (vd->vdev_top == vd) {
1108                 vd->vdev_deflate_ratio = (1<<17) /
1109                     (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
1110         }
1111
1112         /*
1113          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1114          * resilver.  But don't do this if we are doing a reopen for a scrub,
1115          * since this would just restart the scrub we are already doing.
1116          */
1117         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1118             vdev_resilver_needed(vd, NULL, NULL))
1119                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1120
1121         return (0);
1122 }
1123
1124 /*
1125  * Called once the vdevs are all opened, this routine validates the label
1126  * contents.  This needs to be done before vdev_load() so that we don't
1127  * inadvertently do repair I/Os to the wrong device.
1128  *
1129  * This function will only return failure if one of the vdevs indicates that it
1130  * has since been destroyed or exported.  This is only possible if
1131  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1132  * will be updated but the function will return 0.
1133  */
1134 int
1135 vdev_validate(vdev_t *vd)
1136 {
1137         spa_t *spa = vd->vdev_spa;
1138         int c;
1139         nvlist_t *label;
1140         uint64_t guid, top_guid;
1141         uint64_t state;
1142
1143         for (c = 0; c < vd->vdev_children; c++)
1144                 if (vdev_validate(vd->vdev_child[c]) != 0)
1145                         return (EBADF);
1146
1147         /*
1148          * If the device has already failed, or was marked offline, don't do
1149          * any further validation.  Otherwise, label I/O will fail and we will
1150          * overwrite the previous state.
1151          */
1152         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1153
1154                 if ((label = vdev_label_read_config(vd)) == NULL) {
1155                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1156                             VDEV_AUX_BAD_LABEL);
1157                         return (0);
1158                 }
1159
1160                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1161                     &guid) != 0 || guid != spa_guid(spa)) {
1162                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1163                             VDEV_AUX_CORRUPT_DATA);
1164                         nvlist_free(label);
1165                         return (0);
1166                 }
1167
1168                 /*
1169                  * If this vdev just became a top-level vdev because its
1170                  * sibling was detached, it will have adopted the parent's
1171                  * vdev guid -- but the label may or may not be on disk yet.
1172                  * Fortunately, either version of the label will have the
1173                  * same top guid, so if we're a top-level vdev, we can
1174                  * safely compare to that instead.
1175                  */
1176                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1177                     &guid) != 0 ||
1178                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1179                     &top_guid) != 0 ||
1180                     (vd->vdev_guid != guid &&
1181                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1182                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1183                             VDEV_AUX_CORRUPT_DATA);
1184                         nvlist_free(label);
1185                         return (0);
1186                 }
1187
1188                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1189                     &state) != 0) {
1190                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1191                             VDEV_AUX_CORRUPT_DATA);
1192                         nvlist_free(label);
1193                         return (0);
1194                 }
1195
1196                 nvlist_free(label);
1197
1198                 if (spa->spa_load_state == SPA_LOAD_OPEN &&
1199                     state != POOL_STATE_ACTIVE)
1200                         return (EBADF);
1201
1202                 /*
1203                  * If we were able to open and validate a vdev that was
1204                  * previously marked permanently unavailable, clear that state
1205                  * now.
1206                  */
1207                 if (vd->vdev_not_present)
1208                         vd->vdev_not_present = 0;
1209         }
1210
1211         return (0);
1212 }
1213
1214 /*
1215  * Close a virtual device.
1216  */
1217 void
1218 vdev_close(vdev_t *vd)
1219 {
1220         spa_t *spa = vd->vdev_spa;
1221
1222         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1223
1224         vd->vdev_ops->vdev_op_close(vd);
1225
1226         vdev_cache_purge(vd);
1227
1228         /*
1229          * We record the previous state before we close it, so  that if we are
1230          * doing a reopen(), we don't generate FMA ereports if we notice that
1231          * it's still faulted.
1232          */
1233         vd->vdev_prevstate = vd->vdev_state;
1234
1235         if (vd->vdev_offline)
1236                 vd->vdev_state = VDEV_STATE_OFFLINE;
1237         else
1238                 vd->vdev_state = VDEV_STATE_CLOSED;
1239         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1240 }
1241
1242 void
1243 vdev_reopen(vdev_t *vd)
1244 {
1245         spa_t *spa = vd->vdev_spa;
1246
1247         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1248
1249         vdev_close(vd);
1250         (void) vdev_open(vd);
1251
1252         /*
1253          * Call vdev_validate() here to make sure we have the same device.
1254          * Otherwise, a device with an invalid label could be successfully
1255          * opened in response to vdev_reopen().
1256          */
1257         if (vd->vdev_aux) {
1258                 (void) vdev_validate_aux(vd);
1259                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1260                     !l2arc_vdev_present(vd)) {
1261                         uint64_t size = vdev_get_rsize(vd);
1262                         l2arc_add_vdev(spa, vd,
1263                             VDEV_LABEL_START_SIZE,
1264                             size - VDEV_LABEL_START_SIZE);
1265                 }
1266         } else {
1267                 (void) vdev_validate(vd);
1268         }
1269
1270         /*
1271          * Reassess parent vdev's health.
1272          */
1273         vdev_propagate_state(vd);
1274 }
1275
1276 int
1277 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1278 {
1279         int error;
1280
1281         /*
1282          * Normally, partial opens (e.g. of a mirror) are allowed.
1283          * For a create, however, we want to fail the request if
1284          * there are any components we can't open.
1285          */
1286         error = vdev_open(vd);
1287
1288         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1289                 vdev_close(vd);
1290                 return (error ? error : ENXIO);
1291         }
1292
1293         /*
1294          * Recursively initialize all labels.
1295          */
1296         if ((error = vdev_label_init(vd, txg, isreplacing ?
1297             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1298                 vdev_close(vd);
1299                 return (error);
1300         }
1301
1302         return (0);
1303 }
1304
1305 /*
1306  * The is the latter half of vdev_create().  It is distinct because it
1307  * involves initiating transactions in order to do metaslab creation.
1308  * For creation, we want to try to create all vdevs at once and then undo it
1309  * if anything fails; this is much harder if we have pending transactions.
