]> granicus.if.org Git - libvpx/blob - md5_utils.c
Merge "ppc: Add vpx_sadnxmx4d_vsx for n,m = {8, 16, 32 ,64}"
[libvpx] / md5_utils.c
1 /*
2  * This code implements the MD5 message-digest algorithm.
3  * The algorithm is due to Ron Rivest.  This code was
4  * written by Colin Plumb in 1993, no copyright is claimed.
5  * This code is in the public domain; do with it what you wish.
6  *
7  * Equivalent code is available from RSA Data Security, Inc.
8  * This code has been tested against that, and is equivalent,
9  * except that you don't need to include two pages of legalese
10  * with every copy.
11  *
12  * To compute the message digest of a chunk of bytes, declare an
13  * MD5Context structure, pass it to MD5Init, call MD5Update as
14  * needed on buffers full of bytes, and then call MD5Final, which
15  * will fill a supplied 16-byte array with the digest.
16  *
17  * Changed so as no longer to depend on Colin Plumb's `usual.h' header
18  * definitions
19  *  - Ian Jackson <ian@chiark.greenend.org.uk>.
20  * Still in the public domain.
21  */
22
23 #include <string.h> /* for memcpy() */
24
25 #include "md5_utils.h"
26
27 static void byteSwap(UWORD32 *buf, unsigned words) {
28   md5byte *p;
29
30   /* Only swap bytes for big endian machines */
31   int i = 1;
32
33   if (*(char *)&i == 1) return;
34
35   p = (md5byte *)buf;
36
37   do {
38     *buf++ = (UWORD32)((unsigned)p[3] << 8 | p[2]) << 16 |
39              ((unsigned)p[1] << 8 | p[0]);
40     p += 4;
41   } while (--words);
42 }
43
44 /*
45  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
46  * initialization constants.
47  */
48 void MD5Init(struct MD5Context *ctx) {
49   ctx->buf[0] = 0x67452301;
50   ctx->buf[1] = 0xefcdab89;
51   ctx->buf[2] = 0x98badcfe;
52   ctx->buf[3] = 0x10325476;
53
54   ctx->bytes[0] = 0;
55   ctx->bytes[1] = 0;
56 }
57
58 /*
59  * Update context to reflect the concatenation of another buffer full
60  * of bytes.
61  */
62 void MD5Update(struct MD5Context *ctx, md5byte const *buf, unsigned len) {
63   UWORD32 t;
64
65   /* Update byte count */
66
67   t = ctx->bytes[0];
68
69   if ((ctx->bytes[0] = t + len) < t)
70     ctx->bytes[1]++; /* Carry from low to high */
71
72   t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */
73
74   if (t > len) {
75     memcpy((md5byte *)ctx->in + 64 - t, buf, len);
76     return;
77   }
78
79   /* First chunk is an odd size */
80   memcpy((md5byte *)ctx->in + 64 - t, buf, t);
81   byteSwap(ctx->in, 16);
82   MD5Transform(ctx->buf, ctx->in);
83   buf += t;
84   len -= t;
85
86   /* Process data in 64-byte chunks */
87   while (len >= 64) {
88     memcpy(ctx->in, buf, 64);
89     byteSwap(ctx->in, 16);
90     MD5Transform(ctx->buf, ctx->in);
91     buf += 64;
92     len -= 64;
93   }
94
95   /* Handle any remaining bytes of data. */
96   memcpy(ctx->in, buf, len);
97 }
98
99 /*
100  * Final wrapup - pad to 64-byte boundary with the bit pattern
101  * 1 0* (64-bit count of bits processed, MSB-first)
102  */
103 void MD5Final(md5byte digest[16], struct MD5Context *ctx) {
104   int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */
105   md5byte *p = (md5byte *)ctx->in + count;
106
107   /* Set the first char of padding to 0x80.  There is always room. */
108   *p++ = 0x80;
109
110   /* Bytes of padding needed to make 56 bytes (-8..55) */
111   count = 56 - 1 - count;
112
113   if (count < 0) { /* Padding forces an extra block */
114     memset(p, 0, count + 8);
115     byteSwap(ctx->in, 16);
116     MD5Transform(ctx->buf, ctx->in);
117     p = (md5byte *)ctx->in;
118     count = 56;
119   }
120
121   memset(p, 0, count);
122   byteSwap(ctx->in, 14);
123
124   /* Append length in bits and transform */
125   ctx->in[14] = ctx->bytes[0] << 3;
126   ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
127   MD5Transform(ctx->buf, ctx->in);
128
129   byteSwap(ctx->buf, 4);
130   memcpy(digest, ctx->buf, 16);
131   memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
132 }
133
134 #ifndef ASM_MD5
135
136 /* The four core functions - F1 is optimized somewhat */
137
138 /* #define F1(x, y, z) (x & y | ~x & z) */
139 #define F1(x, y, z) (z ^ (x & (y ^ z)))
140 #define F2(x, y, z) F1(z, x, y)
141 #define F3(x, y, z) (x ^ y ^ z)
142 #define F4(x, y, z) (y ^ (x | ~z))
143
144 /* This is the central step in the MD5 algorithm. */
145 #define MD5STEP(f, w, x, y, z, in, s) \
146   (w += f(x, y, z) + in, w = (w << s | w >> (32 - s)) + x)
147
148 #if defined(__clang__) && defined(__has_attribute)
149 #if __has_attribute(no_sanitize)
150 #define VPX_NO_UNSIGNED_OVERFLOW_CHECK \
151   __attribute__((no_sanitize("unsigned-integer-overflow")))
152 #endif
153 #endif
154
155 #ifndef VPX_NO_UNSIGNED_OVERFLOW_CHECK
156 #define VPX_NO_UNSIGNED_OVERFLOW_CHECK
157 #endif
158
159 /*
160  * The core of the MD5 algorithm, this alters an existing MD5 hash to
161  * reflect the addition of 16 longwords of new data.  MD5Update blocks
162  * the data and converts bytes into longwords for this routine.
163  */
164 VPX_NO_UNSIGNED_OVERFLOW_CHECK void MD5Transform(UWORD32 buf[4],
165                                                  UWORD32 const in[16]) {
166   register UWORD32 a, b, c, d;
167
168   a = buf[0];
169   b = buf[1];
170   c = buf[2];
171   d = buf[3];
172
173   MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
174   MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
175   MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
176   MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
177   MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
178   MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
179   MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
180   MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
181   MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
182   MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
183   MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
184   MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
185   MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
186   MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
187   MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
188   MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
189
190   MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
191   MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
192   MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
193   MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
194   MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
195   MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
196   MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
197   MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
198   MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
199   MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
200   MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
201   MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
202   MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
203   MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
204   MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
205   MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
206
207   MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
208   MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
209   MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
210   MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
211   MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
212   MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
213   MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
214   MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
215   MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
216   MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
217   MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
218   MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
219   MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
220   MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
221   MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
222   MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
223
224   MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
225   MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
226   MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
227   MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
228   MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
229   MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
230   MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
231   MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
232   MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
233   MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
234   MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
235   MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
236   MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
237   MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
238   MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
239   MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
240
241   buf[0] += a;
242   buf[1] += b;
243   buf[2] += c;
244   buf[3] += d;
245 }
246
247 #undef VPX_NO_UNSIGNED_OVERFLOW_CHECK
248
249 #endif