]> granicus.if.org Git - imagemagick/blob - magick/statistic.c
c11ef5bea52fe8168b85632ba4520e05e7c0774f
[imagemagick] / magick / statistic.c
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %                                                                             %
4 %                                                                             %
5 %                                                                             %
6 %        SSSSS  TTTTT   AAA   TTTTT  IIIII  SSSSS  TTTTT  IIIII   CCCC        %
7 %        SS       T    A   A    T      I    SS       T      I    C            %
8 %         SSS     T    AAAAA    T      I     SSS     T      I    C            %
9 %           SS    T    A   A    T      I       SS    T      I    C            %
10 %        SSSSS    T    A   A    T    IIIII  SSSSS    T    IIIII   CCCC        %
11 %                                                                             %
12 %                                                                             %
13 %                     MagickCore Image Statistical Methods                    %
14 %                                                                             %
15 %                              Software Design                                %
16 %                                John Cristy                                  %
17 %                                 July 1992                                   %
18 %                                                                             %
19 %                                                                             %
20 %  Copyright 1999-2010 ImageMagick Studio LLC, a non-profit organization      %
21 %  dedicated to making software imaging solutions freely available.           %
22 %                                                                             %
23 %  You may not use this file except in compliance with the License.  You may  %
24 %  obtain a copy of the License at                                            %
25 %                                                                             %
26 %    http://www.imagemagick.org/script/license.php                            %
27 %                                                                             %
28 %  Unless required by applicable law or agreed to in writing, software        %
29 %  distributed under the License is distributed on an "AS IS" BASIS,          %
30 %  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
31 %  See the License for the specific language governing permissions and        %
32 %  limitations under the License.                                             %
33 %                                                                             %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %
37 %
38 */
39 \f
40 /*
41   Include declarations.
42 */
43 #include "magick/studio.h"
44 #include "magick/property.h"
45 #include "magick/animate.h"
46 #include "magick/blob.h"
47 #include "magick/blob-private.h"
48 #include "magick/cache.h"
49 #include "magick/cache-private.h"
50 #include "magick/cache-view.h"
51 #include "magick/client.h"
52 #include "magick/color.h"
53 #include "magick/color-private.h"
54 #include "magick/colorspace.h"
55 #include "magick/colorspace-private.h"
56 #include "magick/composite.h"
57 #include "magick/composite-private.h"
58 #include "magick/compress.h"
59 #include "magick/constitute.h"
60 #include "magick/deprecate.h"
61 #include "magick/display.h"
62 #include "magick/draw.h"
63 #include "magick/enhance.h"
64 #include "magick/exception.h"
65 #include "magick/exception-private.h"
66 #include "magick/gem.h"
67 #include "magick/geometry.h"
68 #include "magick/list.h"
69 #include "magick/image-private.h"
70 #include "magick/magic.h"
71 #include "magick/magick.h"
72 #include "magick/memory_.h"
73 #include "magick/module.h"
74 #include "magick/monitor.h"
75 #include "magick/monitor-private.h"
76 #include "magick/option.h"
77 #include "magick/paint.h"
78 #include "magick/pixel-private.h"
79 #include "magick/profile.h"
80 #include "magick/quantize.h"
81 #include "magick/random_.h"
82 #include "magick/random-private.h"
83 #include "magick/segment.h"
84 #include "magick/semaphore.h"
85 #include "magick/signature-private.h"
86 #include "magick/statistic.h"
87 #include "magick/string_.h"
88 #include "magick/thread-private.h"
89 #include "magick/timer.h"
90 #include "magick/utility.h"
91 #include "magick/version.h"
92 \f
93 /*
94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
95 %                                                                             %
96 %                                                                             %
97 %                                                                             %
98 %     E v a l u a t e I m a g e                                               %
99 %                                                                             %
100 %                                                                             %
101 %                                                                             %
102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
103 %
104 %  EvaluateImage() applies a value to the image with an arithmetic, relational,
105 %  or logical operator to an image. Use these operations to lighten or darken
106 %  an image, to increase or decrease contrast in an image, or to produce the
107 %  "negative" of an image.