1310  */
1311 void
1312 vdev_init(vdev_t *vd, uint64_t txg)
1313 {
1314         /*
1315          * Aim for roughly 200 metaslabs per vdev.
1316          */
1317         vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1318         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1319
1320         /*
1321          * Initialize the vdev's metaslabs.  This can't fail because
1322          * there's nothing to read when creating all new metaslabs.
1323          */
1324         VERIFY(vdev_metaslab_init(vd, txg) == 0);
1325 }
1326
1327 void
1328 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1329 {
1330         ASSERT(vd == vd->vdev_top);
1331         ASSERT(ISP2(flags));
1332
1333         if (flags & VDD_METASLAB)
1334                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1335
1336         if (flags & VDD_DTL)
1337                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1338
1339         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1340 }
1341
1342 /*
1343  * DTLs.
1344  *
1345  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1346  * the vdev has less than perfect replication.  There are three kinds of DTL:
1347  *
1348  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1349  *
1350  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1351  *
1352  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1353  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1354  *      txgs that was scrubbed.
1355  *
1356  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1357  *      persistent errors or just some device being offline.
1358  *      Unlike the other three, the DTL_OUTAGE map is not generally
1359  *      maintained; it's only computed when needed, typically to
1360  *      determine whether a device can be detached.
1361  *
1362  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1363  * either has the data or it doesn't.
1364  *
1365  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1366  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1367  * if any child is less than fully replicated, then so is its parent.
1368  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1369  * comprising only those txgs which appear in 'maxfaults' or more children;
1370  * those are the txgs we don't have enough replication to read.  For example,
1371  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1372  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1373  * two child DTL_MISSING maps.
1374  *
1375  * It should be clear from the above that to compute the DTLs and outage maps
1376  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1377  * Therefore, that is all we keep on disk.  When loading the pool, or after
1378  * a configuration change, we generate all other DTLs from first principles.
1379  */
1380 void
1381 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1382 {
1383         space_map_t *sm = &vd->vdev_dtl[t];
1384
1385         ASSERT(t < DTL_TYPES);
1386         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1387
1388         mutex_enter(sm->sm_lock);
1389         if (!space_map_contains(sm, txg, size))
1390                 space_map_add(sm, txg, size);
1391         mutex_exit(sm->sm_lock);
1392 }
1393
1394 boolean_t
1395 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1396 {
1397         space_map_t *sm = &vd->vdev_dtl[t];
1398         boolean_t dirty = B_FALSE;
1399
1400         ASSERT(t < DTL_TYPES);
1401         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1402
1403         mutex_enter(sm->sm_lock);
1404         if (sm->sm_space != 0)
1405                 dirty = space_map_contains(sm, txg, size);
1406         mutex_exit(sm->sm_lock);
1407
1408         return (dirty);
1409 }
1410
1411 boolean_t
1412 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1413 {
1414         space_map_t *sm = &vd->vdev_dtl[t];
1415         boolean_t empty;
1416
1417         mutex_enter(sm->sm_lock);
1418         empty = (sm->sm_space == 0);
1419         mutex_exit(sm->sm_lock);
1420
1421         return (empty);
1422 }
1423
1424 /*
1425  * Reassess DTLs after a config change or scrub completion.
1426  */
1427 void
1428 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1429 {
1430         spa_t *spa = vd->vdev_spa;
1431         avl_tree_t reftree;
1432         int minref;
1433
1434         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1435
1436         for (int c = 0; c < vd->vdev_children; c++)
1437                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1438                     scrub_txg, scrub_done);
1439
1440         if (vd == spa->spa_root_vdev)
1441                 return;
1442
1443         if (vd->vdev_ops->vdev_op_leaf) {
1444                 mutex_enter(&vd->vdev_dtl_lock);
1445                 if (scrub_txg != 0 &&
1446                     (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1447                         /* XXX should check scrub_done? */
1448                         /*
1449                          * We completed a scrub up to scrub_txg.  If we
1450                          * did it without rebooting, then the scrub dtl
1451                          * will be valid, so excise the old region and
1452                          * fold in the scrub dtl.  Otherwise, leave the
1453                          * dtl as-is if there was an error.
1454                          *
1455                          * There's little trick here: to excise the beginning
1456                          * of the DTL_MISSING map, we put it into a reference
1457                          * tree and then add a segment with refcnt -1 that
1458                          * covers the range [0, scrub_txg).  This means
1459                          * that each txg in that range has refcnt -1 or 0.
1460                          * We then add DTL_SCRUB with a refcnt of 2, so that
1461                          * entries in the range [0, scrub_txg) will have a
1462                          * positive refcnt -- either 1 or 2.  We then convert
1463                          * the reference tree into the new DTL_MISSING map.
