]> granicus.if.org Git - zfs/blob - module/zfs/dmu_zfetch.c
Check ashift validity in 'zpool add'
[zfs] / module / zfs / dmu_zfetch.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25
26 /*
27  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37
38 /*
39  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
40  * prefetch (e.g. prefetch for zfs send) intact.  Unlike predictive prefetch,
41  * prescient prefetch never issues i/os that end up not being needed,
42  * so it can't hurt performance.
43  */
44
45 int zfs_prefetch_disable = B_FALSE;
46
47 /* max # of streams per zfetch */
48 unsigned int    zfetch_max_streams = 8;
49 /* min time before stream reclaim */
50 unsigned int    zfetch_min_sec_reap = 2;
51 /* max bytes to prefetch per stream (default 8MB) */
52 unsigned int    zfetch_max_distance = 8 * 1024 * 1024;
53 /* max bytes to prefetch indirects for per stream (default 64MB) */
54 unsigned int    zfetch_max_idistance = 64 * 1024 * 1024;
55 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
56 unsigned long   zfetch_array_rd_sz = 1024 * 1024;
57
58 typedef struct zfetch_stats {
59         kstat_named_t zfetchstat_hits;
60         kstat_named_t zfetchstat_misses;
61         kstat_named_t zfetchstat_max_streams;
62 } zfetch_stats_t;
63
64 static zfetch_stats_t zfetch_stats = {
65         { "hits",                       KSTAT_DATA_UINT64 },
66         { "misses",                     KSTAT_DATA_UINT64 },
67         { "max_streams",                KSTAT_DATA_UINT64 },
68 };
69
70 #define ZFETCHSTAT_BUMP(stat) \
71         atomic_inc_64(&zfetch_stats.stat.value.ui64);
72
73 kstat_t         *zfetch_ksp;
74
75 void
76 zfetch_init(void)
77 {
78         zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
79             KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
80             KSTAT_FLAG_VIRTUAL);
81
82         if (zfetch_ksp != NULL) {
83                 zfetch_ksp->ks_data = &zfetch_stats;
84                 kstat_install(zfetch_ksp);
85         }
86 }
87
88 void
89 zfetch_fini(void)
90 {
91         if (zfetch_ksp != NULL) {
92                 kstat_delete(zfetch_ksp);
93                 zfetch_ksp = NULL;
94         }
95 }
96
97 /*
98  * This takes a pointer to a zfetch structure and a dnode.  It performs the
99  * necessary setup for the zfetch structure, grokking data from the
100  * associated dnode.
101  */
102 void
103 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
104 {
105         if (zf == NULL)
106                 return;
107
108         zf->zf_dnode = dno;
109
110         list_create(&zf->zf_stream, sizeof (zstream_t),
111             offsetof(zstream_t, zs_node));
112
113         rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
114 }
115
116 static void
117 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
118 {
119         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
120         list_remove(&zf->zf_stream, zs);
121         mutex_destroy(&zs->zs_lock);
122         kmem_free(zs, sizeof (*zs));
123 }
124
125 /*
126  * Clean-up state associated with a zfetch structure (e.g. destroy the
127  * streams).  This doesn't free the zfetch_t itself, that's left to the caller.
128  */
129 void
130 dmu_zfetch_fini(zfetch_t *zf)
131 {
132         zstream_t *zs;
133
134         ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
135
136         rw_enter(&zf->zf_rwlock, RW_WRITER);
137         while ((zs = list_head(&zf->zf_stream)) != NULL)
138                 dmu_zfetch_stream_remove(zf, zs);
139         rw_exit(&zf->zf_rwlock);
140         list_destroy(&zf->zf_stream);
141         rw_destroy(&zf->zf_rwlock);
142
143         zf->zf_dnode = NULL;
144 }
145
146 /*
147  * If there aren't too many streams already, create a new stream.
148  * The "blkid" argument is the next block that we expect this stream to access.
149  * While we're here, clean up old streams (which haven't been
150  * accessed for at least zfetch_min_sec_reap seconds).