108 %
109 %  The format of the EvaluateImageChannel method is:
110 %
111 %      MagickBooleanType EvaluateImage(Image *image,
112 %        const MagickEvaluateOperator op,const double value,
113 %        ExceptionInfo *exception)
114 %      MagickBooleanType EvaluateImages(Image *images,
115 %        const MagickEvaluateOperator op,const double value,
116 %        ExceptionInfo *exception)
117 %      MagickBooleanType EvaluateImageChannel(Image *image,
118 %        const ChannelType channel,const MagickEvaluateOperator op,
119 %        const double value,ExceptionInfo *exception)
120 %
121 %  A description of each parameter follows:
122 %
123 %    o image: the image.
124 %
125 %    o channel: the channel.
126 %
127 %    o op: A channel op.
128 %
129 %    o value: A value value.
130 %
131 %    o exception: return any errors or warnings in this structure.
132 %
133 */
134
135 static MagickPixelPacket **DestroyPixelThreadSet(MagickPixelPacket **pixels)
136 {
137   register long
138     i;
139
140   assert(pixels != (MagickPixelPacket **) NULL);
141   for (i=0; i < (long) GetOpenMPMaximumThreads(); i++)
142     if (pixels[i] != (MagickPixelPacket *) NULL)
143       pixels[i]=(MagickPixelPacket *) RelinquishMagickMemory(pixels[i]);
144   pixels=(MagickPixelPacket **) RelinquishAlignedMemory(pixels);
145   return(pixels);
146 }
147
148 static MagickPixelPacket **AcquirePixelThreadSet(const Image *image)
149 {
150   register long
151     i,
152     j;
153
154   MagickPixelPacket
155     **pixels;
156
157   unsigned long
158     number_threads;
159
160   number_threads=GetOpenMPMaximumThreads();
161   pixels=(MagickPixelPacket **) AcquireAlignedMemory(number_threads,
162     sizeof(*pixels));
163   if (pixels == (MagickPixelPacket **) NULL)
164     return((MagickPixelPacket **) NULL);
165   (void) ResetMagickMemory(pixels,0,number_threads*sizeof(*pixels));
166   for (i=0; i < (long) number_threads; i++)
167   {
168     pixels[i]=(MagickPixelPacket *) AcquireQuantumMemory(image->columns,
169       sizeof(**pixels));
170     if (pixels[i] == (MagickPixelPacket *) NULL)
171       return(DestroyPixelThreadSet(pixels));
172     for (j=0; j < (long) image->columns; j++)
173       GetMagickPixelPacket(image,&pixels[i][j]);
174   }
175   return(pixels);
176 }
177
178 static inline double MagickMax(const double x,const double y)
179 {
180   if (x > y)
181     return(x);
182   return(y);
183 }
184
185 static inline double MagickMin(const double x,const double y)
186 {
187   if (x < y)
188     return(x);
189   return(y);
190 }
191
192 static MagickRealType ApplyEvaluateOperator(RandomInfo *random_info,
193   Quantum pixel,const MagickEvaluateOperator op,const MagickRealType value)
194 {
195   MagickRealType
196     result;
197
198   result=0.0;
199   switch (op)
200   {
201     case UndefinedEvaluateOperator:
202       break;
203     case AddEvaluateOperator:
204     {
205       result=(MagickRealType) (pixel+value);
206       break;
207     }
208     case AddModulusEvaluateOperator:
209     {
210       /*
211         This returns a 'floored modulus' of the addition which is a
212         positive result.  It differs from  % or fmod() which returns a
213         'truncated modulus' result, where floor() is replaced by trunc()
214         and could return a negative result (which is clipped).