1464                          */
1465                         space_map_ref_create(&reftree);
1466                         space_map_ref_add_map(&reftree,
1467                             &vd->vdev_dtl[DTL_MISSING], 1);
1468                         space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1469                         space_map_ref_add_map(&reftree,
1470                             &vd->vdev_dtl[DTL_SCRUB], 2);
1471                         space_map_ref_generate_map(&reftree,
1472                             &vd->vdev_dtl[DTL_MISSING], 1);
1473                         space_map_ref_destroy(&reftree);
1474                 }
1475                 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1476                 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1477                     space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1478                 if (scrub_done)
1479                         space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1480                 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1481                 if (!vdev_readable(vd))
1482                         space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1483                 else
1484                         space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1485                             space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1486                 mutex_exit(&vd->vdev_dtl_lock);
1487
1488                 if (txg != 0)
1489                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1490                 return;
1491         }
1492
1493         mutex_enter(&vd->vdev_dtl_lock);
1494         for (int t = 0; t < DTL_TYPES; t++) {
1495                 if (t == DTL_SCRUB)
1496                         continue;                       /* leaf vdevs only */
1497                 if (t == DTL_PARTIAL)
1498                         minref = 1;                     /* i.e. non-zero */
1499                 else if (vd->vdev_nparity != 0)
1500                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1501                 else
1502                         minref = vd->vdev_children;     /* any kind of mirror */
1503                 space_map_ref_create(&reftree);
1504                 for (int c = 0; c < vd->vdev_children; c++) {
1505                         vdev_t *cvd = vd->vdev_child[c];
1506                         mutex_enter(&cvd->vdev_dtl_lock);
1507                         space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1);
1508                         mutex_exit(&cvd->vdev_dtl_lock);
1509                 }
1510                 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1511                 space_map_ref_destroy(&reftree);
1512         }
1513         mutex_exit(&vd->vdev_dtl_lock);
1514 }
1515
1516 static int
1517 vdev_dtl_load(vdev_t *vd)
1518 {
1519         spa_t *spa = vd->vdev_spa;
1520         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1521         objset_t *mos = spa->spa_meta_objset;
1522         dmu_buf_t *db;
1523         int error;
1524
1525         ASSERT(vd->vdev_children == 0);
1526
1527         if (smo->smo_object == 0)
1528                 return (0);
1529
1530         if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1531                 return (error);
1532
1533         ASSERT3U(db->db_size, >=, sizeof (*smo));
1534         bcopy(db->db_data, smo, sizeof (*smo));
1535         dmu_buf_rele(db, FTAG);
1536
1537         mutex_enter(&vd->vdev_dtl_lock);
1538         error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1539             NULL, SM_ALLOC, smo, mos);
1540         mutex_exit(&vd->vdev_dtl_lock);
1541
1542         return (error);
1543 }
1544
1545 void
1546 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1547 {
1548         spa_t *spa = vd->vdev_spa;
1549         space_map_obj_t *smo = &vd->vdev_dtl_smo;
1550         space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1551         objset_t *mos = spa->spa_meta_objset;
1552         space_map_t smsync;
1553         kmutex_t smlock;
1554         dmu_buf_t *db;
1555         dmu_tx_t *tx;
1556
1557         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1558
1559         if (vd->vdev_detached) {
1560                 if (smo->smo_object != 0) {
1561                         int err = dmu_object_free(mos, smo->smo_object, tx);
1562                         ASSERT3U(err, ==, 0);
1563                         smo->smo_object = 0;
1564                 }
1565                 dmu_tx_commit(tx);
1566                 return;
1567         }
1568
1569         if (smo->smo_object == 0) {
1570                 ASSERT(smo->smo_objsize == 0);
1571                 ASSERT(smo->smo_alloc == 0);
1572                 smo->smo_object = dmu_object_alloc(mos,
1573                     DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1574                     DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1575                 ASSERT(smo->smo_object != 0);
1576                 vdev_config_dirty(vd->vdev_top);
1577         }
1578
1579         mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1580
1581         space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1582             &smlock);
1583
1584         mutex_enter(&smlock);
1585
1586         mutex_enter(&vd->vdev_dtl_lock);
1587         space_map_walk(sm, space_map_add, &smsync);
1588         mutex_exit(&vd->vdev_dtl_lock);
1589
1590         space_map_truncate(smo, mos, tx);
1591         space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1592
1593         space_map_destroy(&smsync);
1594
1595         mutex_exit(&smlock);
1596         mutex_destroy(&smlock);
1597
1598         VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1599         dmu_buf_will_dirty(db, tx);
1600         ASSERT3U(db->db_size, >=, sizeof (*smo));
1601         bcopy(smo, db->db_data, sizeof (*smo));
1602         dmu_buf_rele(db, FTAG);
1603
1604         dmu_tx_commit(tx);
1605 }
1606
1607 /*
1608  * Determine whether the specified vdev can be offlined/detached/removed
1609  * without losing data.
1610  */
1611 boolean_t
1612 vdev_dtl_required(vdev_t *vd)
1613 {
1614         spa_t *spa = vd->vdev_spa;
1615         vdev_t *tvd = vd->vdev_top;
1616         uint8_t cant_read = vd->vdev_cant_read;
1617         boolean_t required;
1618
1619         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1620
1621         if (vd == spa->spa_root_vdev || vd == tvd)
1622                 return (B_TRUE);
1623
1624         /*
1625          * Temporarily mark the device as unreadable, and then determine
1626          * whether this results in any DTL outages in the top-level vdev.
1627          * If not, we can safely offline/detach/remove the device.
1628          */
1629         vd->vdev_cant_read = B_TRUE;
1630         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1631         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1632         vd->vdev_cant_read = cant_read;
1633         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1634
1635         return (required);
1636 }
1637
1638 /*
1639  * Determine if resilver is needed, and if so the txg range.
1640  */
1641 boolean_t
1642 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1643 {
1644         boolean_t needed = B_FALSE;
1645         uint64_t thismin = UINT64_MAX;
1646         uint64_t thismax = 0;
1647
1648         if (vd->vdev_children == 0) {
1649                 mutex_enter(&vd->vdev_dtl_lock);
1650                 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1651                     vdev_writeable(vd)) {
1652                         space_seg_t *ss;
1653
1654                         ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1655                         thismin = ss->ss_start - 1;
1656                         ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1657                         thismax = ss->ss_end;
1658                         needed = B_TRUE;
1659                 }
1660                 mutex_exit(&vd->vdev_dtl_lock);
1661         } else {
1662                 for (int c = 0; c < vd->vdev_children; c++) {
1663                         vdev_t *cvd = vd->vdev_child[c];
1664                         uint64_t cmin, cmax;
1665
1666                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1667                                 thismin = MIN(thismin, cmin);
1668                                 thismax = MAX(thismax, cmax);
1669                                 needed = B_TRUE;
1670                         }
1671                 }
1672         }
1673
1674         if (needed && minp) {
1675                 *minp = thismin;
1676                 *maxp = thismax;
1677         }
1678         return (needed);
1679 }
1680
1681 void
1682 vdev_load(vdev_t *vd)
1683 {
1684         /*
1685          * Recursively load all children.
1686          */
1687         for (int c = 0; c < vd->vdev_children; c++)
1688                 vdev_load(vd->vdev_child[c]);
1689
1690         /*
1691          * If this is a top-level vdev, initialize its metaslabs.
