]> granicus.if.org Git - zfs/blob - module/zfs/dbuf.c
Check ashift validity in 'zpool add'
[zfs] / module / zfs / dbuf.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50
51 struct dbuf_hold_impl_data {
52         /* Function arguments */
53         dnode_t *dh_dn;
54         uint8_t dh_level;
55         uint64_t dh_blkid;
56         boolean_t dh_fail_sparse;
57         boolean_t dh_fail_uncached;
58         void *dh_tag;
59         dmu_buf_impl_t **dh_dbp;
60         /* Local variables */
61         dmu_buf_impl_t *dh_db;
62         dmu_buf_impl_t *dh_parent;
63         blkptr_t *dh_bp;
64         int dh_err;
65         dbuf_dirty_record_t *dh_dr;
66         arc_buf_contents_t dh_type;
67         int dh_depth;
68 };
69
70 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
71     dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
72         boolean_t fail_uncached,
73         void *tag, dmu_buf_impl_t **dbp, int depth);
74 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
75
76 uint_t zfs_dbuf_evict_key;
77
78 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
79 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
80
81 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
82     dmu_buf_evict_func_t *evict_func_sync,
83     dmu_buf_evict_func_t *evict_func_async,
84     dmu_buf_t **clear_on_evict_dbufp);
85
86 /*
87  * Global data structures and functions for the dbuf cache.
88  */
89 static kmem_cache_t *dbuf_kmem_cache;
90 static taskq_t *dbu_evict_taskq;
91
92 static kthread_t *dbuf_cache_evict_thread;
93 static kmutex_t dbuf_evict_lock;
94 static kcondvar_t dbuf_evict_cv;
95 static boolean_t dbuf_evict_thread_exit;
96
97 /*
98  * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
99  * are not currently held but have been recently released. These dbufs
100  * are not eligible for arc eviction until they are aged out of the cache.
101  * Dbufs are added to the dbuf cache once the last hold is released. If a
102  * dbuf is later accessed and still exists in the dbuf cache, then it will
103  * be removed from the cache and later re-added to the head of the cache.
104  * Dbufs that are aged out of the cache will be immediately destroyed and
105  * become eligible for arc eviction.
106  */
107 static multilist_t *dbuf_cache;
108 static refcount_t dbuf_cache_size;
109 unsigned long  dbuf_cache_max_bytes = 100 * 1024 * 1024;
110
111 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
112 int dbuf_cache_max_shift = 5;
113
114 /*
115  * The dbuf cache uses a three-stage eviction policy:
116  *      - A low water marker designates when the dbuf eviction thread
117  *      should stop evicting from the dbuf cache.
118  *      - When we reach the maximum size (aka mid water mark), we
119  *      signal the eviction thread to run.
120  *      - The high water mark indicates when the eviction thread
121  *      is unable to keep up with the incoming load and eviction must
122  *      happen in the context of the calling thread.
123  *
124  * The dbuf cache:
125  *                                                 (max size)
126  *                                      low water   mid water   hi water
127  * +----------------------------------------+----------+----------+
128  * |                                        |          |          |
129  * |                                        |          |          |
130  * |                                        |          |          |
131  * |                                        |          |          |
132  * +----------------------------------------+----------+----------+
133  *                                        stop        signal     evict
134  *                                      evicting     eviction   directly
135  *                                                    thread
136  *
137  * The high and low water marks indicate the operating range for the eviction
138  * thread. The low water mark is, by default, 90% of the total size of the
139  * cache and the high water mark is at 110% (both of these percentages can be
140  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
141  * respectively). The eviction thread will try to ensure that the cache remains
142  * within this range by waking up every second and checking if the cache is
143  * above the low water mark. The thread can also be woken up by callers adding
144  * elements into the cache if the cache is larger than the mid water (i.e max
145  * cache size). Once the eviction thread is woken up and eviction is required,
146  * it will continue evicting buffers until it's able to reduce the cache size
147  * to the low water mark. If the cache size continues to grow and hits the high
148  * water mark, then callers adding elements to the cache will begin to evict
149  * directly from the cache until the cache is no longer above the high water
150  * mark.
151  */
152
153 /*
154  * The percentage above and below the maximum cache size.
155  */
156 uint_t dbuf_cache_hiwater_pct = 10;
157 uint_t dbuf_cache_lowater_pct = 10;
158
159 /* ARGSUSED */
160 static int
161 dbuf_cons(void *vdb, void *unused, int kmflag)
162 {
163         dmu_buf_impl_t *db = vdb;
164         bzero(db, sizeof (dmu_buf_impl_t));
165
166         mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
167         cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
168         multilist_link_init(&db->db_cache_link);
169         refcount_create(&db->db_holds);
170         multilist_link_init(&db->db_cache_link);
171
172         return (0);
173 }
174
175 /* ARGSUSED */
176 static void
177 dbuf_dest(void *vdb, void *unused)
178 {
179         dmu_buf_impl_t *db = vdb;
180         mutex_destroy(&db->db_mtx);
181         cv_destroy(&db->db_changed);
182         ASSERT(!multilist_link_active(&db->db_cache_link));
183         refcount_destroy(&db->db_holds);
184 }
185
186 /*
187  * dbuf hash table routines
188  */
189 static dbuf_hash_table_t dbuf_hash_table;
190
191 static uint64_t dbuf_hash_count;
192
193 static uint64_t
194 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
195 {
196         uintptr_t osv = (uintptr_t)os;
197         uint64_t crc = -1ULL;
198
199         ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
200         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
201         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
202         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
203         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
204         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
205         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
206
207         crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
208
209         return (crc);
210 }
211
212 #define DBUF_EQUAL(dbuf, os, obj, level, blkid)         \
213         ((dbuf)->db.db_object == (obj) &&               \
214         (dbuf)->db_objset == (os) &&                    \
215         (dbuf)->db_level == (level) &&                  \
216         (dbuf)->db_blkid == (blkid))
217
218 dmu_buf_impl_t *
219 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
220 {
221         dbuf_hash_table_t *h = &dbuf_hash_table;
222         uint64_t hv;
223         uint64_t idx;
224         dmu_buf_impl_t *db;
225
226         hv = dbuf_hash(os, obj, level, blkid);
227         idx = hv & h->hash_table_mask;
228
229         mutex_enter(DBUF_HASH_MUTEX(h, idx));
230         for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
231                 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
232                         mutex_enter(&db->db_mtx);
233                         if (db->db_state != DB_EVICTING) {
234                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
235                                 return (db);
236                         }
237                         mutex_exit(&db->db_mtx);
238                 }
239         }
240         mutex_exit(DBUF_HASH_MUTEX(h, idx));
241         return (NULL);
242 }
243
244 static dmu_buf_impl_t *
245 dbuf_find_bonus(objset_t *os, uint64_t object)
246 {
247         dnode_t *dn;
248         dmu_buf_impl_t *db = NULL;
249
250         if (dnode_hold(os, object, FTAG, &dn) == 0) {
251                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
252                 if (dn->dn_bonus != NULL) {
253                         db = dn->dn_bonus;
254                         mutex_enter(&db->db_mtx);
255                 }
256                 rw_exit(&dn->dn_struct_rwlock);
257                 dnode_rele(dn, FTAG);
258         }
259         return (db);
260 }
261
262 /*
263  * Insert an entry into the hash table.  If there is already an element
264  * equal to elem in the hash table, then the already existing element
265  * will be returned and the new element will not be inserted.
266  * Otherwise returns NULL.
267  */
268 static dmu_buf_impl_t *
269 dbuf_hash_insert(dmu_buf_impl_t *db)
270 {
271         dbuf_hash_table_t *h = &dbuf_hash_table;
272         objset_t *os = db->db_objset;
273         uint64_t obj = db->db.db_object;
274         int level = db->db_level;
275         uint64_t blkid, hv, idx;
276         dmu_buf_impl_t *dbf;
277
278         blkid = db->db_blkid;
279         hv = dbuf_hash(os, obj, level, blkid);
280         idx = hv & h->hash_table_mask;
281
282         mutex_enter(DBUF_HASH_MUTEX(h, idx));
283         for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
284                 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
285                         mutex_enter(&dbf->db_mtx);
286                         if (dbf->db_state != DB_EVICTING) {
287                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
288                                 return (dbf);
289                         }
290                         mutex_exit(&dbf->db_mtx);
291                 }
292         }
293
294         mutex_enter(&db->db_mtx);
295         db->db_hash_next = h->hash_table[idx];
296         h->hash_table[idx] = db;
297         mutex_exit(DBUF_HASH_MUTEX(h, idx));
298         atomic_inc_64(&dbuf_hash_count);
299
300         return (NULL);
301 }
302
303 /*
304  * Remove an entry from the hash table.  It must be in the EVICTING state.
305  */
306 static void
307 dbuf_hash_remove(dmu_buf_impl_t *db)
308 {
309         dbuf_hash_table_t *h = &dbuf_hash_table;
310         uint64_t hv, idx;
311         dmu_buf_impl_t *dbf, **dbp;
312
313         hv = dbuf_hash(db->db_objset, db->db.db_object,
314             db->db_level, db->db_blkid);
315         idx = hv & h->hash_table_mask;
316
317         /*
318          * We mustn't hold db_mtx to maintain lock ordering:
319          * DBUF_HASH_MUTEX > db_mtx.
320          */
321         ASSERT(refcount_is_zero(&db->db_holds));
322         ASSERT(db->db_state == DB_EVICTING);
323         ASSERT(!MUTEX_HELD(&db->db_mtx));
324
325         mutex_enter(DBUF_HASH_MUTEX(h, idx));
326         dbp = &h->hash_table[idx];
327         while ((dbf = *dbp) != db) {
328                 dbp = &dbf->db_hash_next;
329                 ASSERT(dbf != NULL);
330         }
331         *dbp = db->db_hash_next;
332         db->db_hash_next = NULL;
333         mutex_exit(DBUF_HASH_MUTEX(h, idx));
334         atomic_dec_64(&dbuf_hash_count);
335 }
336
337 typedef enum {
338         DBVU_EVICTING,
339         DBVU_NOT_EVICTING
340 } dbvu_verify_type_t;
341
342 static void
343 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
344 {
345 #ifdef ZFS_DEBUG
346         int64_t holds;
347
348         if (db->db_user == NULL)
349                 return;
350
351         /* Only data blocks support the attachment of user data. */
352         ASSERT(db->db_level == 0);
353
354         /* Clients must resolve a dbuf before attaching user data. */
355         ASSERT(db->db.db_data != NULL);
356         ASSERT3U(db->db_state, ==, DB_CACHED);
357
358         holds = refcount_count(&db->db_holds);
359         if (verify_type == DBVU_EVICTING) {
360                 /*
361                  * Immediate eviction occurs when holds == dirtycnt.
362                  * For normal eviction buffers, holds is zero on
363                  * eviction, except when dbuf_fix_old_data() calls
364                  * dbuf_clear_data().  However, the hold count can grow
365                  * during eviction even though db_mtx is held (see
366                  * dmu_bonus_hold() for an example), so we can only
367                  * test the generic invariant that holds >= dirtycnt.
368                  */
369                 ASSERT3U(holds, >=, db->db_dirtycnt);
370         } else {
371                 if (db->db_user_immediate_evict == TRUE)
372                         ASSERT3U(holds, >=, db->db_dirtycnt);
373                 else
374                         ASSERT3U(holds, >, 0);
375         }
376 #endif
377 }
378
379 static void
380 dbuf_evict_user(dmu_buf_impl_t *db)
381 {
382         dmu_buf_user_t *dbu = db->db_user;
383         boolean_t has_async;
384
385         ASSERT(MUTEX_HELD(&db->db_mtx));
386
387         if (dbu == NULL)
388                 return;
389
390         dbuf_verify_user(db, DBVU_EVICTING);
391         db->db_user = NULL;
392
393 #ifdef ZFS_DEBUG
394         if (dbu->dbu_clear_on_evict_dbufp != NULL)
395                 *dbu->dbu_clear_on_evict_dbufp = NULL;
396 #endif
397
398         /*
399          * There are two eviction callbacks - one that we call synchronously
400          * and one that we invoke via a taskq.  The async one is useful for
401          * avoiding lock order reversals and limiting stack depth.
402          *
403          * Note that if we have a sync callback but no async callback,
404          * it's likely that the sync callback will free the structure
405          * containing the dbu.  In that case we need to take care to not
406          * dereference dbu after calling the sync evict func.
407          */
408         has_async = (dbu->dbu_evict_func_async != NULL);
409
410         if (dbu->dbu_evict_func_sync != NULL)
411                 dbu->dbu_evict_func_sync(dbu);
412
413         if (has_async) {
414                 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
415                     dbu, 0, &dbu->dbu_tqent);
416         }
417 }
418
419 boolean_t
420 dbuf_is_metadata(dmu_buf_impl_t *db)
421 {
422         /*
423          * Consider indirect blocks and spill blocks to be meta data.
424          */
425         if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
426                 return (B_TRUE);
427         } else {
428                 boolean_t is_metadata;
429
430                 DB_DNODE_ENTER(db);
431                 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
432                 DB_DNODE_EXIT(db);
433
434                 return (is_metadata);
435         }
436 }
437
438
439 /*
440  * This function *must* return indices evenly distributed between all
441  * sublists of the multilist. This is needed due to how the dbuf eviction
442  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
443  * distributed between all sublists and uses this assumption when
444  * deciding which sublist to evict from and how much to evict from it.
445  */
446 unsigned int
447 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
448 {
449         dmu_buf_impl_t *db = obj;
450
451         /*
452          * The assumption here, is the hash value for a given
453          * dmu_buf_impl_t will remain constant throughout it's lifetime
454          * (i.e. it's objset, object, level and blkid fields don't change).
455          * Thus, we don't need to store the dbuf's sublist index
456          * on insertion, as this index can be recalculated on removal.
457          *
458          * Also, the low order bits of the hash value are thought to be
459          * distributed evenly. Otherwise, in the case that the multilist
460          * has a power of two number of sublists, each sublists' usage
461          * would not be evenly distributed.
462          */
463         return (dbuf_hash(db->db_objset, db->db.db_object,
464             db->db_level, db->db_blkid) %
465             multilist_get_num_sublists(ml));
466 }
467
468 static inline boolean_t
469 dbuf_cache_above_hiwater(void)
470 {
471         uint64_t dbuf_cache_hiwater_bytes =
472             (dbuf_cache_max_bytes * dbuf_cache_hiwater_pct) / 100;
473
474         return (refcount_count(&dbuf_cache_size) >
475             dbuf_cache_max_bytes + dbuf_cache_hiwater_bytes);
476 }
477
478 static inline boolean_t
479 dbuf_cache_above_lowater(void)
480 {
481         uint64_t dbuf_cache_lowater_bytes =
482             (dbuf_cache_max_bytes * dbuf_cache_lowater_pct) / 100;
483
484         return (refcount_count(&dbuf_cache_size) >
485             dbuf_cache_max_bytes - dbuf_cache_lowater_bytes);
486 }
487
488 /*
489  * Evict the oldest eligible dbuf from the dbuf cache.
490  */
491 static void
492 dbuf_evict_one(void)
493 {
494         int idx = multilist_get_random_index(dbuf_cache);
495         multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
496         dmu_buf_impl_t *db;
497         ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
498
499         /*
500          * Set the thread's tsd to indicate that it's processing evictions.
501          * Once a thread stops evicting from the dbuf cache it will
502          * reset its tsd to NULL.
503          */
504         ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
505         (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
506
507         db = multilist_sublist_tail(mls);
508         while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
509                 db = multilist_sublist_prev(mls, db);
510         }
511
512         DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
513             multilist_sublist_t *, mls);
514
515         if (db != NULL) {
516                 multilist_sublist_remove(mls, db);
517                 multilist_sublist_unlock(mls);
518                 (void) refcount_remove_many(&dbuf_cache_size,
519                     db->db.db_size, db);
520                 dbuf_destroy(db);
521         } else {
522                 multilist_sublist_unlock(mls);
523         }
524         (void) tsd_set(zfs_dbuf_evict_key, NULL);
525 }
526
527 /*
528  * The dbuf evict thread is responsible for aging out dbufs from the
529  * cache. Once the cache has reached it's maximum size, dbufs are removed
530  * and destroyed. The eviction thread will continue running until the size
531  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
532  * out of the cache it is destroyed and becomes eligible for arc eviction.