151  */
152 static void
153 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
154 {
155         zstream_t *zs;
156         zstream_t *zs_next;
157         int numstreams = 0;
158         uint32_t max_streams;
159
160         ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
161
162         /*
163          * Clean up old streams.
164          */
165         for (zs = list_head(&zf->zf_stream);
166             zs != NULL; zs = zs_next) {
167                 zs_next = list_next(&zf->zf_stream, zs);
168                 if (((gethrtime() - zs->zs_atime) / NANOSEC) >
169                     zfetch_min_sec_reap)
170                         dmu_zfetch_stream_remove(zf, zs);
171                 else
172                         numstreams++;
173         }
174
175         /*
176          * The maximum number of streams is normally zfetch_max_streams,
177          * but for small files we lower it such that it's at least possible
178          * for all the streams to be non-overlapping.
179          *
180          * If we are already at the maximum number of streams for this file,
181          * even after removing old streams, then don't create this stream.
182          */
183         max_streams = MAX(1, MIN(zfetch_max_streams,
184             zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
185             zfetch_max_distance));
186         if (numstreams >= max_streams) {
187                 ZFETCHSTAT_BUMP(zfetchstat_max_streams);
188                 return;
189         }
190
191         zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
192         zs->zs_blkid = blkid;
193         zs->zs_pf_blkid = blkid;
194         zs->zs_ipf_blkid = blkid;
195         zs->zs_atime = gethrtime();
196         mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
197
198         list_insert_head(&zf->zf_stream, zs);
199 }
200
201 /*
202  * This is the predictive prefetch entry point.  It associates dnode access
203  * specified with blkid and nblks arguments with prefetch stream, predicts
204  * further accesses based on that stats and initiates speculative prefetch.
205  * fetch_data argument specifies whether actual data blocks should be fetched:
206  *   FALSE -- prefetch only indirect blocks for predicted data blocks;
207  *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
208  */
209 void
210 dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data)
211 {
212         zstream_t *zs;
213         int64_t pf_start, ipf_start, ipf_istart, ipf_iend;
214         int64_t pf_ahead_blks, max_blks, iblk;
215         int epbs, max_dist_blks, pf_nblks, ipf_nblks, i;
216         uint64_t end_of_access_blkid;
217         end_of_access_blkid = blkid + nblks;
218
219         if (zfs_prefetch_disable)
220                 return;
221
222         /*
223          * As a fast path for small (single-block) files, ignore access
224          * to the first block.
225          */
226         if (blkid == 0)
227                 return;
228
229         rw_enter(&zf->zf_rwlock, RW_READER);
230
231         for (zs = list_head(&zf->zf_stream); zs != NULL;
232             zs = list_next(&zf->zf_stream, zs)) {
233                 if (blkid == zs->zs_blkid) {
234                         mutex_enter(&zs->zs_lock);
235                         /*
236                          * zs_blkid could have changed before we
237                          * acquired zs_lock; re-check them here.
238                          */
239                         if (blkid != zs->zs_blkid) {
240                                 mutex_exit(&zs->zs_lock);
241                                 continue;
242                         }
243                         break;
244                 }
245         }
246
247         if (zs == NULL) {
248                 /*
249                  * This access is not part of any existing stream.  Create
250                  * a new stream for it.
251                  */
252                 ZFETCHSTAT_BUMP(zfetchstat_misses);
253                 if (rw_tryupgrade(&zf->zf_rwlock))
254                         dmu_zfetch_stream_create(zf, end_of_access_blkid);
255                 rw_exit(&zf->zf_rwlock);
256                 return;
257         }
258
259         /*
260          * This access was to a block that we issued a prefetch for on
261          * behalf of this stream. Issue further prefetches for this stream.
262          *
263          * Normally, we start prefetching where we stopped
264          * prefetching last (zs_pf_blkid).  But when we get our first
265          * hit on this stream, zs_pf_blkid == zs_blkid, we don't
266          * want to prefetch the block we just accessed.  In this case,
267          * start just after the block we just accessed.