1692          */
1693         if (vd == vd->vdev_top &&
1694             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1695             vdev_metaslab_init(vd, 0) != 0))
1696                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1697                     VDEV_AUX_CORRUPT_DATA);
1698
1699         /*
1700          * If this is a leaf vdev, load its DTL.
1701          */
1702         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1703                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1704                     VDEV_AUX_CORRUPT_DATA);
1705 }
1706
1707 /*
1708  * The special vdev case is used for hot spares and l2cache devices.  Its
1709  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1710  * we make sure that we can open the underlying device, then try to read the
1711  * label, and make sure that the label is sane and that it hasn't been
1712  * repurposed to another pool.
1713  */
1714 int
1715 vdev_validate_aux(vdev_t *vd)
1716 {
1717         nvlist_t *label;
1718         uint64_t guid, version;
1719         uint64_t state;
1720
1721         if (!vdev_readable(vd))
1722                 return (0);
1723
1724         if ((label = vdev_label_read_config(vd)) == NULL) {
1725                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1726                     VDEV_AUX_CORRUPT_DATA);
1727                 return (-1);
1728         }
1729
1730         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1731             version > SPA_VERSION ||
1732             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1733             guid != vd->vdev_guid ||
1734             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1735                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1736                     VDEV_AUX_CORRUPT_DATA);
1737                 nvlist_free(label);
1738                 return (-1);
1739         }
1740
1741         /*
1742          * We don't actually check the pool state here.  If it's in fact in
1743          * use by another pool, we update this fact on the fly when requested.
1744          */
1745         nvlist_free(label);
1746         return (0);
1747 }
1748
1749 void
1750 vdev_sync_done(vdev_t *vd, uint64_t txg)
1751 {
1752         metaslab_t *msp;
1753
1754         while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1755                 metaslab_sync_done(msp, txg);
1756 }
1757
1758 void
1759 vdev_sync(vdev_t *vd, uint64_t txg)
1760 {
1761         spa_t *spa = vd->vdev_spa;
1762         vdev_t *lvd;
1763         metaslab_t *msp;
1764         dmu_tx_t *tx;
1765
1766         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1767                 ASSERT(vd == vd->vdev_top);
1768                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1769                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1770                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1771                 ASSERT(vd->vdev_ms_array != 0);
1772                 vdev_config_dirty(vd);
1773                 dmu_tx_commit(tx);
1774         }
1775
1776         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1777                 metaslab_sync(msp, txg);
1778                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1779         }
1780
1781         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1782                 vdev_dtl_sync(lvd, txg);
1783
1784         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1785 }
1786
1787 uint64_t
1788 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1789 {
1790         return (vd->vdev_ops->vdev_op_asize(vd, psize));
1791 }
1792
1793 /*
1794  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1795  * not be opened, and no I/O is attempted.
1796  */
1797 int
1798 vdev_fault(spa_t *spa, uint64_t guid)
1799 {
1800         vdev_t *vd;
1801
1802         spa_vdev_state_enter(spa);
1803
1804         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1805                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1806
1807         if (!vd->vdev_ops->vdev_op_leaf)
1808                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1809
1810         /*
1811          * Faulted state takes precedence over degraded.
1812          */
1813         vd->vdev_faulted = 1ULL;
1814         vd->vdev_degraded = 0ULL;
1815         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED);
1816
1817         /*
1818          * If marking the vdev as faulted cause the top-level vdev to become
1819          * unavailable, then back off and simply mark the vdev as degraded
1820          * instead.
1821          */
1822         if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1823                 vd->vdev_degraded = 1ULL;
1824                 vd->vdev_faulted = 0ULL;
1825
1826                 /*
1827                  * If we reopen the device and it's not dead, only then do we
1828                  * mark it degraded.
1829                  */
1830                 vdev_reopen(vd);
1831
1832                 if (vdev_readable(vd)) {
1833                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1834                             VDEV_AUX_ERR_EXCEEDED);
1835                 }
1836         }
1837
1838         return (spa_vdev_state_exit(spa, vd, 0));
1839 }
1840
1841 /*
1842  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1843  * user that something is wrong.  The vdev continues to operate as normal as far
1844  * as I/O is concerned.
1845  */
1846 int
1847 vdev_degrade(spa_t *spa, uint64_t guid)
1848 {
1849         vdev_t *vd;
1850
1851         spa_vdev_state_enter(spa);
1852
1853         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1854                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1855
1856         if (!vd->vdev_ops->vdev_op_leaf)
1857                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1858
1859         /*
1860          * If the vdev is already faulted, then don't do anything.
1861          */
1862         if (vd->vdev_faulted || vd->vdev_degraded)
1863                 return (spa_vdev_state_exit(spa, NULL, 0));
1864
1865         vd->vdev_degraded = 1ULL;
1866         if (!vdev_is_dead(vd))
1867                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1868                     VDEV_AUX_ERR_EXCEEDED);
1869
1870         return (spa_vdev_state_exit(spa, vd, 0));
1871 }
1872
1873 /*
1874  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1875  * any attached spare device should be detached when the device finishes
1876  * resilvering.  Second, the online should be treated like a 'test' online case,
1877  * so no FMA events are generated if the device fails to open.
1878  */
1879 int
1880 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
1881 {
1882         vdev_t *vd;
1883
1884         spa_vdev_state_enter(spa);
1885
1886         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1887                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1888
1889         if (!vd->vdev_ops->vdev_op_leaf)
1890                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1891
1892         vd->vdev_offline = B_FALSE;
1893         vd->vdev_tmpoffline = B_FALSE;
1894         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
1895         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
1896         vdev_reopen(vd->vdev_top);
1897         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1898
1899         if (newstate)
1900                 *newstate = vd->vdev_state;
1901         if ((flags & ZFS_ONLINE_UNSPARE) &&
1902             !vdev_is_dead(vd) && vd->vdev_parent &&
1903             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1904             vd->vdev_parent->vdev_child[0] == vd)
1905                 vd->vdev_unspare = B_TRUE;
1906
1907         return (spa_vdev_state_exit(spa, vd, 0));
1908 }
1909
1910 int
1911 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1912 {
1913         vdev_t *vd;
1914
1915         spa_vdev_state_enter(spa);
1916
1917         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1918                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
1919
1920         if (!vd->vdev_ops->vdev_op_leaf)
1921                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
1922
1923         /*
1924          * If the device isn't already offline, try to offline it.