533  */
534 static void
535 dbuf_evict_thread(void)
536 {
537         callb_cpr_t cpr;
538
539         CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
540
541         mutex_enter(&dbuf_evict_lock);
542         while (!dbuf_evict_thread_exit) {
543                 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
544                         CALLB_CPR_SAFE_BEGIN(&cpr);
545                         (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
546                             &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
547                         CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
548                 }
549                 mutex_exit(&dbuf_evict_lock);
550
551                 /*
552                  * Keep evicting as long as we're above the low water mark
553                  * for the cache. We do this without holding the locks to
554                  * minimize lock contention.
555                  */
556                 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
557                         dbuf_evict_one();
558                 }
559
560                 mutex_enter(&dbuf_evict_lock);
561         }
562
563         dbuf_evict_thread_exit = B_FALSE;
564         cv_broadcast(&dbuf_evict_cv);
565         CALLB_CPR_EXIT(&cpr);   /* drops dbuf_evict_lock */
566         thread_exit();
567 }
568
569 /*
570  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
571  * If the dbuf cache is at its high water mark, then evict a dbuf from the
572  * dbuf cache using the callers context.
573  */
574 static void
575 dbuf_evict_notify(void)
576 {
577
578         /*
579          * We use thread specific data to track when a thread has
580          * started processing evictions. This allows us to avoid deeply
581          * nested stacks that would have a call flow similar to this:
582          *
583          * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
584          *      ^                                               |
585          *      |                                               |
586          *      +-----dbuf_destroy()<--dbuf_evict_one()<--------+
587          *
588          * The dbuf_eviction_thread will always have its tsd set until
589          * that thread exits. All other threads will only set their tsd
590          * if they are participating in the eviction process. This only
591          * happens if the eviction thread is unable to process evictions
592          * fast enough. To keep the dbuf cache size in check, other threads
593          * can evict from the dbuf cache directly. Those threads will set
594          * their tsd values so that we ensure that they only evict one dbuf
595          * from the dbuf cache.
596          */
597         if (tsd_get(zfs_dbuf_evict_key) != NULL)
598                 return;
599
600         if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
601                 boolean_t evict_now = B_FALSE;
602
603                 mutex_enter(&dbuf_evict_lock);
604                 if (refcount_count(&dbuf_cache_size) > dbuf_cache_max_bytes) {
605                         evict_now = dbuf_cache_above_hiwater();
606                         cv_signal(&dbuf_evict_cv);
607                 }
608                 mutex_exit(&dbuf_evict_lock);
609
610                 if (evict_now) {
611                         dbuf_evict_one();
612                 }
613         }
614 }
615
616
617
618 void
619 dbuf_init(void)
620 {
621         uint64_t hsize = 1ULL << 16;
622         dbuf_hash_table_t *h = &dbuf_hash_table;
623         int i;
624
625         /*
626          * The hash table is big enough to fill all of physical memory
627          * with an average block size of zfs_arc_average_blocksize (default 8K).
628          * By default, the table will take up
629          * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
630          */
631         while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
632                 hsize <<= 1;
633
634 retry:
635         h->hash_table_mask = hsize - 1;
636 #if defined(_KERNEL) && defined(HAVE_SPL)
637         /*
638          * Large allocations which do not require contiguous pages
639          * should be using vmem_alloc() in the linux kernel
640          */
641         h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
642 #else
643         h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
644 #endif
645         if (h->hash_table == NULL) {
646                 /* XXX - we should really return an error instead of assert */
647                 ASSERT(hsize > (1ULL << 10));
648                 hsize >>= 1;
649                 goto retry;
650         }
651
652         dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
653             sizeof (dmu_buf_impl_t),
654             0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
655
656         for (i = 0; i < DBUF_MUTEXES; i++)
657                 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
658
659         dbuf_stats_init(h);
660
661         /*
662          * Setup the parameters for the dbuf cache. We cap the size of the
663          * dbuf cache to 1/32nd (default) of the size of the ARC.
664          */
665         dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
666             arc_max_bytes() >> dbuf_cache_max_shift);
667
668         /*
669          * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
670          * configuration is not required.
671          */
672         dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
673
674         dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
675             offsetof(dmu_buf_impl_t, db_cache_link),
676             dbuf_cache_multilist_index_func);
677         refcount_create(&dbuf_cache_size);
678
679         tsd_create(&zfs_dbuf_evict_key, NULL);
680         dbuf_evict_thread_exit = B_FALSE;
681         mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
682         cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
683         dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
684             NULL, 0, &p0, TS_RUN, minclsyspri);
685 }
686
687 void
688 dbuf_fini(void)
689 {
690         dbuf_hash_table_t *h = &dbuf_hash_table;
691         int i;
692
693         dbuf_stats_destroy();
694
695         for (i = 0; i < DBUF_MUTEXES; i++)
696                 mutex_destroy(&h->hash_mutexes[i]);
697 #if defined(_KERNEL) && defined(HAVE_SPL)
698         /*
699          * Large allocations which do not require contiguous pages
700          * should be using vmem_free() in the linux kernel
701          */
702         vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
703 #else
704         kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
705 #endif
706         kmem_cache_destroy(dbuf_kmem_cache);
707         taskq_destroy(dbu_evict_taskq);
708
709         mutex_enter(&dbuf_evict_lock);
710         dbuf_evict_thread_exit = B_TRUE;
711         while (dbuf_evict_thread_exit) {
712                 cv_signal(&dbuf_evict_cv);
713                 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
714         }
715         mutex_exit(&dbuf_evict_lock);
716         tsd_destroy(&zfs_dbuf_evict_key);
717
718         mutex_destroy(&dbuf_evict_lock);
719         cv_destroy(&dbuf_evict_cv);
720
721         refcount_destroy(&dbuf_cache_size);
722         multilist_destroy(dbuf_cache);
723 }
724
725 /*
726  * Other stuff.
727  */
728
729 #ifdef ZFS_DEBUG
730 static void
731 dbuf_verify(dmu_buf_impl_t *db)
732 {
733         dnode_t *dn;
734         dbuf_dirty_record_t *dr;
735
736         ASSERT(MUTEX_HELD(&db->db_mtx));
737
738         if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
739                 return;
740
741         ASSERT(db->db_objset != NULL);
742         DB_DNODE_ENTER(db);
743         dn = DB_DNODE(db);
744         if (dn == NULL) {
745                 ASSERT(db->db_parent == NULL);
746                 ASSERT(db->db_blkptr == NULL);
747         } else {
748                 ASSERT3U(db->db.db_object, ==, dn->dn_object);
749                 ASSERT3P(db->db_objset, ==, dn->dn_objset);
750                 ASSERT3U(db->db_level, <, dn->dn_nlevels);
751                 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
752                     db->db_blkid == DMU_SPILL_BLKID ||
753                     !avl_is_empty(&dn->dn_dbufs));
754         }
755         if (db->db_blkid == DMU_BONUS_BLKID) {
756                 ASSERT(dn != NULL);
757                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
758                 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
759         } else if (db->db_blkid == DMU_SPILL_BLKID) {
760                 ASSERT(dn != NULL);
761                 ASSERT0(db->db.db_offset);
762         } else {
763                 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
764         }
765
766         for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
767                 ASSERT(dr->dr_dbuf == db);
768
769         for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
770                 ASSERT(dr->dr_dbuf == db);
771
772         /*
773          * We can't assert that db_size matches dn_datablksz because it
774          * can be momentarily different when another thread is doing
775          * dnode_set_blksz().
776          */
777         if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
778                 dr = db->db_data_pending;
779                 /*
780                  * It should only be modified in syncing context, so
781                  * make sure we only have one copy of the data.
782                  */
783                 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
784         }
785
786         /* verify db->db_blkptr */
787         if (db->db_blkptr) {
788                 if (db->db_parent == dn->dn_dbuf) {
789                         /* db is pointed to by the dnode */
790                         /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
791                         if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
792                                 ASSERT(db->db_parent == NULL);
793                         else
794                                 ASSERT(db->db_parent != NULL);
795                         if (db->db_blkid != DMU_SPILL_BLKID)
796                                 ASSERT3P(db->db_blkptr, ==,
797                                     &dn->dn_phys->dn_blkptr[db->db_blkid]);
798                 } else {
799                         /* db is pointed to by an indirect block */
800                         ASSERTV(int epb = db->db_parent->db.db_size >>
801                             SPA_BLKPTRSHIFT);
802                         ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
803                         ASSERT3U(db->db_parent->db.db_object, ==,
804                             db->db.db_object);
805                         /*
806                          * dnode_grow_indblksz() can make this fail if we don't
807                          * have the struct_rwlock.  XXX indblksz no longer
808                          * grows.  safe to do this now?
809                          */
810                         if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
811                                 ASSERT3P(db->db_blkptr, ==,
812                                     ((blkptr_t *)db->db_parent->db.db_data +
813                                     db->db_blkid % epb));
814                         }
815                 }
816         }
817         if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
818             (db->db_buf == NULL || db->db_buf->b_data) &&
819             db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
820             db->db_state != DB_FILL && !dn->dn_free_txg) {
821                 /*
822                  * If the blkptr isn't set but they have nonzero data,
823                  * it had better be dirty, otherwise we'll lose that
824                  * data when we evict this buffer.
825                  *
826                  * There is an exception to this rule for indirect blocks; in
827                  * this case, if the indirect block is a hole, we fill in a few
828                  * fields on each of the child blocks (importantly, birth time)
829                  * to prevent hole birth times from being lost when you
830                  * partially fill in a hole.
831                  */
832                 if (db->db_dirtycnt == 0) {
833                         if (db->db_level == 0) {
834                                 uint64_t *buf = db->db.db_data;
835                                 int i;
836
837                                 for (i = 0; i < db->db.db_size >> 3; i++) {
838                                         ASSERT(buf[i] == 0);
839                                 }
840                         } else {
841                                 int i;
842                                 blkptr_t *bps = db->db.db_data;
843                                 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
844                                     db->db.db_size);
845                                 /*
846                                  * We want to verify that all the blkptrs in the
847                                  * indirect block are holes, but we may have
848                                  * automatically set up a few fields for them.
849                                  * We iterate through each blkptr and verify
850                                  * they only have those fields set.
851                                  */
852                                 for (i = 0;
853                                     i < db->db.db_size / sizeof (blkptr_t);
854                                     i++) {
855                                         blkptr_t *bp = &bps[i];
856                                         ASSERT(ZIO_CHECKSUM_IS_ZERO(
857                                             &bp->blk_cksum));
858                                         ASSERT(
859                                             DVA_IS_EMPTY(&bp->blk_dva[0]) &&
860                                             DVA_IS_EMPTY(&bp->blk_dva[1]) &&
861                                             DVA_IS_EMPTY(&bp->blk_dva[2]));
862                                         ASSERT0(bp->blk_fill);
863                                         ASSERT0(bp->blk_pad[0]);
864                                         ASSERT0(bp->blk_pad[1]);
865                                         ASSERT(!BP_IS_EMBEDDED(bp));
866                                         ASSERT(BP_IS_HOLE(bp));
867                                         ASSERT0(bp->blk_phys_birth);
868                                 }
869                         }
870                 }
871         }
872         DB_DNODE_EXIT(db);
873 }
874 #endif
875
876 static void
877 dbuf_clear_data(dmu_buf_impl_t *db)
878 {
879         ASSERT(MUTEX_HELD(&db->db_mtx));
880         dbuf_evict_user(db);
881         ASSERT3P(db->db_buf, ==, NULL);
882         db->db.db_data = NULL;
883         if (db->db_state != DB_NOFILL)
884                 db->db_state = DB_UNCACHED;
885 }
886
887 static void
888 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
889 {
890         ASSERT(MUTEX_HELD(&db->db_mtx));
891         ASSERT(buf != NULL);
892
893         db->db_buf = buf;
894         ASSERT(buf->b_data != NULL);
895         db->db.db_data = buf->b_data;
896 }
897
898 /*
899  * Loan out an arc_buf for read.  Return the loaned arc_buf.
900  */
901 arc_buf_t *
902 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
903 {
904         arc_buf_t *abuf;
905
906         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
907         mutex_enter(&db->db_mtx);
908         if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
909                 int blksz = db->db.db_size;
910                 spa_t *spa = db->db_objset->os_spa;
911
912                 mutex_exit(&db->db_mtx);
913                 abuf = arc_loan_buf(spa, B_FALSE, blksz);
914                 bcopy(db->db.db_data, abuf->b_data, blksz);
915         } else {
916                 abuf = db->db_buf;
917                 arc_loan_inuse_buf(abuf, db);
918                 db->db_buf = NULL;
919                 dbuf_clear_data(db);
920                 mutex_exit(&db->db_mtx);
921         }
922         return (abuf);
923 }
924
925 /*
926  * Calculate which level n block references the data at the level 0 offset
927  * provided.
928  */
929 uint64_t
930 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
931 {
932         if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
933                 /*
934                  * The level n blkid is equal to the level 0 blkid divided by
935                  * the number of level 0s in a level n block.
936                  *
937                  * The level 0 blkid is offset >> datablkshift =
938                  * offset / 2^datablkshift.
939                  *
940                  * The number of level 0s in a level n is the number of block
941                  * pointers in an indirect block, raised to the power of level.
942                  * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
943                  * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
944                  *
945                  * Thus, the level n blkid is: offset /
946                  * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
947                  * = offset / 2^(datablkshift + level *
948                  *   (indblkshift - SPA_BLKPTRSHIFT))
949                  * = offset >> (datablkshift + level *
950                  *   (indblkshift - SPA_BLKPTRSHIFT))
951                  */
952
953                 const unsigned exp = dn->dn_datablkshift +
954                     level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
955
956                 if (exp >= 8 * sizeof (offset)) {
957                         /* This only happens on the highest indirection level */
958                         ASSERT3U(level, ==, dn->dn_nlevels - 1);
959                         return (0);
960                 }
961
962                 ASSERT3U(exp, <, 8 * sizeof (offset));
963
964                 return (offset >> exp);
965         } else {
966                 ASSERT3U(offset, <, dn->dn_datablksz);
967                 return (0);
968         }
969 }
970
971 static void
972 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
973 {
974         dmu_buf_impl_t *db = vdb;
975
976         mutex_enter(&db->db_mtx);
977         ASSERT3U(db->db_state, ==, DB_READ);
978         /*
979          * All reads are synchronous, so we must have a hold on the dbuf
980          */
981         ASSERT(refcount_count(&db->db_holds) > 0);
982         ASSERT(db->db_buf == NULL);
983         ASSERT(db->db.db_data == NULL);
984         if (db->db_level == 0 && db->db_freed_in_flight) {
985                 /* we were freed in flight; disregard any error */
986                 arc_release(buf, db);
987                 bzero(buf->b_data, db->db.db_size);
988                 arc_buf_freeze(buf);
989                 db->db_freed_in_flight = FALSE;
990                 dbuf_set_data(db, buf);
991                 db->db_state = DB_CACHED;
992         } else if (zio == NULL || zio->io_error == 0) {
993                 dbuf_set_data(db, buf);
994                 db->db_state = DB_CACHED;
995         } else {
996                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
997                 ASSERT3P(db->db_buf, ==, NULL);
998                 arc_buf_destroy(buf, db);
999                 db->db_state = DB_UNCACHED;
1000         }
1001         cv_broadcast(&db->db_changed);
1002         dbuf_rele_and_unlock(db, NULL);
1003 }
1004
1005 static int
1006 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1007 {
1008         dnode_t *dn;
1009         zbookmark_phys_t zb;
1010         uint32_t aflags = ARC_FLAG_NOWAIT;
1011         int err;
1012
1013         DB_DNODE_ENTER(db);
1014         dn = DB_DNODE(db);
1015         ASSERT(!refcount_is_zero(&db->db_holds));
1016         /* We need the struct_rwlock to prevent db_blkptr from changing. */
1017         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1018         ASSERT(MUTEX_HELD(&db->db_mtx));
1019         ASSERT(db->db_state == DB_UNCACHED);
1020         ASSERT(db->db_buf == NULL);
1021
1022         if (db->db_blkid == DMU_BONUS_BLKID) {
1023                 /*
1024                  * The bonus length stored in the dnode may be less than
1025                  * the maximum available space in the bonus buffer.