215       */
216       result=pixel+value;
217       result-=(QuantumRange+1)*floor(result/(QuantumRange+1));
218       break;
219     }
220     case AndEvaluateOperator:
221     {
222       result=(MagickRealType) ((unsigned long) pixel & (unsigned long)
223         (value+0.5));
224       break;
225     }
226     case CosineEvaluateOperator:
227     {
228       result=(MagickRealType) (QuantumRange*(0.5*cos((double) (2.0*MagickPI*
229         QuantumScale*pixel*value))+0.5));
230       break;
231     }
232     case DivideEvaluateOperator:
233     {
234       result=pixel/(value == 0.0 ? 1.0 : value);
235       break;
236     }
237     case GaussianNoiseEvaluateOperator:
238     {
239       result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel,
240         GaussianNoise,value);
241       break;
242     }
243     case ImpulseNoiseEvaluateOperator:
244     {
245       result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel,
246         ImpulseNoise,value);
247       break;
248     }
249     case LaplacianNoiseEvaluateOperator:
250     {
251       result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel,
252         LaplacianNoise,value);
253       break;
254     }
255     case LeftShiftEvaluateOperator:
256     {
257       result=(MagickRealType) ((unsigned long) pixel << (unsigned long)
258         (value+0.5));
259       break;
260     }
261     case LogEvaluateOperator:
262     {
263       result=(MagickRealType) (QuantumRange*log((double) (QuantumScale*value*
264         pixel+1.0))/log((double) (value+1.0)));
265       break;
266     }
267     case MaxEvaluateOperator:
268     {
269       result=(MagickRealType) MagickMax((double) pixel,value);
270       break;
271     }
272     case MeanEvaluateOperator:
273     {
274       result=(MagickRealType) ((pixel+value)/2.0);
275       break;
276     }
277     case MinEvaluateOperator:
278     {
279       result=(MagickRealType) MagickMin((double) pixel,value);
280       break;
281     }
282     case MultiplicativeNoiseEvaluateOperator:
283     {
284       result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel,
285         MultiplicativeGaussianNoise,value);
286       break;
287     }
288     case MultiplyEvaluateOperator:
289     {
290       result=(MagickRealType) (value*pixel);
291       break;
292     }
293     case OrEvaluateOperator:
294     {
295       result=(MagickRealType) ((unsigned long) pixel | (unsigned long)
296         (value+0.5));
297       break;
298     }
299     case PoissonNoiseEvaluateOperator:
300     {
301       result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel,
302         PoissonNoise,value);
303       break;
304     }
305     case PowEvaluateOperator:
306     {
307       result=(MagickRealType) (QuantumRange*pow((double) (QuantumScale*pixel),
308         (double) value));
309       break;
310     }
311     case RightShiftEvaluateOperator:
312     {
313       result=(MagickRealType) ((unsigned long) pixel >> (unsigned long)
314         (value+0.5));
315       break;
316     }
317     case SetEvaluateOperator:
318     {
319       result=value;
320       break;
321     }
322     case SineEvaluateOperator:
323     {
324       result=(MagickRealType) (QuantumRange*(0.5*sin((double) (2.0*MagickPI*
325         QuantumScale*pixel*value))+0.5));
326       break;
327     }
328     case SubtractEvaluateOperator:
329     {
330       result=(MagickRealType) (pixel-value);
331       break;
332     }
333     case ThresholdEvaluateOperator:
334     {
335       result=(MagickRealType) (((MagickRealType) pixel <= value) ? 0 :
336         QuantumRange);
337       break;
338     }
339     case ThresholdBlackEvaluateOperator:
340     {
341       result=(MagickRealType) (((MagickRealType) pixel <= value) ? 0 : pixel);
342       break;
343     }
344     case ThresholdWhiteEvaluateOperator:
345     {
346       result=(MagickRealType) (((MagickRealType) pixel > value) ? QuantumRange :
347         pixel);
348       break;
349     }
350     case UniformNoiseEvaluateOperator:
351     {
352       result=(MagickRealType) GenerateDifferentialNoise(random_info,pixel,
353         UniformNoise,value);
354       break;
355     }
356     case XorEvaluateOperator:
357     {
358       result=(MagickRealType) ((unsigned long) pixel ^ (unsigned long)
359         (value+0.5));
360       break;
361     }
362   }
363   return(result);
364 }
365
366 MagickExport MagickBooleanType EvaluateImage(Image *image,
367   const MagickEvaluateOperator op,const double value,ExceptionInfo *exception)
368 {
369   MagickBooleanType
370     status;
371
372   status=EvaluateImageChannel(image,AllChannels,op,value,exception);
373   return(status);
374 }
375
376 MagickExport Image *EvaluateImages(const Image *images,
377   const MagickEvaluateOperator op,ExceptionInfo *exception)
378 {
379 #define EvaluateImageTag  "Evaluate/Image"
380
381   CacheView
382     *evaluate_view;
383
384   const Image
385     *next;
386
387   Image
388     *evaluate_image;
389
390   long
391     progress,
392     y;
393
394   MagickBooleanType
395     status;
396
397   MagickPixelPacket
398     **restrict evaluate_pixels,
399     zero;
400
401   RandomInfo
402     **restrict random_info;
403
404   unsigned long
405     number_images;