1925          */
1926         if (!vd->vdev_offline) {
1927                 /*
1928                  * If this device has the only valid copy of some data,
1929                  * don't allow it to be offlined.
1930                  */
1931                 if (vd->vdev_aux == NULL && vdev_dtl_required(vd))
1932                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
1933
1934                 /*
1935                  * Offline this device and reopen its top-level vdev.
1936                  * If this action results in the top-level vdev becoming
1937                  * unusable, undo it and fail the request.
1938                  */
1939                 vd->vdev_offline = B_TRUE;
1940                 vdev_reopen(vd->vdev_top);
1941                 if (vd->vdev_aux == NULL && vdev_is_dead(vd->vdev_top)) {
1942                         vd->vdev_offline = B_FALSE;
1943                         vdev_reopen(vd->vdev_top);
1944                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
1945                 }
1946         }
1947
1948         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
1949
1950         return (spa_vdev_state_exit(spa, vd, 0));
1951 }
1952
1953 /*
1954  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1955  * vdev_offline(), we assume the spa config is locked.  We also clear all
1956  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1957  */
1958 void
1959 vdev_clear(spa_t *spa, vdev_t *vd)
1960 {
1961         vdev_t *rvd = spa->spa_root_vdev;
1962
1963         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1964
1965         if (vd == NULL)
1966                 vd = rvd;
1967
1968         vd->vdev_stat.vs_read_errors = 0;
1969         vd->vdev_stat.vs_write_errors = 0;
1970         vd->vdev_stat.vs_checksum_errors = 0;
1971
1972         for (int c = 0; c < vd->vdev_children; c++)
1973                 vdev_clear(spa, vd->vdev_child[c]);
1974
1975         /*
1976          * If we're in the FAULTED state or have experienced failed I/O, then
1977          * clear the persistent state and attempt to reopen the device.  We
1978          * also mark the vdev config dirty, so that the new faulted state is
1979          * written out to disk.
1980          */
1981         if (vd->vdev_faulted || vd->vdev_degraded ||
1982             !vdev_readable(vd) || !vdev_writeable(vd)) {
1983
1984                 vd->vdev_faulted = vd->vdev_degraded = 0;
1985                 vd->vdev_cant_read = B_FALSE;
1986                 vd->vdev_cant_write = B_FALSE;
1987
1988                 vdev_reopen(vd);
1989
1990                 if (vd != rvd)
1991                         vdev_state_dirty(vd->vdev_top);
1992
1993                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
1994                         spa_async_request(spa, SPA_ASYNC_RESILVER);
1995
1996                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
1997         }
1998 }
1999
2000 boolean_t
2001 vdev_is_dead(vdev_t *vd)
2002 {
2003         return (vd->vdev_state < VDEV_STATE_DEGRADED);
2004 }
2005
2006 boolean_t
2007 vdev_readable(vdev_t *vd)
2008 {
2009         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2010 }
2011
2012 boolean_t
2013 vdev_writeable(vdev_t *vd)
2014 {
2015         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2016 }
2017
2018 boolean_t
2019 vdev_allocatable(vdev_t *vd)
2020 {
2021         uint64_t state = vd->vdev_state;
2022
2023         /*
2024          * We currently allow allocations from vdevs which may be in the
2025          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2026          * fails to reopen then we'll catch it later when we're holding
2027          * the proper locks.  Note that we have to get the vdev state
2028          * in a local variable because although it changes atomically,
2029          * we're asking two separate questions about it.
2030          */
2031         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2032             !vd->vdev_cant_write);
2033 }
2034
2035 boolean_t
2036 vdev_accessible(vdev_t *vd, zio_t *zio)
2037 {
2038         ASSERT(zio->io_vd == vd);
2039
2040         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2041                 return (B_FALSE);
2042
2043         if (zio->io_type == ZIO_TYPE_READ)
2044                 return (!vd->vdev_cant_read);
2045
2046         if (zio->io_type == ZIO_TYPE_WRITE)
2047                 return (!vd->vdev_cant_write);
2048
2049         return (B_TRUE);
2050 }
2051
2052 /*
2053  * Get statistics for the given vdev.
2054  */
2055 void
2056 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2057 {
2058         vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2059
2060         mutex_enter(&vd->vdev_stat_lock);
2061         bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2062         vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2063         vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2064         vs->vs_state = vd->vdev_state;
2065         vs->vs_rsize = vdev_get_rsize(vd);
2066         mutex_exit(&vd->vdev_stat_lock);
2067
2068         /*
2069          * If we're getting stats on the root vdev, aggregate the I/O counts
2070          * over all top-level vdevs (i.e. the direct children of the root).
2071          */
2072         if (vd == rvd) {
2073                 for (int c = 0; c < rvd->vdev_children; c++) {
2074                         vdev_t *cvd = rvd->vdev_child[c];
2075                         vdev_stat_t *cvs = &cvd->vdev_stat;
2076
2077                         mutex_enter(&vd->vdev_stat_lock);
2078                         for (int t = 0; t < ZIO_TYPES; t++) {
2079                                 vs->vs_ops[t] += cvs->vs_ops[t];
2080                                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2081                         }
2082                         vs->vs_scrub_examined += cvs->vs_scrub_examined;
2083                         mutex_exit(&vd->vdev_stat_lock);
2084                 }
2085         }
2086 }
2087
2088 void
2089 vdev_clear_stats(vdev_t *vd)
2090 {
2091         mutex_enter(&vd->vdev_stat_lock);
2092         vd->vdev_stat.vs_space = 0;
2093         vd->vdev_stat.vs_dspace = 0;
2094         vd->vdev_stat.vs_alloc = 0;
2095         mutex_exit(&vd->vdev_stat_lock);
2096 }
2097
2098 void
2099 vdev_stat_update(zio_t *zio, uint64_t psize)
2100 {
2101         spa_t *spa = zio->io_spa;
2102         vdev_t *rvd = spa->spa_root_vdev;
2103         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2104         vdev_t *pvd;
2105         uint64_t txg = zio->io_txg;
2106         vdev_stat_t *vs = &vd->vdev_stat;
2107         zio_type_t type = zio->io_type;
2108         int flags = zio->io_flags;
2109
2110         /*
2111          * If this i/o is a gang leader, it didn't do any actual work.