1026                  */
1027                 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1028                 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1029
1030                 ASSERT3U(bonuslen, <=, db->db.db_size);
1031                 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1032                 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1033                 if (bonuslen < max_bonuslen)
1034                         bzero(db->db.db_data, max_bonuslen);
1035                 if (bonuslen)
1036                         bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1037                 DB_DNODE_EXIT(db);
1038                 db->db_state = DB_CACHED;
1039                 mutex_exit(&db->db_mtx);
1040                 return (0);
1041         }
1042
1043         /*
1044          * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1045          * processes the delete record and clears the bp while we are waiting
1046          * for the dn_mtx (resulting in a "no" from block_freed).
1047          */
1048         if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1049             (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1050             BP_IS_HOLE(db->db_blkptr)))) {
1051                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1052
1053                 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1054                     db->db.db_size));
1055                 bzero(db->db.db_data, db->db.db_size);
1056
1057                 if (db->db_blkptr != NULL && db->db_level > 0 &&
1058                     BP_IS_HOLE(db->db_blkptr) &&
1059                     db->db_blkptr->blk_birth != 0) {
1060                         blkptr_t *bps = db->db.db_data;
1061                         int i;
1062                         for (i = 0; i < ((1 <<
1063                             DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1064                             i++) {
1065                                 blkptr_t *bp = &bps[i];
1066                                 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1067                                     1 << dn->dn_indblkshift);
1068                                 BP_SET_LSIZE(bp,
1069                                     BP_GET_LEVEL(db->db_blkptr) == 1 ?
1070                                     dn->dn_datablksz :
1071                                     BP_GET_LSIZE(db->db_blkptr));
1072                                 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1073                                 BP_SET_LEVEL(bp,
1074                                     BP_GET_LEVEL(db->db_blkptr) - 1);
1075                                 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1076                         }
1077                 }
1078                 DB_DNODE_EXIT(db);
1079                 db->db_state = DB_CACHED;
1080                 mutex_exit(&db->db_mtx);
1081                 return (0);
1082         }
1083
1084         DB_DNODE_EXIT(db);
1085
1086         db->db_state = DB_READ;
1087         mutex_exit(&db->db_mtx);
1088
1089         if (DBUF_IS_L2CACHEABLE(db))
1090                 aflags |= ARC_FLAG_L2CACHE;
1091
1092         SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1093             db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1094             db->db.db_object, db->db_level, db->db_blkid);
1095
1096         dbuf_add_ref(db, NULL);
1097
1098         err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1099             dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
1100             (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
1101             &aflags, &zb);
1102
1103         return (err);
1104 }
1105
1106 /*
1107  * This is our just-in-time copy function.  It makes a copy of buffers that
1108  * have been modified in a previous transaction group before we access them in
1109  * the current active group.
1110  *
1111  * This function is used in three places: when we are dirtying a buffer for the
1112  * first time in a txg, when we are freeing a range in a dnode that includes
1113  * this buffer, and when we are accessing a buffer which was received compressed
1114  * and later referenced in a WRITE_BYREF record.
1115  *
1116  * Note that when we are called from dbuf_free_range() we do not put a hold on
1117  * the buffer, we just traverse the active dbuf list for the dnode.
1118  */
1119 static void
1120 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1121 {
1122         dbuf_dirty_record_t *dr = db->db_last_dirty;
1123
1124         ASSERT(MUTEX_HELD(&db->db_mtx));
1125         ASSERT(db->db.db_data != NULL);
1126         ASSERT(db->db_level == 0);
1127         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1128
1129         if (dr == NULL ||
1130             (dr->dt.dl.dr_data !=
1131             ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1132                 return;
1133
1134         /*
1135          * If the last dirty record for this dbuf has not yet synced
1136          * and its referencing the dbuf data, either:
1137          *      reset the reference to point to a new copy,
1138          * or (if there a no active holders)
1139          *      just null out the current db_data pointer.
1140          */
1141         ASSERT(dr->dr_txg >= txg - 2);
1142         if (db->db_blkid == DMU_BONUS_BLKID) {
1143                 dnode_t *dn = DB_DNODE(db);
1144                 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1145                 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1146                 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1147                 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1148         } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1149                 int size = arc_buf_size(db->db_buf);
1150                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1151                 spa_t *spa = db->db_objset->os_spa;
1152                 enum zio_compress compress_type =
1153                     arc_get_compression(db->db_buf);
1154
1155                 if (compress_type == ZIO_COMPRESS_OFF) {
1156                         dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1157                 } else {
1158                         ASSERT3U(type, ==, ARC_BUFC_DATA);
1159                         dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1160                             size, arc_buf_lsize(db->db_buf), compress_type);
1161                 }
1162                 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1163         } else {
1164                 db->db_buf = NULL;
1165                 dbuf_clear_data(db);
1166         }
1167 }
1168
1169 int
1170 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1171 {
1172         int err = 0;
1173         boolean_t havepzio = (zio != NULL);
1174         boolean_t prefetch;
1175         dnode_t *dn;
1176
1177         /*
1178          * We don't have to hold the mutex to check db_state because it
1179          * can't be freed while we have a hold on the buffer.
1180          */
1181         ASSERT(!refcount_is_zero(&db->db_holds));
1182
1183         if (db->db_state == DB_NOFILL)
1184                 return (SET_ERROR(EIO));
1185
1186         DB_DNODE_ENTER(db);
1187         dn = DB_DNODE(db);
1188         if ((flags & DB_RF_HAVESTRUCT) == 0)
1189                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1190
1191         prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1192             (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1193             DBUF_IS_CACHEABLE(db);
1194
1195         mutex_enter(&db->db_mtx);
1196         if (db->db_state == DB_CACHED) {
1197                 /*
1198                  * If the arc buf is compressed, we need to decompress it to
1199                  * read the data. This could happen during the "zfs receive" of
1200                  * a stream which is compressed and deduplicated.
1201                  */
1202                 if (db->db_buf != NULL &&
1203                     arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF) {
1204                         dbuf_fix_old_data(db,
1205                             spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1206                         err = arc_decompress(db->db_buf);
1207                         dbuf_set_data(db, db->db_buf);
1208                 }
1209                 mutex_exit(&db->db_mtx);
1210                 if (prefetch)
1211                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1212                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1213                         rw_exit(&dn->dn_struct_rwlock);
1214                 DB_DNODE_EXIT(db);
1215         } else if (db->db_state == DB_UNCACHED) {
1216                 spa_t *spa = dn->dn_objset->os_spa;
1217
1218                 if (zio == NULL &&
1219                     db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr))
1220                         zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1221
1222                 err = dbuf_read_impl(db, zio, flags);
1223
1224                 /* dbuf_read_impl has dropped db_mtx for us */
1225
1226                 if (!err && prefetch)
1227                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1228
1229                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1230                         rw_exit(&dn->dn_struct_rwlock);
1231                 DB_DNODE_EXIT(db);
1232
1233                 if (!err && !havepzio && zio != NULL)
1234                         err = zio_wait(zio);
1235         } else {
1236                 /*
1237                  * Another reader came in while the dbuf was in flight
1238                  * between UNCACHED and CACHED.  Either a writer will finish
1239                  * writing the buffer (sending the dbuf to CACHED) or the
1240                  * first reader's request will reach the read_done callback
1241                  * and send the dbuf to CACHED.  Otherwise, a failure
1242                  * occurred and the dbuf went to UNCACHED.
1243                  */
1244                 mutex_exit(&db->db_mtx);
1245                 if (prefetch)
1246                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1247                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1248                         rw_exit(&dn->dn_struct_rwlock);
1249                 DB_DNODE_EXIT(db);
1250
1251                 /* Skip the wait per the caller's request. */
1252                 mutex_enter(&db->db_mtx);
1253                 if ((flags & DB_RF_NEVERWAIT) == 0) {
1254                         while (db->db_state == DB_READ ||
1255                             db->db_state == DB_FILL) {
1256                                 ASSERT(db->db_state == DB_READ ||
1257                                     (flags & DB_RF_HAVESTRUCT) == 0);
1258                                 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1259                                     db, zio_t *, zio);
1260                                 cv_wait(&db->db_changed, &db->db_mtx);
1261                         }
1262                         if (db->db_state == DB_UNCACHED)
1263                                 err = SET_ERROR(EIO);
1264                 }
1265                 mutex_exit(&db->db_mtx);
1266         }
1267
1268         ASSERT(err || havepzio || db->db_state == DB_CACHED);
1269         return (err);
1270 }
1271
1272 static void
1273 dbuf_noread(dmu_buf_impl_t *db)
1274 {
1275         ASSERT(!refcount_is_zero(&db->db_holds));
1276         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1277         mutex_enter(&db->db_mtx);
1278         while (db->db_state == DB_READ || db->db_state == DB_FILL)
1279                 cv_wait(&db->db_changed, &db->db_mtx);
1280         if (db->db_state == DB_UNCACHED) {
1281                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1282                 spa_t *spa = db->db_objset->os_spa;
1283
1284                 ASSERT(db->db_buf == NULL);
1285                 ASSERT(db->db.db_data == NULL);
1286                 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1287                 db->db_state = DB_FILL;
1288         } else if (db->db_state == DB_NOFILL) {
1289                 dbuf_clear_data(db);
1290         } else {
1291                 ASSERT3U(db->db_state, ==, DB_CACHED);
1292         }
1293         mutex_exit(&db->db_mtx);
1294 }
1295
1296 void
1297 dbuf_unoverride(dbuf_dirty_record_t *dr)
1298 {
1299         dmu_buf_impl_t *db = dr->dr_dbuf;
1300         blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1301         uint64_t txg = dr->dr_txg;
1302
1303         ASSERT(MUTEX_HELD(&db->db_mtx));
1304         ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1305         ASSERT(db->db_level == 0);
1306
1307         if (db->db_blkid == DMU_BONUS_BLKID ||
1308             dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1309                 return;
1310
1311         ASSERT(db->db_data_pending != dr);
1312
1313         /* free this block */
1314         if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1315                 zio_free(db->db_objset->os_spa, txg, bp);
1316
1317         dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1318         dr->dt.dl.dr_nopwrite = B_FALSE;
1319
1320         /*
1321          * Release the already-written buffer, so we leave it in
1322          * a consistent dirty state.  Note that all callers are
1323          * modifying the buffer, so they will immediately do
1324          * another (redundant) arc_release().  Therefore, leave
1325          * the buf thawed to save the effort of freezing &
1326          * immediately re-thawing it.
1327          */
1328         arc_release(dr->dt.dl.dr_data, db);
1329 }
1330
1331 /*
1332  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1333  * data blocks in the free range, so that any future readers will find
1334  * empty blocks.
1335  */
1336 void
1337 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1338     dmu_tx_t *tx)
1339 {
1340         dmu_buf_impl_t *db_search;
1341         dmu_buf_impl_t *db, *db_next;
1342         uint64_t txg = tx->tx_txg;
1343         avl_index_t where;
1344
1345         if (end_blkid > dn->dn_maxblkid &&
1346             !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1347                 end_blkid = dn->dn_maxblkid;
1348         dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1349
1350         db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1351         db_search->db_level = 0;
1352         db_search->db_blkid = start_blkid;
1353         db_search->db_state = DB_SEARCH;
1354
1355         mutex_enter(&dn->dn_dbufs_mtx);
1356         db = avl_find(&dn->dn_dbufs, db_search, &where);
1357         ASSERT3P(db, ==, NULL);
1358
1359         db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1360
1361         for (; db != NULL; db = db_next) {
1362                 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1363                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1364
1365                 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1366                         break;
1367                 }
1368                 ASSERT3U(db->db_blkid, >=, start_blkid);
1369
1370                 /* found a level 0 buffer in the range */
1371                 mutex_enter(&db->db_mtx);
1372                 if (dbuf_undirty(db, tx)) {
1373                         /* mutex has been dropped and dbuf destroyed */
1374                         continue;
1375                 }
1376
1377                 if (db->db_state == DB_UNCACHED ||
1378                     db->db_state == DB_NOFILL ||
1379                     db->db_state == DB_EVICTING) {
1380                         ASSERT(db->db.db_data == NULL);
1381                         mutex_exit(&db->db_mtx);
1382                         continue;
1383                 }
1384                 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1385                         /* will be handled in dbuf_read_done or dbuf_rele */
1386                         db->db_freed_in_flight = TRUE;
1387                         mutex_exit(&db->db_mtx);
1388                         continue;
1389                 }
1390                 if (refcount_count(&db->db_holds) == 0) {
1391                         ASSERT(db->db_buf);
1392                         dbuf_destroy(db);
1393                         continue;
1394                 }
1395                 /* The dbuf is referenced */
1396
1397                 if (db->db_last_dirty != NULL) {
1398                         dbuf_dirty_record_t *dr = db->db_last_dirty;
1399
1400                         if (dr->dr_txg == txg) {
1401                                 /*
1402                                  * This buffer is "in-use", re-adjust the file
1403                                  * size to reflect that this buffer may
1404                                  * contain new data when we sync.
1405                                  */
1406                                 if (db->db_blkid != DMU_SPILL_BLKID &&
1407                                     db->db_blkid > dn->dn_maxblkid)
1408                                         dn->dn_maxblkid = db->db_blkid;
1409                                 dbuf_unoverride(dr);
1410                         } else {
1411                                 /*
1412                                  * This dbuf is not dirty in the open context.
1413                                  * Either uncache it (if its not referenced in
1414                                  * the open context) or reset its contents to
1415                                  * empty.
1416                                  */
1417                                 dbuf_fix_old_data(db, txg);
1418                         }
1419                 }
1420                 /* clear the contents if its cached */
1421                 if (db->db_state == DB_CACHED) {
1422                         ASSERT(db->db.db_data != NULL);
1423                         arc_release(db->db_buf, db);
1424                         bzero(db->db.db_data, db->db.db_size);
1425                         arc_buf_freeze(db->db_buf);
1426                 }
1427
1428                 mutex_exit(&db->db_mtx);
1429         }
1430
1431         kmem_free(db_search, sizeof (dmu_buf_impl_t));
1432         mutex_exit(&dn->dn_dbufs_mtx);
1433 }
1434
1435 void
1436 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1437 {
1438         arc_buf_t *buf, *obuf;
1439         int osize = db->db.db_size;
1440         arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1441         dnode_t *dn;
1442
1443         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1444
1445         DB_DNODE_ENTER(db);
1446         dn = DB_DNODE(db);
1447
1448         /* XXX does *this* func really need the lock? */
1449         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1450
1451         /*
1452          * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1453          * is OK, because there can be no other references to the db
1454          * when we are changing its size, so no concurrent DB_FILL can
1455          * be happening.
1456          */
1457         /*
1458          * XXX we should be doing a dbuf_read, checking the return
1459          * value and returning that up to our callers
1460          */
1461         dmu_buf_will_dirty(&db->db, tx);
1462
1463         /* create the data buffer for the new block */
1464         buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1465
1466         /* copy old block data to the new block */
1467         obuf = db->db_buf;
1468         bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1469         /* zero the remainder */
1470         if (size > osize)
1471                 bzero((uint8_t *)buf->b_data + osize, size - osize);
1472
1473         mutex_enter(&db->db_mtx);
1474         dbuf_set_data(db, buf);
1475         arc_buf_destroy(obuf, db);
1476         db->db.db_size = size;
1477
1478         if (db->db_level == 0) {
1479                 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1480                 db->db_last_dirty->dt.dl.dr_data = buf;
1481         }
1482         mutex_exit(&db->db_mtx);
1483
1484         dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1485         DB_DNODE_EXIT(db);
1486 }
1487
1488 void
1489 dbuf_release_bp(dmu_buf_impl_t *db)
1490 {
1491         ASSERTV(objset_t *os = db->db_objset);
1492
1493         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1494         ASSERT(arc_released(os->os_phys_buf) ||
1495             list_link_active(&os->os_dsl_dataset->ds_synced_link));
1496         ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1497
1498         (void) arc_release(db->db_buf, db);
1499 }
1500
1501 /*
1502  * We already have a dirty record for this TXG, and we are being
1503  * dirtied again.