268          */
269         pf_start = MAX(zs->zs_pf_blkid, end_of_access_blkid);
270
271         /*
272          * Double our amount of prefetched data, but don't let the
273          * prefetch get further ahead than zfetch_max_distance.
274          */
275         if (fetch_data) {
276                 max_dist_blks =
277                     zfetch_max_distance >> zf->zf_dnode->dn_datablkshift;
278                 /*
279                  * Previously, we were (zs_pf_blkid - blkid) ahead.  We
280                  * want to now be double that, so read that amount again,
281                  * plus the amount we are catching up by (i.e. the amount
282                  * read just now).
283                  */
284                 pf_ahead_blks = zs->zs_pf_blkid - blkid + nblks;
285                 max_blks = max_dist_blks - (pf_start - end_of_access_blkid);
286                 pf_nblks = MIN(pf_ahead_blks, max_blks);
287         } else {
288                 pf_nblks = 0;
289         }
290
291         zs->zs_pf_blkid = pf_start + pf_nblks;
292
293         /*
294          * Do the same for indirects, starting from where we stopped last,
295          * or where we will stop reading data blocks (and the indirects
296          * that point to them).
297          */
298         ipf_start = MAX(zs->zs_ipf_blkid, zs->zs_pf_blkid);
299         max_dist_blks = zfetch_max_idistance >> zf->zf_dnode->dn_datablkshift;
300         /*
301          * We want to double our distance ahead of the data prefetch
302          * (or reader, if we are not prefetching data).  Previously, we
303          * were (zs_ipf_blkid - blkid) ahead.  To double that, we read
304          * that amount again, plus the amount we are catching up by
305          * (i.e. the amount read now + the amount of data prefetched now).
306          */
307         pf_ahead_blks = zs->zs_ipf_blkid - blkid + nblks + pf_nblks;
308         max_blks = max_dist_blks - (ipf_start - end_of_access_blkid);
309         ipf_nblks = MIN(pf_ahead_blks, max_blks);
310         zs->zs_ipf_blkid = ipf_start + ipf_nblks;
311
312         epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
313         ipf_istart = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
314         ipf_iend = P2ROUNDUP(zs->zs_ipf_blkid, 1 << epbs) >> epbs;
315
316         zs->zs_atime = gethrtime();
317         zs->zs_blkid = end_of_access_blkid;
318         mutex_exit(&zs->zs_lock);
319         rw_exit(&zf->zf_rwlock);
320
321         /*
322          * dbuf_prefetch() is asynchronous (even when it needs to read
323          * indirect blocks), but we still prefer to drop our locks before
324          * calling it to reduce the time we hold them.
325          */
326
327         for (i = 0; i < pf_nblks; i++) {
328                 dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
329                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
330         }
331         for (iblk = ipf_istart; iblk < ipf_iend; iblk++) {
332                 dbuf_prefetch(zf->zf_dnode, 1, iblk,
333                     ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
334         }
335         ZFETCHSTAT_BUMP(zfetchstat_hits);
336 }
337
338 #if defined(_KERNEL) && defined(HAVE_SPL)
339 /* BEGIN CSTYLED */
340 module_param(zfs_prefetch_disable, int, 0644);
341 MODULE_PARM_DESC(zfs_prefetch_disable, "Disable all ZFS prefetching");
342
343 module_param(zfetch_max_streams, uint, 0644);
344 MODULE_PARM_DESC(zfetch_max_streams, "Max number of streams per zfetch");
345
346 module_param(zfetch_min_sec_reap, uint, 0644);
347 MODULE_PARM_DESC(zfetch_min_sec_reap, "Min time before stream reclaim");
348
349 module_param(zfetch_max_distance, uint, 0644);
350 MODULE_PARM_DESC(zfetch_max_distance,
351         "Max bytes to prefetch per stream (default 8MB)");
352
353 module_param(zfetch_array_rd_sz, ulong, 0644);
354 MODULE_PARM_DESC(zfetch_array_rd_sz, "Number of bytes in a array_read");
355 /* END CSTYLED */
356 #endif