2112          */
2113         if (zio->io_gang_tree)
2114                 return;
2115
2116         if (zio->io_error == 0) {
2117                 /*
2118                  * If this is a root i/o, don't count it -- we've already
2119                  * counted the top-level vdevs, and vdev_get_stats() will
2120                  * aggregate them when asked.  This reduces contention on
2121                  * the root vdev_stat_lock and implicitly handles blocks
2122                  * that compress away to holes, for which there is no i/o.
2123                  * (Holes never create vdev children, so all the counters
2124                  * remain zero, which is what we want.)
2125                  *
2126                  * Note: this only applies to successful i/o (io_error == 0)
2127                  * because unlike i/o counts, errors are not additive.
2128                  * When reading a ditto block, for example, failure of
2129                  * one top-level vdev does not imply a root-level error.
2130                  */
2131                 if (vd == rvd)
2132                         return;
2133
2134                 ASSERT(vd == zio->io_vd);
2135
2136                 if (flags & ZIO_FLAG_IO_BYPASS)
2137                         return;
2138
2139                 mutex_enter(&vd->vdev_stat_lock);
2140
2141                 if (flags & ZIO_FLAG_IO_REPAIR) {
2142                         if (flags & ZIO_FLAG_SCRUB_THREAD)
2143                                 vs->vs_scrub_repaired += psize;
2144                         if (flags & ZIO_FLAG_SELF_HEAL)
2145                                 vs->vs_self_healed += psize;
2146                 }
2147
2148                 vs->vs_ops[type]++;
2149                 vs->vs_bytes[type] += psize;
2150
2151                 mutex_exit(&vd->vdev_stat_lock);
2152                 return;
2153         }
2154
2155         if (flags & ZIO_FLAG_SPECULATIVE)
2156                 return;
2157
2158         mutex_enter(&vd->vdev_stat_lock);
2159         if (type == ZIO_TYPE_READ) {
2160                 if (zio->io_error == ECKSUM)
2161                         vs->vs_checksum_errors++;
2162                 else
2163                         vs->vs_read_errors++;
2164         }
2165         if (type == ZIO_TYPE_WRITE)
2166                 vs->vs_write_errors++;
2167         mutex_exit(&vd->vdev_stat_lock);
2168
2169         if (type == ZIO_TYPE_WRITE && txg != 0 &&
2170             (!(flags & ZIO_FLAG_IO_REPAIR) ||
2171             (flags & ZIO_FLAG_SCRUB_THREAD))) {
2172                 /*
2173                  * This is either a normal write (not a repair), or it's a
2174                  * repair induced by the scrub thread.  In the normal case,
2175                  * we commit the DTL change in the same txg as the block
2176                  * was born.  In the scrub-induced repair case, we know that
2177                  * scrubs run in first-pass syncing context, so we commit
2178                  * the DTL change in spa->spa_syncing_txg.
2179                  *
2180                  * We currently do not make DTL entries for failed spontaneous
2181                  * self-healing writes triggered by normal (non-scrubbing)
2182                  * reads, because we have no transactional context in which to
2183                  * do so -- and it's not clear that it'd be desirable anyway.
2184                  */
2185                 if (vd->vdev_ops->vdev_op_leaf) {
2186                         uint64_t commit_txg = txg;
2187                         if (flags & ZIO_FLAG_SCRUB_THREAD) {
2188                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2189                                 ASSERT(spa_sync_pass(spa) == 1);
2190                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2191                                 commit_txg = spa->spa_syncing_txg;
2192                         }
2193                         ASSERT(commit_txg >= spa->spa_syncing_txg);
2194                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2195                                 return;
2196                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2197                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2198                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2199                 }
2200                 if (vd != rvd)
2201                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2202         }
2203 }
2204
2205 void
2206 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2207 {
2208         int c;
2209         vdev_stat_t *vs = &vd->vdev_stat;
2210
2211         for (c = 0; c < vd->vdev_children; c++)
2212                 vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2213
2214         mutex_enter(&vd->vdev_stat_lock);
2215
2216         if (type == POOL_SCRUB_NONE) {
2217                 /*
2218                  * Update completion and end time.  Leave everything else alone
2219                  * so we can report what happened during the previous scrub.
2220                  */
2221                 vs->vs_scrub_complete = complete;
2222                 vs->vs_scrub_end = gethrestime_sec();
2223         } else {
2224                 vs->vs_scrub_type = type;
2225                 vs->vs_scrub_complete = 0;
2226                 vs->vs_scrub_examined = 0;
2227                 vs->vs_scrub_repaired = 0;
2228                 vs->vs_scrub_start = gethrestime_sec();
2229                 vs->vs_scrub_end = 0;
2230         }
2231
2232         mutex_exit(&vd->vdev_stat_lock);
2233 }
2234
2235 /*
2236  * Update the in-core space usage stats for this vdev and the root vdev.
2237  */
2238 void
2239 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2240     boolean_t update_root)
2241 {
2242         int64_t dspace_delta = space_delta;
2243         spa_t *spa = vd->vdev_spa;
2244         vdev_t *rvd = spa->spa_root_vdev;
2245
2246         ASSERT(vd == vd->vdev_top);
2247
2248         /*
2249          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2250          * factor.  We must calculate this here and not at the root vdev
2251          * because the root vdev's psize-to-asize is simply the max of its
2252          * childrens', thus not accurate enough for us.