1504  */
1505 static void
1506 dbuf_redirty(dbuf_dirty_record_t *dr)
1507 {
1508         dmu_buf_impl_t *db = dr->dr_dbuf;
1509
1510         ASSERT(MUTEX_HELD(&db->db_mtx));
1511
1512         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1513                 /*
1514                  * If this buffer has already been written out,
1515                  * we now need to reset its state.
1516                  */
1517                 dbuf_unoverride(dr);
1518                 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1519                     db->db_state != DB_NOFILL) {
1520                         /* Already released on initial dirty, so just thaw. */
1521                         ASSERT(arc_released(db->db_buf));
1522                         arc_buf_thaw(db->db_buf);
1523                 }
1524         }
1525 }
1526
1527 dbuf_dirty_record_t *
1528 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1529 {
1530         dnode_t *dn;
1531         objset_t *os;
1532         dbuf_dirty_record_t **drp, *dr;
1533         int drop_struct_lock = FALSE;
1534         int txgoff = tx->tx_txg & TXG_MASK;
1535
1536         ASSERT(tx->tx_txg != 0);
1537         ASSERT(!refcount_is_zero(&db->db_holds));
1538         DMU_TX_DIRTY_BUF(tx, db);
1539
1540         DB_DNODE_ENTER(db);
1541         dn = DB_DNODE(db);
1542         /*
1543          * Shouldn't dirty a regular buffer in syncing context.  Private
1544          * objects may be dirtied in syncing context, but only if they
1545          * were already pre-dirtied in open context.
1546          */
1547 #ifdef DEBUG
1548         if (dn->dn_objset->os_dsl_dataset != NULL) {
1549                 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1550                     RW_READER, FTAG);
1551         }
1552         ASSERT(!dmu_tx_is_syncing(tx) ||
1553             BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1554             DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1555             dn->dn_objset->os_dsl_dataset == NULL);
1556         if (dn->dn_objset->os_dsl_dataset != NULL)
1557                 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1558 #endif
1559         /*
1560          * We make this assert for private objects as well, but after we
1561          * check if we're already dirty.  They are allowed to re-dirty
1562          * in syncing context.
1563          */
1564         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1565             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1566             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1567
1568         mutex_enter(&db->db_mtx);
1569         /*
1570          * XXX make this true for indirects too?  The problem is that
1571          * transactions created with dmu_tx_create_assigned() from
1572          * syncing context don't bother holding ahead.
1573          */
1574         ASSERT(db->db_level != 0 ||
1575             db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1576             db->db_state == DB_NOFILL);
1577
1578         mutex_enter(&dn->dn_mtx);
1579         /*
1580          * Don't set dirtyctx to SYNC if we're just modifying this as we
1581          * initialize the objset.
1582          */
1583         if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1584                 if (dn->dn_objset->os_dsl_dataset != NULL) {
1585                         rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1586                             RW_READER, FTAG);
1587                 }
1588                 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1589                         dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1590                             DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1591                         ASSERT(dn->dn_dirtyctx_firstset == NULL);
1592                         dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1593                 }
1594                 if (dn->dn_objset->os_dsl_dataset != NULL) {
1595                         rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1596                             FTAG);
1597                 }
1598         }
1599         mutex_exit(&dn->dn_mtx);
1600
1601         if (db->db_blkid == DMU_SPILL_BLKID)
1602                 dn->dn_have_spill = B_TRUE;
1603
1604         /*
1605          * If this buffer is already dirty, we're done.
1606          */
1607         drp = &db->db_last_dirty;
1608         ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1609             db->db.db_object == DMU_META_DNODE_OBJECT);
1610         while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1611                 drp = &dr->dr_next;
1612         if (dr && dr->dr_txg == tx->tx_txg) {
1613                 DB_DNODE_EXIT(db);
1614
1615                 dbuf_redirty(dr);
1616                 mutex_exit(&db->db_mtx);
1617                 return (dr);
1618         }
1619
1620         /*
1621          * Only valid if not already dirty.
1622          */
1623         ASSERT(dn->dn_object == 0 ||
1624             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1625             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1626
1627         ASSERT3U(dn->dn_nlevels, >, db->db_level);
1628         ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1629             dn->dn_phys->dn_nlevels > db->db_level ||
1630             dn->dn_next_nlevels[txgoff] > db->db_level ||
1631             dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1632             dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1633
1634         /*
1635          * We should only be dirtying in syncing context if it's the
1636          * mos or we're initializing the os or it's a special object.
1637          * However, we are allowed to dirty in syncing context provided
1638          * we already dirtied it in open context.  Hence we must make
1639          * this assertion only if we're not already dirty.
1640          */
1641         os = dn->dn_objset;
1642 #ifdef DEBUG
1643         if (dn->dn_objset->os_dsl_dataset != NULL)
1644                 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1645         ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1646             os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1647         if (dn->dn_objset->os_dsl_dataset != NULL)
1648                 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1649 #endif
1650         ASSERT(db->db.db_size != 0);
1651
1652         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1653
1654         if (db->db_blkid != DMU_BONUS_BLKID) {
1655                 dmu_objset_willuse_space(os, db->db.db_size, tx);
1656         }
1657
1658         /*
1659          * If this buffer is dirty in an old transaction group we need
1660          * to make a copy of it so that the changes we make in this
1661          * transaction group won't leak out when we sync the older txg.
1662          */
1663         dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1664         list_link_init(&dr->dr_dirty_node);
1665         if (db->db_level == 0) {
1666                 void *data_old = db->db_buf;
1667
1668                 if (db->db_state != DB_NOFILL) {
1669                         if (db->db_blkid == DMU_BONUS_BLKID) {
1670                                 dbuf_fix_old_data(db, tx->tx_txg);
1671                                 data_old = db->db.db_data;
1672                         } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1673                                 /*
1674                                  * Release the data buffer from the cache so
1675                                  * that we can modify it without impacting
1676                                  * possible other users of this cached data
1677                                  * block.  Note that indirect blocks and
1678                                  * private objects are not released until the
1679                                  * syncing state (since they are only modified
1680                                  * then).
1681                                  */
1682                                 arc_release(db->db_buf, db);
1683                                 dbuf_fix_old_data(db, tx->tx_txg);
1684                                 data_old = db->db_buf;
1685                         }
1686                         ASSERT(data_old != NULL);
1687                 }
1688                 dr->dt.dl.dr_data = data_old;
1689         } else {
1690                 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
1691                 list_create(&dr->dt.di.dr_children,
1692                     sizeof (dbuf_dirty_record_t),
1693                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
1694         }
1695         if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1696                 dr->dr_accounted = db->db.db_size;
1697         dr->dr_dbuf = db;
1698         dr->dr_txg = tx->tx_txg;
1699         dr->dr_next = *drp;
1700         *drp = dr;
1701
1702         /*
1703          * We could have been freed_in_flight between the dbuf_noread
1704          * and dbuf_dirty.  We win, as though the dbuf_noread() had
1705          * happened after the free.
1706          */
1707         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1708             db->db_blkid != DMU_SPILL_BLKID) {
1709                 mutex_enter(&dn->dn_mtx);
1710                 if (dn->dn_free_ranges[txgoff] != NULL) {
1711                         range_tree_clear(dn->dn_free_ranges[txgoff],
1712                             db->db_blkid, 1);
1713                 }
1714                 mutex_exit(&dn->dn_mtx);
1715                 db->db_freed_in_flight = FALSE;
1716         }
1717
1718         /*
1719          * This buffer is now part of this txg
1720          */
1721         dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1722         db->db_dirtycnt += 1;
1723         ASSERT3U(db->db_dirtycnt, <=, 3);
1724
1725         mutex_exit(&db->db_mtx);
1726
1727         if (db->db_blkid == DMU_BONUS_BLKID ||
1728             db->db_blkid == DMU_SPILL_BLKID) {
1729                 mutex_enter(&dn->dn_mtx);
1730                 ASSERT(!list_link_active(&dr->dr_dirty_node));
1731                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1732                 mutex_exit(&dn->dn_mtx);
1733                 dnode_setdirty(dn, tx);
1734                 DB_DNODE_EXIT(db);
1735                 return (dr);
1736         }
1737
1738         /*
1739          * The dn_struct_rwlock prevents db_blkptr from changing
1740          * due to a write from syncing context completing
1741          * while we are running, so we want to acquire it before
1742          * looking at db_blkptr.
1743          */
1744         if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1745                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1746                 drop_struct_lock = TRUE;
1747         }
1748
1749         /*
1750          * If we are overwriting a dedup BP, then unless it is snapshotted,
1751          * when we get to syncing context we will need to decrement its
1752          * refcount in the DDT.  Prefetch the relevant DDT block so that
1753          * syncing context won't have to wait for the i/o.
1754          */
1755         ddt_prefetch(os->os_spa, db->db_blkptr);
1756
1757         if (db->db_level == 0) {
1758                 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1759                 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1760         }
1761
1762         if (db->db_level+1 < dn->dn_nlevels) {
1763                 dmu_buf_impl_t *parent = db->db_parent;
1764                 dbuf_dirty_record_t *di;
1765                 int parent_held = FALSE;
1766
1767                 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1768                         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1769
1770                         parent = dbuf_hold_level(dn, db->db_level+1,
1771                             db->db_blkid >> epbs, FTAG);
1772                         ASSERT(parent != NULL);
1773                         parent_held = TRUE;
1774                 }
1775                 if (drop_struct_lock)
1776                         rw_exit(&dn->dn_struct_rwlock);
1777                 ASSERT3U(db->db_level+1, ==, parent->db_level);
1778                 di = dbuf_dirty(parent, tx);
1779                 if (parent_held)
1780                         dbuf_rele(parent, FTAG);
1781
1782                 mutex_enter(&db->db_mtx);
1783                 /*
1784                  * Since we've dropped the mutex, it's possible that
1785                  * dbuf_undirty() might have changed this out from under us.
1786                  */
1787                 if (db->db_last_dirty == dr ||
1788                     dn->dn_object == DMU_META_DNODE_OBJECT) {
1789                         mutex_enter(&di->dt.di.dr_mtx);
1790                         ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1791                         ASSERT(!list_link_active(&dr->dr_dirty_node));
1792                         list_insert_tail(&di->dt.di.dr_children, dr);
1793                         mutex_exit(&di->dt.di.dr_mtx);
1794                         dr->dr_parent = di;
1795                 }
1796                 mutex_exit(&db->db_mtx);
1797         } else {
1798                 ASSERT(db->db_level+1 == dn->dn_nlevels);
1799                 ASSERT(db->db_blkid < dn->dn_nblkptr);
1800                 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1801                 mutex_enter(&dn->dn_mtx);
1802                 ASSERT(!list_link_active(&dr->dr_dirty_node));
1803                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1804                 mutex_exit(&dn->dn_mtx);
1805                 if (drop_struct_lock)
1806                         rw_exit(&dn->dn_struct_rwlock);
1807         }
1808
1809         dnode_setdirty(dn, tx);
1810         DB_DNODE_EXIT(db);
1811         return (dr);
1812 }
1813
1814 /*
1815  * Undirty a buffer in the transaction group referenced by the given
1816  * transaction.  Return whether this evicted the dbuf.
1817  */
1818 static boolean_t
1819 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1820 {
1821         dnode_t *dn;
1822         uint64_t txg = tx->tx_txg;
1823         dbuf_dirty_record_t *dr, **drp;
1824
1825         ASSERT(txg != 0);
1826
1827         /*
1828          * Due to our use of dn_nlevels below, this can only be called
1829          * in open context, unless we are operating on the MOS.
1830          * From syncing context, dn_nlevels may be different from the
1831          * dn_nlevels used when dbuf was dirtied.
1832          */
1833         ASSERT(db->db_objset ==
1834             dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1835             txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1836         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1837         ASSERT0(db->db_level);
1838         ASSERT(MUTEX_HELD(&db->db_mtx));
1839
1840         /*
1841          * If this buffer is not dirty, we're done.
1842          */
1843         for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1844                 if (dr->dr_txg <= txg)
1845                         break;
1846         if (dr == NULL || dr->dr_txg < txg)
1847                 return (B_FALSE);
1848         ASSERT(dr->dr_txg == txg);
1849         ASSERT(dr->dr_dbuf == db);
1850
1851         DB_DNODE_ENTER(db);
1852         dn = DB_DNODE(db);
1853
1854         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1855
1856         ASSERT(db->db.db_size != 0);
1857
1858         dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1859             dr->dr_accounted, txg);
1860
1861         *drp = dr->dr_next;
1862
1863         /*
1864          * Note that there are three places in dbuf_dirty()
1865          * where this dirty record may be put on a list.
1866          * Make sure to do a list_remove corresponding to
1867          * every one of those list_insert calls.
1868          */
1869         if (dr->dr_parent) {
1870                 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1871                 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1872                 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1873         } else if (db->db_blkid == DMU_SPILL_BLKID ||
1874             db->db_level + 1 == dn->dn_nlevels) {
1875                 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1876                 mutex_enter(&dn->dn_mtx);
1877                 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1878                 mutex_exit(&dn->dn_mtx);
1879         }
1880         DB_DNODE_EXIT(db);
1881
1882         if (db->db_state != DB_NOFILL) {
1883                 dbuf_unoverride(dr);
1884
1885                 ASSERT(db->db_buf != NULL);
1886                 ASSERT(dr->dt.dl.dr_data != NULL);
1887                 if (dr->dt.dl.dr_data != db->db_buf)
1888                         arc_buf_destroy(dr->dt.dl.dr_data, db);
1889         }
1890
1891         kmem_free(dr, sizeof (dbuf_dirty_record_t));
1892
1893         ASSERT(db->db_dirtycnt > 0);
1894         db->db_dirtycnt -= 1;
1895
1896         if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1897                 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1898                 dbuf_destroy(db);
1899                 return (B_TRUE);
1900         }
1901
1902         return (B_FALSE);
1903 }
1904
1905 void
1906 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1907 {
1908         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1909         int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1910         dbuf_dirty_record_t *dr;
1911
1912         ASSERT(tx->tx_txg != 0);
1913         ASSERT(!refcount_is_zero(&db->db_holds));
1914
1915         /*
1916          * Quick check for dirtyness.  For already dirty blocks, this
1917          * reduces runtime of this function by >90%, and overall performance
1918          * by 50% for some workloads (e.g. file deletion with indirect blocks
1919          * cached).
1920          */
1921         mutex_enter(&db->db_mtx);
1922
1923         for (dr = db->db_last_dirty;
1924             dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1925                 /*
1926                  * It's possible that it is already dirty but not cached,
1927                  * because there are some calls to dbuf_dirty() that don't
1928                  * go through dmu_buf_will_dirty().