406
407   /*
408     Ensure the image are the same size.
409   */
410   assert(images != (Image *) NULL);
411   assert(images->signature == MagickSignature);
412   if (images->debug != MagickFalse)
413     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
414   assert(exception != (ExceptionInfo *) NULL);
415   assert(exception->signature == MagickSignature);
416   for (next=images; next != (Image *) NULL; next=GetNextImageInList(next))
417     if ((next->columns != images->columns) || (next->rows != images->rows))
418       {
419         (void) ThrowMagickException(exception,GetMagickModule(),OptionError,
420           "ImageWidthsOrHeightsDiffer","`%s'",images->filename);
421         return((Image *) NULL);
422       }
423   /*
424     Initialize evaluate next attributes.
425   */
426   evaluate_image=CloneImage(images,images->columns,images->rows,MagickTrue,
427     exception);
428   if (evaluate_image == (Image *) NULL)
429     return((Image *) NULL);
430   if (SetImageStorageClass(evaluate_image,DirectClass) == MagickFalse)
431     {
432       InheritException(exception,&evaluate_image->exception);
433       evaluate_image=DestroyImage(evaluate_image);
434       return((Image *) NULL);
435     }
436   evaluate_pixels=AcquirePixelThreadSet(images);
437   if (evaluate_pixels == (MagickPixelPacket **) NULL)
438     {
439       evaluate_image=DestroyImage(evaluate_image);
440       (void) ThrowMagickException(exception,GetMagickModule(),
441         ResourceLimitError,"MemoryAllocationFailed","`%s'",images->filename);
442       return((Image *) NULL);
443     }
444   /*
445     Evaluate image pixels.
446   */
447   status=MagickTrue;
448   progress=0;
449   GetMagickPixelPacket(images,&zero);
450   random_info=AcquireRandomInfoThreadSet();
451   number_images=GetImageListLength(images);
452   evaluate_view=AcquireCacheView(evaluate_image);
453 #if defined(MAGICKCORE_OPENMP_SUPPORT)
454   #pragma omp parallel for schedule(dynamic) shared(progress,status)
455 #endif
456   for (y=0; y < (long) evaluate_image->rows; y++)
457   {
458     CacheView
459       *image_view;
460
461     const Image
462       *next;
463
464     MagickPixelPacket
465       pixel;
466
467     register IndexPacket
468       *restrict evaluate_indexes;
469
470     register long
471       i,
472       id,
473       x;
474
475     register MagickPixelPacket
476       *evaluate_pixel;
477
478     register PixelPacket
479       *restrict q;
480
481     if (status == MagickFalse)
482       continue;
483     q=QueueCacheViewAuthenticPixels(evaluate_view,0,y,evaluate_image->columns,1,
484       exception);
485     if (q == (PixelPacket *) NULL)
486       {
487         status=MagickFalse;
488         continue;
489       }
490     evaluate_indexes=GetCacheViewAuthenticIndexQueue(evaluate_view);
491     pixel=zero;
492     id=GetOpenMPThreadId();
493     evaluate_pixel=evaluate_pixels[id];
494     for (x=0; x < (long) evaluate_image->columns; x++)
495       evaluate_pixel[x]=zero;
496     next=images;
497     for (i=0; i < (long) number_images; i++)
498     {
499       register const IndexPacket
500         *indexes;
501
502       register const PixelPacket
503         *p;
504
505       image_view=AcquireCacheView(next);
506       p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception);
507       if (p == (const PixelPacket *) NULL)
508         {
509           image_view=DestroyCacheView(image_view);
510           break;
511         }
512       indexes=GetCacheViewVirtualIndexQueue(image_view);
513       for (x=0; x < (long) next->columns; x++)
514       {
515         evaluate_pixel[x].red=ApplyEvaluateOperator(random_info[id],p->red,
516           op,evaluate_pixel[x].red);