2253          */
2254         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2255         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2256             vd->vdev_deflate_ratio;
2257
2258         mutex_enter(&vd->vdev_stat_lock);
2259         vd->vdev_stat.vs_space += space_delta;
2260         vd->vdev_stat.vs_alloc += alloc_delta;
2261         vd->vdev_stat.vs_dspace += dspace_delta;
2262         mutex_exit(&vd->vdev_stat_lock);
2263
2264         if (update_root) {
2265                 ASSERT(rvd == vd->vdev_parent);
2266                 ASSERT(vd->vdev_ms_count != 0);
2267
2268                 /*
2269                  * Don't count non-normal (e.g. intent log) space as part of
2270                  * the pool's capacity.
2271                  */
2272                 if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2273                         return;
2274
2275                 mutex_enter(&rvd->vdev_stat_lock);
2276                 rvd->vdev_stat.vs_space += space_delta;
2277                 rvd->vdev_stat.vs_alloc += alloc_delta;
2278                 rvd->vdev_stat.vs_dspace += dspace_delta;
2279                 mutex_exit(&rvd->vdev_stat_lock);
2280         }
2281 }
2282
2283 /*
2284  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2285  * so that it will be written out next time the vdev configuration is synced.
2286  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2287  */
2288 void
2289 vdev_config_dirty(vdev_t *vd)
2290 {
2291         spa_t *spa = vd->vdev_spa;
2292         vdev_t *rvd = spa->spa_root_vdev;
2293         int c;
2294
2295         /*
2296          * If this is an aux vdev (as with l2cache devices), then we update the
2297          * vdev config manually and set the sync flag.
2298          */
2299         if (vd->vdev_aux != NULL) {
2300                 spa_aux_vdev_t *sav = vd->vdev_aux;
2301                 nvlist_t **aux;
2302                 uint_t naux;
2303
2304                 for (c = 0; c < sav->sav_count; c++) {
2305                         if (sav->sav_vdevs[c] == vd)
2306                                 break;
2307                 }
2308
2309                 if (c == sav->sav_count) {
2310                         /*
2311                          * We're being removed.  There's nothing more to do.
2312                          */
2313                         ASSERT(sav->sav_sync == B_TRUE);
2314                         return;
2315                 }
2316
2317                 sav->sav_sync = B_TRUE;
2318
2319                 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2320                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
2321
2322                 ASSERT(c < naux);
2323
2324                 /*
2325                  * Setting the nvlist in the middle if the array is a little
2326                  * sketchy, but it will work.
2327                  */
2328                 nvlist_free(aux[c]);
2329                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2330
2331                 return;
2332         }
2333
2334         /*
2335          * The dirty list is protected by the SCL_CONFIG lock.  The caller
2336          * must either hold SCL_CONFIG as writer, or must be the sync thread
2337          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2338          * so this is sufficient to ensure mutual exclusion.
2339          */
2340         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2341             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2342             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2343
2344         if (vd == rvd) {
2345                 for (c = 0; c < rvd->vdev_children; c++)
2346                         vdev_config_dirty(rvd->vdev_child[c]);
2347         } else {
2348                 ASSERT(vd == vd->vdev_top);
2349
2350                 if (!list_link_active(&vd->vdev_config_dirty_node))
2351                         list_insert_head(&spa->spa_config_dirty_list, vd);
2352         }
2353 }
2354
2355 void
2356 vdev_config_clean(vdev_t *vd)
2357 {
2358         spa_t *spa = vd->vdev_spa;
2359
2360         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2361             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2362             spa_config_held(spa, SCL_CONFIG, RW_READER)));
2363
2364         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2365         list_remove(&spa->spa_config_dirty_list, vd);
2366 }
2367
2368 /*
2369  * Mark a top-level vdev's state as dirty, so that the next pass of
2370  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2371  * the state changes from larger config changes because they require
2372  * much less locking, and are often needed for administrative actions.
2373  */
2374 void
2375 vdev_state_dirty(vdev_t *vd)
2376 {
2377         spa_t *spa = vd->vdev_spa;
2378
2379         ASSERT(vd == vd->vdev_top);
2380
2381         /*
2382          * The state list is protected by the SCL_STATE lock.  The caller
2383          * must either hold SCL_STATE as writer, or must be the sync thread
2384          * (which holds SCL_STATE as reader).  There's only one sync thread,
2385          * so this is sufficient to ensure mutual exclusion.
2386          */
2387         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2388             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2389             spa_config_held(spa, SCL_STATE, RW_READER)));
2390
2391         if (!list_link_active(&vd->vdev_state_dirty_node))
2392                 list_insert_head(&spa->spa_state_dirty_list, vd);
2393 }
2394
2395 void
2396 vdev_state_clean(vdev_t *vd)
2397 {
2398         spa_t *spa = vd->vdev_spa;
2399
2400         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2401             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2402             spa_config_held(spa, SCL_STATE, RW_READER)));
2403
2404         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2405         list_remove(&spa->spa_state_dirty_list, vd);
2406 }
2407
2408 /*
2409  * Propagate vdev state up from children to parent.
2410  */
2411 void
2412 vdev_propagate_state(vdev_t *vd)
2413 {
2414         spa_t *spa = vd->vdev_spa;
2415         vdev_t *rvd = spa->spa_root_vdev;
2416         int degraded = 0, faulted = 0;
2417         int corrupted = 0;
2418         int c;
2419         vdev_t *child;
2420
2421         if (vd->vdev_children > 0) {
2422                 for (c = 0; c < vd->vdev_children; c++) {
2423                         child = vd->vdev_child[c];
2424
2425                         if (!vdev_readable(child) ||
2426                             (!vdev_writeable(child) && spa_writeable(spa))) {
2427                                 /*
2428                                  * Root special: if there is a top-level log
2429                                  * device, treat the root vdev as if it were
2430                                  * degraded.
2431                                  */
2432                                 if (child->vdev_islog && vd == rvd)
2433                                         degraded++;
2434                                 else
2435                                         faulted++;
2436                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2437                                 degraded++;
2438                         }
2439
2440                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2441                                 corrupted++;
2442                 }
2443
2444                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2445
2446                 /*
2447                  * Root special: if there is a top-level vdev that cannot be
2448                  * opened due to corrupted metadata, then propagate the root
2449                  * vdev's aux state as 'corrupt' rather than 'insufficient
2450                  * replicas'.