1929                  */
1930                 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1931                         /* This dbuf is already dirty and cached. */
1932                         dbuf_redirty(dr);
1933                         mutex_exit(&db->db_mtx);
1934                         return;
1935                 }
1936         }
1937         mutex_exit(&db->db_mtx);
1938
1939         DB_DNODE_ENTER(db);
1940         if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1941                 rf |= DB_RF_HAVESTRUCT;
1942         DB_DNODE_EXIT(db);
1943         (void) dbuf_read(db, NULL, rf);
1944         (void) dbuf_dirty(db, tx);
1945 }
1946
1947 void
1948 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1949 {
1950         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1951
1952         db->db_state = DB_NOFILL;
1953
1954         dmu_buf_will_fill(db_fake, tx);
1955 }
1956
1957 void
1958 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1959 {
1960         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1961
1962         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1963         ASSERT(tx->tx_txg != 0);
1964         ASSERT(db->db_level == 0);
1965         ASSERT(!refcount_is_zero(&db->db_holds));
1966
1967         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1968             dmu_tx_private_ok(tx));
1969
1970         dbuf_noread(db);
1971         (void) dbuf_dirty(db, tx);
1972 }
1973
1974 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1975 /* ARGSUSED */
1976 void
1977 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1978 {
1979         mutex_enter(&db->db_mtx);
1980         DBUF_VERIFY(db);
1981
1982         if (db->db_state == DB_FILL) {
1983                 if (db->db_level == 0 && db->db_freed_in_flight) {
1984                         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1985                         /* we were freed while filling */
1986                         /* XXX dbuf_undirty? */
1987                         bzero(db->db.db_data, db->db.db_size);
1988                         db->db_freed_in_flight = FALSE;
1989                 }
1990                 db->db_state = DB_CACHED;
1991                 cv_broadcast(&db->db_changed);
1992         }
1993         mutex_exit(&db->db_mtx);
1994 }
1995
1996 void
1997 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1998     bp_embedded_type_t etype, enum zio_compress comp,
1999     int uncompressed_size, int compressed_size, int byteorder,
2000     dmu_tx_t *tx)
2001 {
2002         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2003         struct dirty_leaf *dl;
2004         dmu_object_type_t type;
2005
2006         if (etype == BP_EMBEDDED_TYPE_DATA) {
2007                 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2008                     SPA_FEATURE_EMBEDDED_DATA));
2009         }
2010
2011         DB_DNODE_ENTER(db);
2012         type = DB_DNODE(db)->dn_type;
2013         DB_DNODE_EXIT(db);
2014
2015         ASSERT0(db->db_level);
2016         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2017
2018         dmu_buf_will_not_fill(dbuf, tx);
2019
2020         ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2021         dl = &db->db_last_dirty->dt.dl;
2022         encode_embedded_bp_compressed(&dl->dr_overridden_by,
2023             data, comp, uncompressed_size, compressed_size);
2024         BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2025         BP_SET_TYPE(&dl->dr_overridden_by, type);
2026         BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2027         BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2028
2029         dl->dr_override_state = DR_OVERRIDDEN;
2030         dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2031 }
2032
2033 /*
2034  * Directly assign a provided arc buf to a given dbuf if it's not referenced
2035  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2036  */
2037 void
2038 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2039 {
2040         ASSERT(!refcount_is_zero(&db->db_holds));
2041         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2042         ASSERT(db->db_level == 0);
2043         ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2044         ASSERT(buf != NULL);
2045         ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2046         ASSERT(tx->tx_txg != 0);
2047
2048         arc_return_buf(buf, db);
2049         ASSERT(arc_released(buf));
2050
2051         mutex_enter(&db->db_mtx);
2052
2053         while (db->db_state == DB_READ || db->db_state == DB_FILL)
2054                 cv_wait(&db->db_changed, &db->db_mtx);
2055
2056         ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2057
2058         if (db->db_state == DB_CACHED &&
2059             refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2060                 mutex_exit(&db->db_mtx);
2061                 (void) dbuf_dirty(db, tx);
2062                 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2063                 arc_buf_destroy(buf, db);
2064                 xuio_stat_wbuf_copied();
2065                 return;
2066         }
2067
2068         xuio_stat_wbuf_nocopy();
2069         if (db->db_state == DB_CACHED) {
2070                 dbuf_dirty_record_t *dr = db->db_last_dirty;
2071
2072                 ASSERT(db->db_buf != NULL);
2073                 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2074                         ASSERT(dr->dt.dl.dr_data == db->db_buf);
2075                         if (!arc_released(db->db_buf)) {
2076                                 ASSERT(dr->dt.dl.dr_override_state ==
2077                                     DR_OVERRIDDEN);
2078                                 arc_release(db->db_buf, db);
2079                         }
2080                         dr->dt.dl.dr_data = buf;
2081                         arc_buf_destroy(db->db_buf, db);
2082                 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2083                         arc_release(db->db_buf, db);
2084                         arc_buf_destroy(db->db_buf, db);
2085                 }
2086                 db->db_buf = NULL;
2087         }
2088         ASSERT(db->db_buf == NULL);
2089         dbuf_set_data(db, buf);
2090         db->db_state = DB_FILL;
2091         mutex_exit(&db->db_mtx);
2092         (void) dbuf_dirty(db, tx);
2093         dmu_buf_fill_done(&db->db, tx);
2094 }
2095
2096 void
2097 dbuf_destroy(dmu_buf_impl_t *db)
2098 {
2099         dnode_t *dn;
2100         dmu_buf_impl_t *parent = db->db_parent;
2101         dmu_buf_impl_t *dndb;
2102
2103         ASSERT(MUTEX_HELD(&db->db_mtx));
2104         ASSERT(refcount_is_zero(&db->db_holds));
2105
2106         if (db->db_buf != NULL) {
2107                 arc_buf_destroy(db->db_buf, db);
2108                 db->db_buf = NULL;
2109         }
2110
2111         if (db->db_blkid == DMU_BONUS_BLKID) {
2112                 int slots = DB_DNODE(db)->dn_num_slots;
2113                 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2114                 ASSERT(db->db.db_data != NULL);
2115                 kmem_free(db->db.db_data, bonuslen);
2116                 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2117                 db->db_state = DB_UNCACHED;
2118         }
2119
2120         dbuf_clear_data(db);
2121
2122         if (multilist_link_active(&db->db_cache_link)) {
2123                 multilist_remove(dbuf_cache, db);
2124                 (void) refcount_remove_many(&dbuf_cache_size,
2125                     db->db.db_size, db);
2126         }
2127
2128         ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2129         ASSERT(db->db_data_pending == NULL);
2130
2131         db->db_state = DB_EVICTING;
2132         db->db_blkptr = NULL;
2133
2134         /*
2135          * Now that db_state is DB_EVICTING, nobody else can find this via
2136          * the hash table.  We can now drop db_mtx, which allows us to
2137          * acquire the dn_dbufs_mtx.
2138          */
2139         mutex_exit(&db->db_mtx);
2140
2141         DB_DNODE_ENTER(db);
2142         dn = DB_DNODE(db);
2143         dndb = dn->dn_dbuf;
2144         if (db->db_blkid != DMU_BONUS_BLKID) {
2145                 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2146                 if (needlock)
2147                         mutex_enter(&dn->dn_dbufs_mtx);
2148                 avl_remove(&dn->dn_dbufs, db);
2149                 atomic_dec_32(&dn->dn_dbufs_count);
2150                 membar_producer();
2151                 DB_DNODE_EXIT(db);
2152                 if (needlock)
2153                         mutex_exit(&dn->dn_dbufs_mtx);
2154                 /*
2155                  * Decrementing the dbuf count means that the hold corresponding
2156                  * to the removed dbuf is no longer discounted in dnode_move(),
2157                  * so the dnode cannot be moved until after we release the hold.
2158                  * The membar_producer() ensures visibility of the decremented
2159                  * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2160                  * release any lock.
2161                  */
2162                 dnode_rele(dn, db);
2163                 db->db_dnode_handle = NULL;
2164
2165                 dbuf_hash_remove(db);
2166         } else {
2167                 DB_DNODE_EXIT(db);
2168         }
2169
2170         ASSERT(refcount_is_zero(&db->db_holds));
2171
2172         db->db_parent = NULL;
2173
2174         ASSERT(db->db_buf == NULL);
2175         ASSERT(db->db.db_data == NULL);
2176         ASSERT(db->db_hash_next == NULL);
2177         ASSERT(db->db_blkptr == NULL);
2178         ASSERT(db->db_data_pending == NULL);
2179         ASSERT(!multilist_link_active(&db->db_cache_link));
2180
2181         kmem_cache_free(dbuf_kmem_cache, db);
2182         arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2183
2184         /*
2185          * If this dbuf is referenced from an indirect dbuf,
2186          * decrement the ref count on the indirect dbuf.
2187          */
2188         if (parent && parent != dndb)
2189                 dbuf_rele(parent, db);
2190 }
2191
2192 /*
2193  * Note: While bpp will always be updated if the function returns success,
2194  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2195  * this happens when the dnode is the meta-dnode, or a userused or groupused
2196  * object.
2197  */
2198 __attribute__((always_inline))
2199 static inline int
2200 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2201     dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
2202 {
2203         int nlevels, epbs;
2204
2205         *parentp = NULL;
2206         *bpp = NULL;
2207
2208         ASSERT(blkid != DMU_BONUS_BLKID);
2209
2210         if (blkid == DMU_SPILL_BLKID) {
2211                 mutex_enter(&dn->dn_mtx);
2212                 if (dn->dn_have_spill &&
2213                     (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2214                         *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2215                 else
2216                         *bpp = NULL;
2217                 dbuf_add_ref(dn->dn_dbuf, NULL);
2218                 *parentp = dn->dn_dbuf;
2219                 mutex_exit(&dn->dn_mtx);
2220                 return (0);
2221         }
2222
2223         nlevels =
2224             (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2225         epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2226
2227         ASSERT3U(level * epbs, <, 64);
2228         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2229         /*
2230          * This assertion shouldn't trip as long as the max indirect block size
2231          * is less than 1M.  The reason for this is that up to that point,
2232          * the number of levels required to address an entire object with blocks
2233          * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.  In
2234          * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2235          * (i.e. we can address the entire object), objects will all use at most
2236          * N-1 levels and the assertion won't overflow.  However, once epbs is
2237          * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
2238          * enough to address an entire object, so objects will have 5 levels,
2239          * but then this assertion will overflow.
2240          *
2241          * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2242          * need to redo this logic to handle overflows.
2243          */
2244         ASSERT(level >= nlevels ||
2245             ((nlevels - level - 1) * epbs) +
2246             highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2247         if (level >= nlevels ||
2248             blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2249             ((nlevels - level - 1) * epbs)) ||
2250             (fail_sparse &&
2251             blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2252                 /* the buffer has no parent yet */
2253                 return (SET_ERROR(ENOENT));
2254         } else if (level < nlevels-1) {
2255                 /* this block is referenced from an indirect block */
2256                 int err;
2257                 if (dh == NULL) {
2258                         err = dbuf_hold_impl(dn, level+1,
2259                             blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2260                 } else {
2261                         __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
2262                             blkid >> epbs, fail_sparse, FALSE, NULL,
2263                             parentp, dh->dh_depth + 1);
2264                         err = __dbuf_hold_impl(dh + 1);
2265                 }
2266                 if (err)
2267                         return (err);
2268                 err = dbuf_read(*parentp, NULL,
2269                     (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2270                 if (err) {
2271                         dbuf_rele(*parentp, NULL);
2272                         *parentp = NULL;
2273                         return (err);
2274                 }
2275                 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2276                     (blkid & ((1ULL << epbs) - 1));
2277                 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2278                         ASSERT(BP_IS_HOLE(*bpp));
2279                 return (0);
2280         } else {
2281                 /* the block is referenced from the dnode */
2282                 ASSERT3U(level, ==, nlevels-1);
2283                 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2284                     blkid < dn->dn_phys->dn_nblkptr);
2285                 if (dn->dn_dbuf) {
2286                         dbuf_add_ref(dn->dn_dbuf, NULL);
2287                         *parentp = dn->dn_dbuf;
2288                 }
2289                 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2290                 return (0);
2291         }
2292 }
2293
2294 static dmu_buf_impl_t *
2295 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2296     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2297 {
2298         objset_t *os = dn->dn_objset;
2299         dmu_buf_impl_t *db, *odb;
2300
2301         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2302         ASSERT(dn->dn_type != DMU_OT_NONE);
2303
2304         db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2305
2306         db->db_objset = os;
2307         db->db.db_object = dn->dn_object;
2308         db->db_level = level;
2309         db->db_blkid = blkid;
2310         db->db_last_dirty = NULL;
2311         db->db_dirtycnt = 0;
2312         db->db_dnode_handle = dn->dn_handle;
2313         db->db_parent = parent;
2314         db->db_blkptr = blkptr;
2315
2316         db->db_user = NULL;
2317         db->db_user_immediate_evict = FALSE;
2318         db->db_freed_in_flight = FALSE;
2319         db->db_pending_evict = FALSE;
2320
2321         if (blkid == DMU_BONUS_BLKID) {
2322                 ASSERT3P(parent, ==, dn->dn_dbuf);
2323                 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2324                     (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2325                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2326                 db->db.db_offset = DMU_BONUS_BLKID;
2327                 db->db_state = DB_UNCACHED;
2328                 /* the bonus dbuf is not placed in the hash table */
2329                 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2330                 return (db);
2331         } else if (blkid == DMU_SPILL_BLKID) {
2332                 db->db.db_size = (blkptr != NULL) ?
2333                     BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2334                 db->db.db_offset = 0;
2335         } else {
2336                 int blocksize =
2337                     db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2338                 db->db.db_size = blocksize;
2339                 db->db.db_offset = db->db_blkid * blocksize;
2340         }
2341
2342         /*
2343          * Hold the dn_dbufs_mtx while we get the new dbuf
2344          * in the hash table *and* added to the dbufs list.
2345          * This prevents a possible deadlock with someone
2346          * trying to look up this dbuf before its added to the
2347          * dn_dbufs list.
2348          */
2349         mutex_enter(&dn->dn_dbufs_mtx);
2350         db->db_state = DB_EVICTING;
2351         if ((odb = dbuf_hash_insert(db)) != NULL) {
2352                 /* someone else inserted it first */
2353                 kmem_cache_free(dbuf_kmem_cache, db);
2354                 mutex_exit(&dn->dn_dbufs_mtx);
2355                 return (odb);
2356         }
2357         avl_add(&dn->dn_dbufs, db);
2358
2359         db->db_state = DB_UNCACHED;
2360         mutex_exit(&dn->dn_dbufs_mtx);
2361         arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2362
2363         if (parent && parent != dn->dn_dbuf)
2364                 dbuf_add_ref(parent, db);
2365
2366         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2367             refcount_count(&dn->dn_holds) > 0);
2368         (void) refcount_add(&dn->dn_holds, db);
2369         atomic_inc_32(&dn->dn_dbufs_count);
2370
2371         dprintf_dbuf(db, "db=%p\n", db);
2372
2373         return (db);
2374 }
2375
2376 typedef struct dbuf_prefetch_arg {
2377         spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2378         zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2379         int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2380         int dpa_curlevel; /* The current level that we're reading */
2381         dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2382         zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2383         zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2384         arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2385 } dbuf_prefetch_arg_t;
2386
2387 /*
2388  * Actually issue the prefetch read for the block given.
2389  */
2390 static void
2391 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2392 {
2393         arc_flags_t aflags;
2394         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2395                 return;
2396
2397         aflags = dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2398
2399         ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2400         ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2401         ASSERT(dpa->dpa_zio != NULL);
2402         (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2403             dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2404             &aflags, &dpa->dpa_zb);
2405 }
2406
2407 /*
2408  * Called when an indirect block above our prefetch target is read in.  This
2409  * will either read in the next indirect block down the tree or issue the actual
2410  * prefetch if the next block down is our target.
2411  */
2412 static void
2413 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2414 {
2415         dbuf_prefetch_arg_t *dpa = private;
2416         uint64_t nextblkid;
2417         blkptr_t *bp;
2418
2419         ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2420         ASSERT3S(dpa->dpa_curlevel, >, 0);
2421
2422         /*
2423          * The dpa_dnode is only valid if we are called with a NULL
2424          * zio. This indicates that the arc_read() returned without
2425          * first calling zio_read() to issue a physical read. Once
2426          * a physical read is made the dpa_dnode must be invalidated
2427          * as the locks guarding it may have been dropped. If the
2428          * dpa_dnode is still valid, then we want to add it to the dbuf
2429          * cache. To do so, we must hold the dbuf associated with the block
2430          * we just prefetched, read its contents so that we associate it
2431          * with an arc_buf_t, and then release it.