517         evaluate_pixel[x].green=ApplyEvaluateOperator(random_info[id],p->green,
518           op,evaluate_pixel[x].green);
519         evaluate_pixel[x].blue=ApplyEvaluateOperator(random_info[id],p->blue,
520           op,evaluate_pixel[x].blue);
521         evaluate_pixel[x].opacity=ApplyEvaluateOperator(random_info[id],
522           p->opacity,op,evaluate_pixel[x].opacity);
523         if (evaluate_image->colorspace == CMYKColorspace)
524           evaluate_pixel[x].index=ApplyEvaluateOperator(random_info[id],
525             indexes[x],op,evaluate_pixel[x].index);
526         p++;
527       }
528       image_view=DestroyCacheView(image_view);
529       next=GetNextImageInList(next);
530     }
531     for (x=0; x < (long) evaluate_image->columns; x++)
532     {
533       q->red=ClampToQuantum(evaluate_pixel[x].red);
534       q->green=ClampToQuantum(evaluate_pixel[x].green);
535       q->blue=ClampToQuantum(evaluate_pixel[x].blue);
536       if (evaluate_image->matte == MagickFalse)
537         q->opacity=ClampToQuantum(evaluate_pixel[x].opacity);
538       else
539         q->opacity=ClampToQuantum(QuantumRange-evaluate_pixel[x].opacity);
540       if (evaluate_image->colorspace == CMYKColorspace)
541         evaluate_indexes[x]=ClampToQuantum(evaluate_pixel[x].index);
542       q++;
543     }
544     if (SyncCacheViewAuthenticPixels(evaluate_view,exception) == MagickFalse)
545       status=MagickFalse;
546     if (images->progress_monitor != (MagickProgressMonitor) NULL)
547       {
548         MagickBooleanType
549           proceed;
550
551 #if defined(MAGICKCORE_OPENMP_SUPPORT)
552         #pragma omp critical (MagickCore_EvaluateImages)
553 #endif
554         proceed=SetImageProgress(images,EvaluateImageTag,progress++,
555           evaluate_image->rows);
556         if (proceed == MagickFalse)
557           status=MagickFalse;
558       }
559   }
560   evaluate_view=DestroyCacheView(evaluate_view);
561   evaluate_pixels=DestroyPixelThreadSet(evaluate_pixels);
562   random_info=DestroyRandomInfoThreadSet(random_info);
563   if (status == MagickFalse)
564     evaluate_image=DestroyImage(evaluate_image);
565   return(evaluate_image);
566 }
567
568 MagickExport MagickBooleanType EvaluateImageChannel(Image *image,
569   const ChannelType channel,const MagickEvaluateOperator op,const double value,
570   ExceptionInfo *exception)
571 {
572   CacheView
573     *image_view;
574
575   long
576     progress,
577     y;
578
579   MagickBooleanType
580     status;
581
582   RandomInfo
583     **restrict random_info;
584
585   assert(image != (Image *) NULL);
586   assert(image->signature == MagickSignature);
587   if (image->debug != MagickFalse)
588     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
589   assert(exception != (ExceptionInfo *) NULL);
590   assert(exception->signature == MagickSignature);
591   if (SetImageStorageClass(image,DirectClass) == MagickFalse)
592     {
593       InheritException(exception,&image->exception);
594       return(MagickFalse);
595     }
596   status=MagickTrue;
597   progress=0;
598   random_info=AcquireRandomInfoThreadSet();
599   image_view=AcquireCacheView(image);
600 #if defined(MAGICKCORE_OPENMP_SUPPORT)
601   #pragma omp parallel for schedule(dynamic,4) shared(progress,status)
602 #endif
603   for (y=0; y < (long) image->rows; y++)
604   {
605     register IndexPacket
606       *restrict indexes;
607
608     register long
609       id,
610       x;
611
612     register PixelPacket
613       *restrict q;
614
615     if (status == MagickFalse)
616       continue;
617     q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
618     if (q == (PixelPacket *) NULL)
619       {
620         status=MagickFalse;
621         continue;