2451                  */
2452                 if (corrupted && vd == rvd &&
2453                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2454                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2455                             VDEV_AUX_CORRUPT_DATA);
2456         }
2457
2458         if (vd->vdev_parent)
2459                 vdev_propagate_state(vd->vdev_parent);
2460 }
2461
2462 /*
2463  * Set a vdev's state.  If this is during an open, we don't update the parent
2464  * state, because we're in the process of opening children depth-first.
2465  * Otherwise, we propagate the change to the parent.
2466  *
2467  * If this routine places a device in a faulted state, an appropriate ereport is
2468  * generated.
2469  */
2470 void
2471 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2472 {
2473         uint64_t save_state;
2474         spa_t *spa = vd->vdev_spa;
2475
2476         if (state == vd->vdev_state) {
2477                 vd->vdev_stat.vs_aux = aux;
2478                 return;
2479         }
2480
2481         save_state = vd->vdev_state;
2482
2483         vd->vdev_state = state;
2484         vd->vdev_stat.vs_aux = aux;
2485
2486         /*
2487          * If we are setting the vdev state to anything but an open state, then
2488          * always close the underlying device.  Otherwise, we keep accessible
2489          * but invalid devices open forever.  We don't call vdev_close() itself,
2490          * because that implies some extra checks (offline, etc) that we don't
2491          * want here.  This is limited to leaf devices, because otherwise
2492          * closing the device will affect other children.
2493          */
2494         if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf)
2495                 vd->vdev_ops->vdev_op_close(vd);
2496
2497         if (vd->vdev_removed &&
2498             state == VDEV_STATE_CANT_OPEN &&
2499             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2500                 /*
2501                  * If the previous state is set to VDEV_STATE_REMOVED, then this
2502                  * device was previously marked removed and someone attempted to
2503                  * reopen it.  If this failed due to a nonexistent device, then
2504                  * keep the device in the REMOVED state.  We also let this be if
2505                  * it is one of our special test online cases, which is only
2506                  * attempting to online the device and shouldn't generate an FMA
2507                  * fault.
2508                  */
2509                 vd->vdev_state = VDEV_STATE_REMOVED;
2510                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2511         } else if (state == VDEV_STATE_REMOVED) {
2512                 /*
2513                  * Indicate to the ZFS DE that this device has been removed, and
2514                  * any recent errors should be ignored.
2515                  */
2516                 zfs_post_remove(spa, vd);
2517                 vd->vdev_removed = B_TRUE;
2518         } else if (state == VDEV_STATE_CANT_OPEN) {
2519                 /*
2520                  * If we fail to open a vdev during an import, we mark it as
2521                  * "not available", which signifies that it was never there to
2522                  * begin with.  Failure to open such a device is not considered
2523                  * an error.
2524                  */
2525                 if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2526                     !spa->spa_import_faulted &&
2527                     vd->vdev_ops->vdev_op_leaf)
2528                         vd->vdev_not_present = 1;
2529
2530                 /*
2531                  * Post the appropriate ereport.  If the 'prevstate' field is
2532                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
2533                  * that this is part of a vdev_reopen().  In this case, we don't
2534                  * want to post the ereport if the device was already in the
2535                  * CANT_OPEN state beforehand.
2536                  *
2537                  * If the 'checkremove' flag is set, then this is an attempt to
2538                  * online the device in response to an insertion event.  If we
2539                  * hit this case, then we have detected an insertion event for a
2540                  * faulted or offline device that wasn't in the removed state.
2541                  * In this scenario, we don't post an ereport because we are
2542                  * about to replace the device, or attempt an online with
2543                  * vdev_forcefault, which will generate the fault for us.
2544                  */
2545                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2546                     !vd->vdev_not_present && !vd->vdev_checkremove &&
2547                     vd != spa->spa_root_vdev) {
2548                         const char *class;
2549
2550                         switch (aux) {
2551                         case VDEV_AUX_OPEN_FAILED:
2552                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2553                                 break;
2554                         case VDEV_AUX_CORRUPT_DATA:
2555                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2556                                 break;
2557                         case VDEV_AUX_NO_REPLICAS:
2558                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2559                                 break;
2560                         case VDEV_AUX_BAD_GUID_SUM:
2561                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2562                                 break;
2563                         case VDEV_AUX_TOO_SMALL:
2564                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2565                                 break;
2566                         case VDEV_AUX_BAD_LABEL:
2567                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2568                                 break;
2569                         case VDEV_AUX_IO_FAILURE:
2570                                 class = FM_EREPORT_ZFS_IO_FAILURE;
2571                                 break;
2572                         default:
2573                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2574                         }
2575
2576                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2577                 }
2578
2579                 /* Erase any notion of persistent removed state */
2580                 vd->vdev_removed = B_FALSE;
2581         } else {
2582                 vd->vdev_removed = B_FALSE;
2583         }
2584
2585         if (!isopen)
2586                 vdev_propagate_state(vd);
2587 }
2588
2589 /*
2590  * Check the vdev configuration to ensure that it's capable of supporting
2591  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2592  * In addition, only a single top-level vdev is allowed and none of the leaves
2593  * can be wholedisks.
2594  */
2595 boolean_t
2596 vdev_is_bootable(vdev_t *vd)
2597 {
2598         int c;
2599
2600         if (!vd->vdev_ops->vdev_op_leaf) {
2601                 char *vdev_type = vd->vdev_ops->vdev_op_type;
2602
2603                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2604                     vd->vdev_children > 1) {
2605                         return (B_FALSE);
2606                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2607                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2608                         return (B_FALSE);
2609                 }
2610         } else if (vd->vdev_wholedisk == 1) {
2611                 return (B_FALSE);
2612         }
2613
2614         for (c = 0; c < vd->vdev_children; c++) {
2615                 if (!vdev_is_bootable(vd->vdev_child[c]))
2616                         return (B_FALSE);
2617         }
2618         return (B_TRUE);
2619 }