2432          */
2433         if (zio != NULL) {
2434                 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2435                 if (zio->io_flags & ZIO_FLAG_RAW) {
2436                         ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2437                 } else {
2438                         ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2439                 }
2440                 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2441
2442                 dpa->dpa_dnode = NULL;
2443         } else if (dpa->dpa_dnode != NULL) {
2444                 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2445                     (dpa->dpa_epbs * (dpa->dpa_curlevel -
2446                     dpa->dpa_zb.zb_level));
2447                 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2448                     dpa->dpa_curlevel, curblkid, FTAG);
2449                 (void) dbuf_read(db, NULL,
2450                     DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2451                 dbuf_rele(db, FTAG);
2452         }
2453
2454         dpa->dpa_curlevel--;
2455
2456         nextblkid = dpa->dpa_zb.zb_blkid >>
2457             (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2458         bp = ((blkptr_t *)abuf->b_data) +
2459             P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2460         if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2461                 kmem_free(dpa, sizeof (*dpa));
2462         } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2463                 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2464                 dbuf_issue_final_prefetch(dpa, bp);
2465                 kmem_free(dpa, sizeof (*dpa));
2466         } else {
2467                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2468                 zbookmark_phys_t zb;
2469
2470                 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2471
2472                 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2473                     dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2474
2475                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2476                     bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2477                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2478                     &iter_aflags, &zb);
2479         }
2480
2481         arc_buf_destroy(abuf, private);
2482 }
2483
2484 /*
2485  * Issue prefetch reads for the given block on the given level.  If the indirect
2486  * blocks above that block are not in memory, we will read them in
2487  * asynchronously.  As a result, this call never blocks waiting for a read to
2488  * complete.
2489  */
2490 void
2491 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2492     arc_flags_t aflags)
2493 {
2494         blkptr_t bp;
2495         int epbs, nlevels, curlevel;
2496         uint64_t curblkid;
2497         dmu_buf_impl_t *db;
2498         zio_t *pio;
2499         dbuf_prefetch_arg_t *dpa;
2500         dsl_dataset_t *ds;
2501
2502         ASSERT(blkid != DMU_BONUS_BLKID);
2503         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2504
2505         if (blkid > dn->dn_maxblkid)
2506                 return;
2507
2508         if (dnode_block_freed(dn, blkid))
2509                 return;
2510
2511         /*
2512          * This dnode hasn't been written to disk yet, so there's nothing to
2513          * prefetch.
2514          */
2515         nlevels = dn->dn_phys->dn_nlevels;
2516         if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2517                 return;
2518
2519         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2520         if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2521                 return;
2522
2523         db = dbuf_find(dn->dn_objset, dn->dn_object,
2524             level, blkid);
2525         if (db != NULL) {
2526                 mutex_exit(&db->db_mtx);
2527                 /*
2528                  * This dbuf already exists.  It is either CACHED, or
2529                  * (we assume) about to be read or filled.
2530                  */
2531                 return;
2532         }
2533
2534         /*
2535          * Find the closest ancestor (indirect block) of the target block
2536          * that is present in the cache.  In this indirect block, we will
2537          * find the bp that is at curlevel, curblkid.
2538          */
2539         curlevel = level;
2540         curblkid = blkid;
2541         while (curlevel < nlevels - 1) {
2542                 int parent_level = curlevel + 1;
2543                 uint64_t parent_blkid = curblkid >> epbs;
2544                 dmu_buf_impl_t *db;
2545
2546                 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2547                     FALSE, TRUE, FTAG, &db) == 0) {
2548                         blkptr_t *bpp = db->db_buf->b_data;
2549                         bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2550                         dbuf_rele(db, FTAG);
2551                         break;
2552                 }
2553
2554                 curlevel = parent_level;
2555                 curblkid = parent_blkid;
2556         }
2557
2558         if (curlevel == nlevels - 1) {
2559                 /* No cached indirect blocks found. */
2560                 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2561                 bp = dn->dn_phys->dn_blkptr[curblkid];
2562         }
2563         if (BP_IS_HOLE(&bp))
2564                 return;
2565
2566         ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2567
2568         pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2569             ZIO_FLAG_CANFAIL);
2570
2571         dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2572         ds = dn->dn_objset->os_dsl_dataset;
2573         SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2574             dn->dn_object, level, blkid);
2575         dpa->dpa_curlevel = curlevel;
2576         dpa->dpa_prio = prio;
2577         dpa->dpa_aflags = aflags;
2578         dpa->dpa_spa = dn->dn_objset->os_spa;
2579         dpa->dpa_dnode = dn;
2580         dpa->dpa_epbs = epbs;
2581         dpa->dpa_zio = pio;
2582
2583         /*
2584          * If we have the indirect just above us, no need to do the asynchronous
2585          * prefetch chain; we'll just run the last step ourselves.  If we're at
2586          * a higher level, though, we want to issue the prefetches for all the
2587          * indirect blocks asynchronously, so we can go on with whatever we were
2588          * doing.
2589          */
2590         if (curlevel == level) {
2591                 ASSERT3U(curblkid, ==, blkid);
2592                 dbuf_issue_final_prefetch(dpa, &bp);
2593                 kmem_free(dpa, sizeof (*dpa));
2594         } else {
2595                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2596                 zbookmark_phys_t zb;
2597
2598                 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2599                     dn->dn_object, curlevel, curblkid);
2600                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2601                     &bp, dbuf_prefetch_indirect_done, dpa, prio,
2602                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2603                     &iter_aflags, &zb);
2604         }
2605         /*
2606          * We use pio here instead of dpa_zio since it's possible that
2607          * dpa may have already been freed.
2608          */
2609         zio_nowait(pio);
2610 }
2611
2612 #define DBUF_HOLD_IMPL_MAX_DEPTH        20
2613
2614 /*
2615  * Returns with db_holds incremented, and db_mtx not held.
2616  * Note: dn_struct_rwlock must be held.
2617  */
2618 static int
2619 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
2620 {
2621         ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2622         dh->dh_parent = NULL;
2623
2624         ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2625         ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2626         ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
2627
2628         *(dh->dh_dbp) = NULL;
2629
2630         /* dbuf_find() returns with db_mtx held */
2631         dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2632             dh->dh_level, dh->dh_blkid);
2633
2634         if (dh->dh_db == NULL) {
2635                 dh->dh_bp = NULL;
2636
2637                 if (dh->dh_fail_uncached)
2638                         return (SET_ERROR(ENOENT));
2639
2640                 ASSERT3P(dh->dh_parent, ==, NULL);
2641                 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2642                     dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
2643                 if (dh->dh_fail_sparse) {
2644                         if (dh->dh_err == 0 &&
2645                             dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2646                                 dh->dh_err = SET_ERROR(ENOENT);
2647                         if (dh->dh_err) {
2648                                 if (dh->dh_parent)
2649                                         dbuf_rele(dh->dh_parent, NULL);
2650                                 return (dh->dh_err);
2651                         }
2652                 }
2653                 if (dh->dh_err && dh->dh_err != ENOENT)
2654                         return (dh->dh_err);
2655                 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2656                     dh->dh_parent, dh->dh_bp);
2657         }
2658
2659         if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
2660                 mutex_exit(&dh->dh_db->db_mtx);
2661                 return (SET_ERROR(ENOENT));
2662         }
2663
2664         if (dh->dh_db->db_buf != NULL)
2665                 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
2666
2667         ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
2668
2669         /*
2670          * If this buffer is currently syncing out, and we are are
2671          * still referencing it from db_data, we need to make a copy
2672          * of it in case we decide we want to dirty it again in this txg.
2673          */
2674         if (dh->dh_db->db_level == 0 &&
2675             dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
2676             dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
2677             dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
2678                 dh->dh_dr = dh->dh_db->db_data_pending;
2679
2680                 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf) {
2681                         dh->dh_type = DBUF_GET_BUFC_TYPE(dh->dh_db);
2682
2683                         dbuf_set_data(dh->dh_db,
2684                             arc_alloc_buf(dh->dh_dn->dn_objset->os_spa,
2685                             dh->dh_db, dh->dh_type, dh->dh_db->db.db_size));
2686                         bcopy(dh->dh_dr->dt.dl.dr_data->b_data,
2687                             dh->dh_db->db.db_data, dh->dh_db->db.db_size);
2688                 }
2689         }
2690
2691         if (multilist_link_active(&dh->dh_db->db_cache_link)) {
2692                 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
2693                 multilist_remove(dbuf_cache, dh->dh_db);
2694                 (void) refcount_remove_many(&dbuf_cache_size,
2695                     dh->dh_db->db.db_size, dh->dh_db);
2696         }
2697         (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
2698         DBUF_VERIFY(dh->dh_db);
2699         mutex_exit(&dh->dh_db->db_mtx);
2700
2701         /* NOTE: we can't rele the parent until after we drop the db_mtx */
2702         if (dh->dh_parent)
2703                 dbuf_rele(dh->dh_parent, NULL);
2704
2705         ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
2706         ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
2707         ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
2708         *(dh->dh_dbp) = dh->dh_db;
2709
2710         return (0);
2711 }
2712
2713 /*
2714  * The following code preserves the recursive function dbuf_hold_impl()
2715  * but moves the local variables AND function arguments to the heap to
2716  * minimize the stack frame size.  Enough space is initially allocated
2717  * on the stack for 20 levels of recursion.
2718  */
2719 int
2720 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2721     boolean_t fail_sparse, boolean_t fail_uncached,
2722     void *tag, dmu_buf_impl_t **dbp)
2723 {
2724         struct dbuf_hold_impl_data *dh;
2725         int error;
2726
2727         dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
2728             DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
2729         __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
2730             fail_uncached, tag, dbp, 0);
2731
2732         error = __dbuf_hold_impl(dh);
2733
2734         kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
2735             DBUF_HOLD_IMPL_MAX_DEPTH);
2736
2737         return (error);
2738 }
2739
2740 static void
2741 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
2742     dnode_t *dn, uint8_t level, uint64_t blkid,
2743     boolean_t fail_sparse, boolean_t fail_uncached,
2744     void *tag, dmu_buf_impl_t **dbp, int depth)
2745 {
2746         dh->dh_dn = dn;
2747         dh->dh_level = level;
2748         dh->dh_blkid = blkid;
2749
2750         dh->dh_fail_sparse = fail_sparse;
2751         dh->dh_fail_uncached = fail_uncached;
2752
2753         dh->dh_tag = tag;
2754         dh->dh_dbp = dbp;
2755
2756         dh->dh_db = NULL;
2757         dh->dh_parent = NULL;
2758         dh->dh_bp = NULL;
2759         dh->dh_err = 0;
2760         dh->dh_dr = NULL;
2761         dh->dh_type = 0;
2762
2763         dh->dh_depth = depth;
2764 }
2765
2766 dmu_buf_impl_t *
2767 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2768 {
2769         return (dbuf_hold_level(dn, 0, blkid, tag));
2770 }
2771
2772 dmu_buf_impl_t *
2773 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2774 {
2775         dmu_buf_impl_t *db;
2776         int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2777         return (err ? NULL : db);
2778 }
2779
2780 void
2781 dbuf_create_bonus(dnode_t *dn)
2782 {
2783         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2784
2785         ASSERT(dn->dn_bonus == NULL);
2786         dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2787 }
2788
2789 int
2790 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2791 {
2792         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2793         dnode_t *dn;
2794
2795         if (db->db_blkid != DMU_SPILL_BLKID)
2796                 return (SET_ERROR(ENOTSUP));
2797         if (blksz == 0)
2798                 blksz = SPA_MINBLOCKSIZE;
2799         ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2800         blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2801
2802         DB_DNODE_ENTER(db);
2803         dn = DB_DNODE(db);
2804         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2805         dbuf_new_size(db, blksz, tx);
2806         rw_exit(&dn->dn_struct_rwlock);
2807         DB_DNODE_EXIT(db);
2808
2809         return (0);
2810 }
2811
2812 void
2813 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2814 {
2815         dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2816 }
2817
2818 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2819 void
2820 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2821 {
2822         int64_t holds = refcount_add(&db->db_holds, tag);
2823         VERIFY3S(holds, >, 1);
2824 }
2825
2826 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2827 boolean_t
2828 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2829     void *tag)
2830 {
2831         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2832         dmu_buf_impl_t *found_db;
2833         boolean_t result = B_FALSE;
2834
2835         if (blkid == DMU_BONUS_BLKID)
2836                 found_db = dbuf_find_bonus(os, obj);
2837         else
2838                 found_db = dbuf_find(os, obj, 0, blkid);
2839
2840         if (found_db != NULL) {
2841                 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2842                         (void) refcount_add(&db->db_holds, tag);
2843                         result = B_TRUE;
2844                 }
2845                 mutex_exit(&found_db->db_mtx);
2846         }
2847         return (result);
2848 }
2849
2850 /*
2851  * If you call dbuf_rele() you had better not be referencing the dnode handle
2852  * unless you have some other direct or indirect hold on the dnode. (An indirect
2853  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2854  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2855  * dnode's parent dbuf evicting its dnode handles.
2856  */
2857 void
2858 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2859 {
2860         mutex_enter(&db->db_mtx);
2861         dbuf_rele_and_unlock(db, tag);
2862 }
2863
2864 void
2865 dmu_buf_rele(dmu_buf_t *db, void *tag)
2866 {
2867         dbuf_rele((dmu_buf_impl_t *)db, tag);
2868 }
2869
2870 /*
2871  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
2872  * db_dirtycnt and db_holds to be updated atomically.
2873  */
2874 void
2875 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2876 {
2877         int64_t holds;
2878
2879         ASSERT(MUTEX_HELD(&db->db_mtx));
2880         DBUF_VERIFY(db);
2881
2882         /*
2883          * Remove the reference to the dbuf before removing its hold on the
2884          * dnode so we can guarantee in dnode_move() that a referenced bonus
2885          * buffer has a corresponding dnode hold.
2886          */
2887         holds = refcount_remove(&db->db_holds, tag);
2888         ASSERT(holds >= 0);
2889
2890         /*
2891          * We can't freeze indirects if there is a possibility that they
2892          * may be modified in the current syncing context.
2893          */
2894         if (db->db_buf != NULL &&
2895             holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2896                 arc_buf_freeze(db->db_buf);
2897         }
2898
2899         if (holds == db->db_dirtycnt &&
2900             db->db_level == 0 && db->db_user_immediate_evict)
2901                 dbuf_evict_user(db);
2902
2903         if (holds == 0) {
2904                 if (db->db_blkid == DMU_BONUS_BLKID) {
2905                         dnode_t *dn;
2906                         boolean_t evict_dbuf = db->db_pending_evict;
2907
2908                         /*
2909                          * If the dnode moves here, we cannot cross this
2910                          * barrier until the move completes.
2911                          */
2912                         DB_DNODE_ENTER(db);
2913
2914                         dn = DB_DNODE(db);
2915                         atomic_dec_32(&dn->dn_dbufs_count);
2916
2917                         /*
2918                          * Decrementing the dbuf count means that the bonus
2919                          * buffer's dnode hold is no longer discounted in
2920                          * dnode_move(). The dnode cannot move until after
2921                          * the dnode_rele() below.
2922                          */
2923                         DB_DNODE_EXIT(db);
2924
2925                         /*
2926                          * Do not reference db after its lock is dropped.
2927                          * Another thread may evict it.
2928                          */
2929                         mutex_exit(&db->db_mtx);
2930
2931                         if (evict_dbuf)
2932                                 dnode_evict_bonus(dn);
2933
2934                         dnode_rele(dn, db);
2935                 } else if (db->db_buf == NULL) {
2936                         /*
2937                          * This is a special case: we never associated this
2938                          * dbuf with any data allocated from the ARC.
2939                          */
2940                         ASSERT(db->db_state == DB_UNCACHED ||
2941                             db->db_state == DB_NOFILL);
2942                         dbuf_destroy(db);
2943                 } else if (arc_released(db->db_buf)) {
2944                         /*
2945                          * This dbuf has anonymous data associated with it.
2946                          */
2947                         dbuf_destroy(db);
2948                 } else {
2949                         boolean_t do_arc_evict = B_FALSE;
2950                         blkptr_t bp;
2951                         spa_t *spa = dmu_objset_spa(db->db_objset);
2952
2953                         if (!DBUF_IS_CACHEABLE(db) &&
2954                             db->db_blkptr != NULL &&
2955                             !BP_IS_HOLE(db->db_blkptr) &&
2956                             !BP_IS_EMBEDDED(db->db_blkptr)) {
2957                                 do_arc_evict = B_TRUE;
2958                                 bp = *db->db_blkptr;
2959                         }
2960
2961                         if (!DBUF_IS_CACHEABLE(db) ||
2962                             db->db_pending_evict) {
2963                                 dbuf_destroy(db);
2964                         } else if (!multilist_link_active(&db->db_cache_link)) {
2965                                 multilist_insert(dbuf_cache, db);
2966                                 (void) refcount_add_many(&dbuf_cache_size,
2967                                     db->db.db_size, db);
2968                                 mutex_exit(&db->db_mtx);
2969
2970                                 dbuf_evict_notify();
2971                         }
2972
2973                         if (do_arc_evict)
2974                                 arc_freed(spa, &bp);
2975                 }
2976         } else {
2977                 mutex_exit(&db->db_mtx);
2978         }
2979
2980 }
2981
2982 #pragma weak dmu_buf_refcount = dbuf_refcount
2983 uint64_t
2984 dbuf_refcount(dmu_buf_impl_t *db)
2985 {
2986         return (refcount_count(&db->db_holds));
2987 }
2988
2989 void *
2990 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2991     dmu_buf_user_t *new_user)
2992 {
2993         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2994
2995         mutex_enter(&db->db_mtx);
2996         dbuf_verify_user(db, DBVU_NOT_EVICTING);
2997         if (db->db_user == old_user)
2998                 db->db_user = new_user;
2999         else
3000                 old_user = db->db_user;
3001         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3002         mutex_exit(&db->db_mtx);
3003
3004         return (old_user);
3005 }
3006
3007 void *
3008 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3009 {
3010         return (dmu_buf_replace_user(db_fake, NULL, user));
3011 }
3012
3013 void *
3014 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3015 {
3016         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3017
3018         db->db_user_immediate_evict = TRUE;
3019         return (dmu_buf_set_user(db_fake, user));
3020 }
3021
3022 void *
3023 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3024 {
3025         return (dmu_buf_replace_user(db_fake, user, NULL));
3026 }
3027
3028 void *
3029 dmu_buf_get_user(dmu_buf_t *db_fake)
3030 {
3031         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3032
3033         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3034         return (db->db_user);
3035 }
3036
3037 void
3038 dmu_buf_user_evict_wait()
3039 {
3040         taskq_wait(dbu_evict_taskq);
3041 }
3042
3043 blkptr_t *
3044 dmu_buf_get_blkptr(dmu_buf_t *db)
3045 {
3046         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3047         return (dbi->db_blkptr);
3048 }
3049
3050 objset_t *
3051 dmu_buf_get_objset(dmu_buf_t *db)
3052 {
3053         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3054         return (dbi->db_objset);
3055 }
3056
3057 dnode_t *
3058 dmu_buf_dnode_enter(dmu_buf_t *db)
3059 {
3060         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3061         DB_DNODE_ENTER(dbi);
3062         return (DB_DNODE(dbi));
3063 }
3064
3065 void
3066 dmu_buf_dnode_exit(dmu_buf_t *db)
3067 {
3068         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3069         DB_DNODE_EXIT(dbi);
3070 }
3071
3072 static void
3073 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3074 {
3075         /* ASSERT(dmu_tx_is_syncing(tx) */
3076         ASSERT(MUTEX_HELD(&db->db_mtx));
3077
3078         if (db->db_blkptr != NULL)
3079                 return;
3080
3081         if (db->db_blkid == DMU_SPILL_BLKID) {
3082                 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3083                 BP_ZERO(db->db_blkptr);
3084                 return;
3085         }
3086         if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3087                 /*
3088                  * This buffer was allocated at a time when there was
3089                  * no available blkptrs from the dnode, or it was
3090                  * inappropriate to hook it in (i.e., nlevels mis-match).
3091                  */
3092                 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3093                 ASSERT(db->db_parent == NULL);
3094                 db->db_parent = dn->dn_dbuf;
3095                 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3096                 DBUF_VERIFY(db);
3097         } else {
3098                 dmu_buf_impl_t *parent = db->db_parent;
3099                 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3100
3101                 ASSERT(dn->dn_phys->dn_nlevels > 1);
3102                 if (parent == NULL) {
3103                         mutex_exit(&db->db_mtx);
3104                         rw_enter(&dn->dn_struct_rwlock, RW_READER);
3105                         parent = dbuf_hold_level(dn, db->db_level + 1,
3106                             db->db_blkid >> epbs, db);
3107                         rw_exit(&dn->dn_struct_rwlock);
3108                         mutex_enter(&db->db_mtx);
3109                         db->db_parent = parent;
3110                 }
3111                 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3112                     (db->db_blkid & ((1ULL << epbs) - 1));
3113                 DBUF_VERIFY(db);
3114         }
3115 }
3116
3117 /*
3118  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3119  * is critical the we not allow the compiler to inline this function in to
3120  * dbuf_sync_list() thereby drastically bloating the stack usage.
3121  */
3122 noinline static void
3123 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3124 {
3125         dmu_buf_impl_t *db = dr->dr_dbuf;
3126         dnode_t *dn;
3127         zio_t *zio;
3128
3129         ASSERT(dmu_tx_is_syncing(tx));
3130
3131         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3132
3133         mutex_enter(&db->db_mtx);
3134
3135         ASSERT(db->db_level > 0);
3136         DBUF_VERIFY(db);
3137
3138         /* Read the block if it hasn't been read yet. */
3139         if (db->db_buf == NULL) {
3140                 mutex_exit(&db->db_mtx);
3141                 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3142                 mutex_enter(&db->db_mtx);
3143         }
3144         ASSERT3U(db->db_state, ==, DB_CACHED);
3145         ASSERT(db->db_buf != NULL);
3146
3147         DB_DNODE_ENTER(db);
3148         dn = DB_DNODE(db);
3149         /* Indirect block size must match what the dnode thinks it is. */
3150         ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3151         dbuf_check_blkptr(dn, db);
3152         DB_DNODE_EXIT(db);
3153
3154         /* Provide the pending dirty record to child dbufs */
3155         db->db_data_pending = dr;
3156
3157         mutex_exit(&db->db_mtx);
3158         dbuf_write(dr, db->db_buf, tx);
3159
3160         zio = dr->dr_zio;
3161         mutex_enter(&dr->dt.di.dr_mtx);
3162         dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3163         ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3164         mutex_exit(&dr->dt.di.dr_mtx);
3165         zio_nowait(zio);
3166 }
3167
3168 /*
3169  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3170  * critical the we not allow the compiler to inline this function in to
3171  * dbuf_sync_list() thereby drastically bloating the stack usage.
3172  */
3173 noinline static void
3174 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3175 {
3176         arc_buf_t **datap = &dr->dt.dl.dr_data;
3177         dmu_buf_impl_t *db = dr->dr_dbuf;
3178         dnode_t *dn;
3179         objset_t *os;
3180         uint64_t txg = tx->tx_txg;
3181
3182         ASSERT(dmu_tx_is_syncing(tx));
3183
3184         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3185
3186         mutex_enter(&db->db_mtx);
3187         /*
3188          * To be synced, we must be dirtied.  But we
3189          * might have been freed after the dirty.
3190          */
3191         if (db->db_state == DB_UNCACHED) {
3192                 /* This buffer has been freed since it was dirtied */
3193                 ASSERT(db->db.db_data == NULL);
3194         } else if (db->db_state == DB_FILL) {
3195                 /* This buffer was freed and is now being re-filled */
3196                 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3197         } else {
3198                 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3199         }
3200         DBUF_VERIFY(db);
3201
3202         DB_DNODE_ENTER(db);
3203         dn = DB_DNODE(db);
3204
3205         if (db->db_blkid == DMU_SPILL_BLKID) {
3206                 mutex_enter(&dn->dn_mtx);
3207                 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3208                         /*
3209                          * In the previous transaction group, the bonus buffer
3210                          * was entirely used to store the attributes for the
3211                          * dnode which overrode the dn_spill field.  However,
3212                          * when adding more attributes to the file a spill
3213                          * block was required to hold the extra attributes.
3214                          *
3215                          * Make sure to clear the garbage left in the dn_spill
3216                          * field from the previous attributes in the bonus
3217                          * buffer.  Otherwise, after writing out the spill
3218                          * block to the new allocated dva, it will free
3219                          * the old block pointed to by the invalid dn_spill.
3220                          */
3221                         db->db_blkptr = NULL;
3222                 }
3223                 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3224                 mutex_exit(&dn->dn_mtx);
3225         }
3226
3227         /*
3228          * If this is a bonus buffer, simply copy the bonus data into the
3229          * dnode.  It will be written out when the dnode is synced (and it
3230          * will be synced, since it must have been dirty for dbuf_sync to
3231          * be called).
3232          */
3233         if (db->db_blkid == DMU_BONUS_BLKID) {
3234                 dbuf_dirty_record_t **drp;
3235
3236                 ASSERT(*datap != NULL);
3237                 ASSERT0(db->db_level);
3238                 ASSERT3U(dn->dn_phys->dn_bonuslen, <=,
3239                     DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3240                 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
3241                 DB_DNODE_EXIT(db);
3242
3243                 if (*datap != db->db.db_data) {
3244                         int slots = DB_DNODE(db)->dn_num_slots;
3245                         int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3246                         kmem_free(*datap, bonuslen);
3247                         arc_space_return(bonuslen, ARC_SPACE_BONUS);
3248                 }
3249                 db->db_data_pending = NULL;
3250                 drp = &db->db_last_dirty;
3251                 while (*drp != dr)
3252                         drp = &(*drp)->dr_next;
3253                 ASSERT(dr->dr_next == NULL);
3254                 ASSERT(dr->dr_dbuf == db);
3255                 *drp = dr->dr_next;
3256                 if (dr->dr_dbuf->db_level != 0) {
3257                         mutex_destroy(&dr->dt.di.dr_mtx);
3258                         list_destroy(&dr->dt.di.dr_children);
3259                 }
3260                 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3261                 ASSERT(db->db_dirtycnt > 0);
3262                 db->db_dirtycnt -= 1;
3263                 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3264                 return;
3265         }
3266
3267         os = dn->dn_objset;
3268
3269         /*
3270          * This function may have dropped the db_mtx lock allowing a dmu_sync
3271          * operation to sneak in. As a result, we need to ensure that we
3272          * don't check the dr_override_state until we have returned from
3273          * dbuf_check_blkptr.
3274          */
3275         dbuf_check_blkptr(dn, db);
3276
3277         /*
3278          * If this buffer is in the middle of an immediate write,
3279          * wait for the synchronous IO to complete.
3280          */
3281         while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3282                 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3283                 cv_wait(&db->db_changed, &db->db_mtx);
3284                 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3285         }
3286
3287         if (db->db_state != DB_NOFILL &&
3288             dn->dn_object != DMU_META_DNODE_OBJECT &&
3289             refcount_count(&db->db_holds) > 1 &&
3290             dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3291             *datap == db->db_buf) {
3292                 /*
3293                  * If this buffer is currently "in use" (i.e., there
3294                  * are active holds and db_data still references it),
3295                  * then make a copy before we start the write so that
3296                  * any modifications from the open txg will not leak
3297                  * into this write.
3298                  *
3299                  * NOTE: this copy does not need to be made for
3300                  * objects only modified in the syncing context (e.g.
3301                  * DNONE_DNODE blocks).
3302                  */
3303                 int psize = arc_buf_size(*datap);
3304                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3305                 enum zio_compress compress_type = arc_get_compression(*datap);
3306
3307                 if (compress_type == ZIO_COMPRESS_OFF) {
3308                         *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3309                 } else {
3310                         int lsize = arc_buf_lsize(*datap);
3311                         ASSERT3U(type, ==, ARC_BUFC_DATA);
3312                         *datap = arc_alloc_compressed_buf(os->os_spa, db,
3313                             psize, lsize, compress_type);
3314                 }
3315                 bcopy(db->db.db_data, (*datap)->b_data, psize);
3316         }
3317         db->db_data_pending = dr;
3318
3319         mutex_exit(&db->db_mtx);
3320
3321         dbuf_write(dr, *datap, tx);
3322
3323         ASSERT(!list_link_active(&dr->dr_dirty_node));
3324         if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3325                 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3326                 DB_DNODE_EXIT(db);
3327         } else {
3328                 /*
3329                  * Although zio_nowait() does not "wait for an IO", it does
3330                  * initiate the IO. If this is an empty write it seems plausible
3331                  * that the IO could actually be completed before the nowait
3332                  * returns. We need to DB_DNODE_EXIT() first in case
3333                  * zio_nowait() invalidates the dbuf.
3334                  */
3335                 DB_DNODE_EXIT(db);
3336                 zio_nowait(dr->dr_zio);
3337         }
3338 }
3339
3340 void
3341 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3342 {
3343         dbuf_dirty_record_t *dr;
3344
3345         while ((dr = list_head(list))) {
3346                 if (dr->dr_zio != NULL) {
3347                         /*
3348                          * If we find an already initialized zio then we
3349                          * are processing the meta-dnode, and we have finished.
3350                          * The dbufs for all dnodes are put back on the list
3351                          * during processing, so that we can zio_wait()
3352                          * these IOs after initiating all child IOs.
3353                          */
3354                         ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3355                             DMU_META_DNODE_OBJECT);
3356                         break;
3357                 }
3358                 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3359                     dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3360                         VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3361                 }
3362                 list_remove(list, dr);
3363                 if (dr->dr_dbuf->db_level > 0)
3364                         dbuf_sync_indirect(dr, tx);
3365                 else
3366                         dbuf_sync_leaf(dr, tx);
3367         }
3368 }
3369
3370 /* ARGSUSED */
3371 static void
3372 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3373 {
3374         dmu_buf_impl_t *db = vdb;
3375         dnode_t *dn;
3376         blkptr_t *bp = zio->io_bp;
3377         blkptr_t *bp_orig = &zio->io_bp_orig;
3378         spa_t *spa = zio->io_spa;
3379         int64_t delta;
3380         uint64_t fill = 0;
3381         int i;
3382
3383         ASSERT3P(db->db_blkptr, !=, NULL);
3384         ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3385
3386         DB_DNODE_ENTER(db);
3387         dn = DB_DNODE(db);
3388         delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3389         dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3390         zio->io_prev_space_delta = delta;
3391
3392         if (bp->blk_birth != 0) {
3393                 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3394                     BP_GET_TYPE(bp) == dn->dn_type) ||
3395                     (db->db_blkid == DMU_SPILL_BLKID &&
3396                     BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3397                     BP_IS_EMBEDDED(bp));
3398                 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3399         }
3400
3401         mutex_enter(&db->db_mtx);
3402
3403 #ifdef ZFS_DEBUG
3404         if (db->db_blkid == DMU_SPILL_BLKID) {
3405                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3406                 ASSERT(!(BP_IS_HOLE(bp)) &&
3407                     db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3408         }
3409 #endif
3410
3411         if (db->db_level == 0) {
3412                 mutex_enter(&dn->dn_mtx);
3413                 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3414                     db->db_blkid != DMU_SPILL_BLKID)
3415                         dn->dn_phys->dn_maxblkid = db->db_blkid;
3416                 mutex_exit(&dn->dn_mtx);
3417
3418                 if (dn->dn_type == DMU_OT_DNODE) {
3419                         i = 0;
3420                         while (i < db->db.db_size) {
3421                                 dnode_phys_t *dnp = db->db.db_data + i;
3422
3423                                 i += DNODE_MIN_SIZE;
3424                                 if (dnp->dn_type != DMU_OT_NONE) {
3425                                         fill++;
3426                                         i += dnp->dn_extra_slots *
3427                                             DNODE_MIN_SIZE;
3428                                 }
3429                         }
3430                 } else {
3431                         if (BP_IS_HOLE(bp)) {
3432                                 fill = 0;
3433                         } else {
3434                                 fill = 1;
3435                         }
3436                 }
3437         } else {
3438                 blkptr_t *ibp = db->db.db_data;
3439                 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3440                 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3441                         if (BP_IS_HOLE(ibp))
3442                                 continue;
3443                         fill += BP_GET_FILL(ibp);
3444                 }
3445         }
3446         DB_DNODE_EXIT(db);
3447
3448         if (!BP_IS_EMBEDDED(bp))
3449                 bp->blk_fill = fill;
3450
3451         mutex_exit(&db->db_mtx);
3452
3453         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3454         *db->db_blkptr = *bp;
3455         rw_exit(&dn->dn_struct_rwlock);
3456 }
3457
3458 /* ARGSUSED */
3459 /*
3460  * This function gets called just prior to running through the compression
3461  * stage of the zio pipeline. If we're an indirect block comprised of only
3462  * holes, then we want this indirect to be compressed away to a hole. In
3463  * order to do that we must zero out any information about the holes that
3464  * this indirect points to prior to before we try to compress it.
3465  */
3466 static void
3467 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3468 {
3469         dmu_buf_impl_t *db = vdb;
3470         dnode_t *dn;
3471         blkptr_t *bp;
3472         unsigned int epbs, i;
3473
3474         ASSERT3U(db->db_level, >, 0);
3475         DB_DNODE_ENTER(db);
3476         dn = DB_DNODE(db);
3477         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3478         ASSERT3U(epbs, <, 31);
3479
3480         /* Determine if all our children are holes */
3481         for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
3482                 if (!BP_IS_HOLE(bp))
3483                         break;
3484         }
3485
3486         /*
3487          * If all the children are holes, then zero them all out so that
3488          * we may get compressed away.
3489          */
3490         if (i == 1ULL << epbs) {
3491                 /*
3492                  * We only found holes. Grab the rwlock to prevent
3493                  * anybody from reading the blocks we're about to
3494                  * zero out.
3495                  */
3496                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3497                 bzero(db->db.db_data, db->db.db_size);
3498                 rw_exit(&dn->dn_struct_rwlock);
3499         }
3500         DB_DNODE_EXIT(db);
3501 }
3502
3503 /*
3504  * The SPA will call this callback several times for each zio - once
3505  * for every physical child i/o (zio->io_phys_children times).  This
3506  * allows the DMU to monitor the progress of each logical i/o.  For example,
3507  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3508  * block.  There may be a long delay before all copies/fragments are completed,
3509  * so this callback allows us to retire dirty space gradually, as the physical
3510  * i/os complete.
3511  */
3512 /* ARGSUSED */
3513 static void
3514 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3515 {
3516         dmu_buf_impl_t *db = arg;
3517         objset_t *os = db->db_objset;
3518         dsl_pool_t *dp = dmu_objset_pool(os);
3519         dbuf_dirty_record_t *dr;
3520         int delta = 0;
3521
3522         dr = db->db_data_pending;
3523         ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3524
3525         /*
3526          * The callback will be called io_phys_children times.  Retire one
3527          * portion of our dirty space each time we are called.  Any rounding
3528          * error will be cleaned up by dsl_pool_sync()'s call to
3529          * dsl_pool_undirty_space().
3530          */
3531         delta = dr->dr_accounted / zio->io_phys_children;
3532         dsl_pool_undirty_space(dp, delta, zio->io_txg);
3533 }
3534
3535 /* ARGSUSED */
3536 static void
3537 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3538 {
3539         dmu_buf_impl_t *db = vdb;
3540         blkptr_t *bp_orig = &zio->io_bp_orig;
3541         blkptr_t *bp = db->db_blkptr;
3542         objset_t *os = db->db_objset;
3543         dmu_tx_t *tx = os->os_synctx;
3544         dbuf_dirty_record_t **drp, *dr;
3545
3546         ASSERT0(zio->io_error);
3547         ASSERT(db->db_blkptr == bp);
3548
3549         /*
3550          * For nopwrites and rewrites we ensure that the bp matches our
3551          * original and bypass all the accounting.
3552          */
3553         if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3554                 ASSERT(BP_EQUAL(bp, bp_orig));
3555         } else {
3556                 dsl_dataset_t *ds = os->os_dsl_dataset;
3557                 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3558                 dsl_dataset_block_born(ds, bp, tx);
3559         }
3560
3561         mutex_enter(&db->db_mtx);
3562
3563         DBUF_VERIFY(db);
3564
3565         drp = &db->db_last_dirty;
3566         while ((dr = *drp) != db->db_data_pending)
3567                 drp = &dr->dr_next;
3568         ASSERT(!list_link_active(&dr->dr_dirty_node));
3569         ASSERT(dr->dr_dbuf == db);
3570         ASSERT(dr->dr_next == NULL);
3571         *drp = dr->dr_next;
3572
3573 #ifdef ZFS_DEBUG
3574         if (db->db_blkid == DMU_SPILL_BLKID) {
3575                 dnode_t *dn;
3576
3577                 DB_DNODE_ENTER(db);
3578                 dn = DB_DNODE(db);
3579                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3580                 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3581                     db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3582                 DB_DNODE_EXIT(db);
3583         }
3584 #endif
3585
3586         if (db->db_level == 0) {
3587                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3588                 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3589                 if (db->db_state != DB_NOFILL) {
3590                         if (dr->dt.dl.dr_data != db->db_buf)
3591                                 arc_buf_destroy(dr->dt.dl.dr_data, db);
3592                 }
3593         } else {
3594                 dnode_t *dn;
3595
3596                 DB_DNODE_ENTER(db);
3597                 dn = DB_DNODE(db);
3598                 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3599                 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3600                 if (!BP_IS_HOLE(db->db_blkptr)) {
3601                         ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
3602                             SPA_BLKPTRSHIFT);
3603                         ASSERT3U(db->db_blkid, <=,
3604                             dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3605                         ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3606                             db->db.db_size);
3607                 }
3608                 DB_DNODE_EXIT(db);
3609                 mutex_destroy(&dr->dt.di.dr_mtx);
3610                 list_destroy(&dr->dt.di.dr_children);
3611         }
3612         kmem_free(dr, sizeof (dbuf_dirty_record_t));
3613
3614         cv_broadcast(&db->db_changed);
3615         ASSERT(db->db_dirtycnt > 0);
3616         db->db_dirtycnt -= 1;
3617         db->db_data_pending = NULL;
3618         dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3619 }
3620
3621 static void
3622 dbuf_write_nofill_ready(zio_t *zio)
3623 {
3624         dbuf_write_ready(zio, NULL, zio->io_private);
3625 }
3626
3627 static void
3628 dbuf_write_nofill_done(zio_t *zio)
3629 {
3630         dbuf_write_done(zio, NULL, zio->io_private);
3631 }
3632
3633 static void
3634 dbuf_write_override_ready(zio_t *zio)
3635 {
3636         dbuf_dirty_record_t *dr = zio->io_private;
3637         dmu_buf_impl_t *db = dr->dr_dbuf;
3638
3639         dbuf_write_ready(zio, NULL, db);
3640 }
3641
3642 static void
3643 dbuf_write_override_done(zio_t *zio)
3644 {
3645         dbuf_dirty_record_t *dr = zio->io_private;
3646         dmu_buf_impl_t *db = dr->dr_dbuf;
3647         blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3648
3649         mutex_enter(&db->db_mtx);
3650         if (!BP_EQUAL(zio->io_bp, obp)) {
3651                 if (!BP_IS_HOLE(obp))
3652                         dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3653                 arc_release(dr->dt.dl.dr_data, db);
3654         }
3655         mutex_exit(&db->db_mtx);
3656
3657         dbuf_write_done(zio, NULL, db);
3658
3659         if (zio->io_abd != NULL)
3660                 abd_put(zio->io_abd);
3661 }
3662
3663 /* Issue I/O to commit a dirty buffer to disk. */
3664 static void
3665 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3666 {
3667         dmu_buf_impl_t *db = dr->dr_dbuf;
3668         dnode_t *dn;
3669         objset_t *os;
3670         dmu_buf_impl_t *parent = db->db_parent;
3671         uint64_t txg = tx->tx_txg;
3672         zbookmark_phys_t zb;
3673         zio_prop_t zp;
3674         zio_t *zio;
3675         int wp_flag = 0;
3676
3677         ASSERT(dmu_tx_is_syncing(tx));
3678
3679         DB_DNODE_ENTER(db);
3680         dn = DB_DNODE(db);
3681         os = dn->dn_objset;
3682
3683         if (db->db_state != DB_NOFILL) {
3684                 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3685                         /*
3686                          * Private object buffers are released here rather
3687                          * than in dbuf_dirty() since they are only modified
3688                          * in the syncing context and we don't want the
3689                          * overhead of making multiple copies of the data.
3690                          */
3691                         if (BP_IS_HOLE(db->db_blkptr)) {
3692                                 arc_buf_thaw(data);
3693                         } else {
3694                                 dbuf_release_bp(db);
3695                         }
3696                 }
3697         }
3698
3699         if (parent != dn->dn_dbuf) {
3700                 /* Our parent is an indirect block. */
3701                 /* We have a dirty parent that has been scheduled for write. */
3702                 ASSERT(parent && parent->db_data_pending);
3703                 /* Our parent's buffer is one level closer to the dnode. */
3704                 ASSERT(db->db_level == parent->db_level-1);
3705                 /*
3706                  * We're about to modify our parent's db_data by modifying
3707                  * our block pointer, so the parent must be released.
3708                  */
3709                 ASSERT(arc_released(parent->db_buf));
3710                 zio = parent->db_data_pending->dr_zio;
3711         } else {
3712                 /* Our parent is the dnode itself. */
3713                 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3714                     db->db_blkid != DMU_SPILL_BLKID) ||
3715                     (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3716                 if (db->db_blkid != DMU_SPILL_BLKID)
3717                         ASSERT3P(db->db_blkptr, ==,
3718                             &dn->dn_phys->dn_blkptr[db->db_blkid]);
3719                 zio = dn->dn_zio;
3720         }
3721
3722         ASSERT(db->db_level == 0 || data == db->db_buf);
3723         ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3724         ASSERT(zio);
3725
3726         SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3727             os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3728             db->db.db_object, db->db_level, db->db_blkid);
3729
3730         if (db->db_blkid == DMU_SPILL_BLKID)
3731                 wp_flag = WP_SPILL;
3732         wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3733
3734         dmu_write_policy(os, dn, db->db_level, wp_flag,
3735             (data != NULL && arc_get_compression(data) != ZIO_COMPRESS_OFF) ?
3736             arc_get_compression(data) : ZIO_COMPRESS_INHERIT, &zp);
3737         DB_DNODE_EXIT(db);
3738
3739         /*
3740          * We copy the blkptr now (rather than when we instantiate the dirty
3741          * record), because its value can change between open context and
3742          * syncing context. We do not need to hold dn_struct_rwlock to read
3743          * db_blkptr because we are in syncing context.
3744          */
3745         dr->dr_bp_copy = *db->db_blkptr;
3746
3747         if (db->db_level == 0 &&
3748             dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3749                 /*
3750                  * The BP for this block has been provided by open context
3751                  * (by dmu_sync() or dmu_buf_write_embedded()).
3752                  */
3753                 abd_t *contents = (data != NULL) ?
3754                     abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
3755
3756                 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3757                     &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
3758                     &zp, dbuf_write_override_ready, NULL, NULL,
3759                     dbuf_write_override_done,
3760                     dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3761                 mutex_enter(&db->db_mtx);
3762                 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3763                 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3764                     dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3765                 mutex_exit(&db->db_mtx);
3766         } else if (db->db_state == DB_NOFILL) {
3767                 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3768                     zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3769                 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3770                     &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3771                     dbuf_write_nofill_ready, NULL, NULL,
3772                     dbuf_write_nofill_done, db,
3773                     ZIO_PRIORITY_ASYNC_WRITE,
3774                     ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3775         } else {
3776                 arc_done_func_t *children_ready_cb = NULL;
3777                 ASSERT(arc_released(data));
3778
3779                 /*
3780                  * For indirect blocks, we want to setup the children
3781                  * ready callback so that we can properly handle an indirect
3782                  * block that only contains holes.
3783                  */
3784                 if (db->db_level != 0)
3785                         children_ready_cb = dbuf_write_children_ready;
3786
3787                 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3788                     &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3789                     &zp, dbuf_write_ready,
3790                     children_ready_cb, dbuf_write_physdone,
3791                     dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
3792                     ZIO_FLAG_MUSTSUCCEED, &zb);
3793         }
3794 }
3795
3796 #if defined(_KERNEL) && defined(HAVE_SPL)
3797 EXPORT_SYMBOL(dbuf_find);
3798 EXPORT_SYMBOL(dbuf_is_metadata);
3799 EXPORT_SYMBOL(dbuf_destroy);
3800 EXPORT_SYMBOL(dbuf_loan_arcbuf);
3801 EXPORT_SYMBOL(dbuf_whichblock);
3802 EXPORT_SYMBOL(dbuf_read);
3803 EXPORT_SYMBOL(dbuf_unoverride);
3804 EXPORT_SYMBOL(dbuf_free_range);
3805 EXPORT_SYMBOL(dbuf_new_size);
3806 EXPORT_SYMBOL(dbuf_release_bp);
3807 EXPORT_SYMBOL(dbuf_dirty);
3808 EXPORT_SYMBOL(dmu_buf_will_dirty);
3809 EXPORT_SYMBOL(dmu_buf_will_not_fill);
3810 EXPORT_SYMBOL(dmu_buf_will_fill);
3811 EXPORT_SYMBOL(dmu_buf_fill_done);
3812 EXPORT_SYMBOL(dmu_buf_rele);
3813 EXPORT_SYMBOL(dbuf_assign_arcbuf);
3814 EXPORT_SYMBOL(dbuf_prefetch);
3815 EXPORT_SYMBOL(dbuf_hold_impl);
3816 EXPORT_SYMBOL(dbuf_hold);
3817 EXPORT_SYMBOL(dbuf_hold_level);
3818 EXPORT_SYMBOL(dbuf_create_bonus);
3819 EXPORT_SYMBOL(dbuf_spill_set_blksz);
3820 EXPORT_SYMBOL(dbuf_rm_spill);
3821 EXPORT_SYMBOL(dbuf_add_ref);
3822 EXPORT_SYMBOL(dbuf_rele);
3823 EXPORT_SYMBOL(dbuf_rele_and_unlock);
3824 EXPORT_SYMBOL(dbuf_refcount);
3825 EXPORT_SYMBOL(dbuf_sync_list);
3826 EXPORT_SYMBOL(dmu_buf_set_user);
3827 EXPORT_SYMBOL(dmu_buf_set_user_ie);
3828 EXPORT_SYMBOL(dmu_buf_get_user);
3829 EXPORT_SYMBOL(dmu_buf_get_blkptr);
3830
3831 /* BEGIN CSTYLED */
3832 module_param(dbuf_cache_max_bytes, ulong, 0644);
3833 MODULE_PARM_DESC(dbuf_cache_max_bytes,
3834         "Maximum size in bytes of the dbuf cache.");
3835
3836 module_param(dbuf_cache_hiwater_pct, uint, 0644);
3837 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
3838         "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
3839         "directly.");
3840
3841 module_param(dbuf_cache_lowater_pct, uint, 0644);
3842 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
3843         "Percentage below dbuf_cache_max_bytes when the evict thread stops "
3844         "evicting dbufs.");
3845
3846 module_param(dbuf_cache_max_shift, int, 0644);
3847 MODULE_PARM_DESC(dbuf_cache_max_shift,
3848         "Cap the size of the dbuf cache to a log2 fraction of arc size.");
3849 /* END CSTYLED */
3850 #endif