622       }
623     indexes=GetCacheViewAuthenticIndexQueue(image_view);
624     id=GetOpenMPThreadId();
625     for (x=0; x < (long) image->columns; x++)
626     {
627       if ((channel & RedChannel) != 0)
628         q->red=ClampToQuantum(ApplyEvaluateOperator(random_info[id],q->red,op,
629           value));
630       if ((channel & GreenChannel) != 0)
631         q->green=ClampToQuantum(ApplyEvaluateOperator(random_info[id],q->green,
632           op,value));
633       if ((channel & BlueChannel) != 0)
634         q->blue=ClampToQuantum(ApplyEvaluateOperator(random_info[id],q->blue,op,
635           value));
636       if ((channel & OpacityChannel) != 0)
637         {
638           if (image->matte == MagickFalse)
639             q->opacity=ClampToQuantum(ApplyEvaluateOperator(random_info[id],
640               q->opacity,op,value));
641           else
642             q->opacity=ClampToQuantum(QuantumRange-ApplyEvaluateOperator(
643               random_info[id],(Quantum) GetAlphaPixelComponent(q),op,value));
644         }
645       if (((channel & IndexChannel) != 0) && (indexes != (IndexPacket *) NULL))
646         indexes[x]=(IndexPacket) ClampToQuantum(ApplyEvaluateOperator(
647           random_info[id],indexes[x],op,value));
648       q++;
649     }
650     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
651       status=MagickFalse;
652     if (image->progress_monitor != (MagickProgressMonitor) NULL)
653       {
654         MagickBooleanType
655           proceed;
656
657 #if defined(MAGICKCORE_OPENMP_SUPPORT)
658   #pragma omp critical (MagickCore_EvaluateImageChannel)
659 #endif
660         proceed=SetImageProgress(image,EvaluateImageTag,progress++,image->rows);
661         if (proceed == MagickFalse)
662           status=MagickFalse;
663       }
664   }
665   image_view=DestroyCacheView(image_view);
666   random_info=DestroyRandomInfoThreadSet(random_info);
667   return(status);
668 }
669 \f
670 /*
671 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
672 %                                                                             %
673 %                                                                             %
674 %                                                                             %
675 %     F u n c t i o n I m a g e                                               %
676 %                                                                             %
677 %                                                                             %
678 %                                                                             %
679 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
680 %
681 %  FunctionImage() applies a value to the image with an arithmetic, relational,
682 %  or logical operator to an image. Use these operations to lighten or darken
683 %  an image, to increase or decrease contrast in an image, or to produce the
684 %  "negative" of an image.
685 %
686 %  The format of the FunctionImageChannel method is:
687 %
688 %      MagickBooleanType FunctionImage(Image *image,
689 %        const MagickFunction function,const long number_parameters,
690 %        const double *parameters,ExceptionInfo *exception)
691 %      MagickBooleanType FunctionImageChannel(Image *image,
692 %        const ChannelType channel,const MagickFunction function,
693 %        const long number_parameters,const double *argument,
694 %        ExceptionInfo *exception)
695 %
696 %  A description of each parameter follows:
697 %
698 %    o image: the image.
699 %
700 %    o channel: the channel.
701 %
702 %    o function: A channel function.
703 %
704 %    o parameters: one or more parameters.
705 %
706 %    o exception: return any errors or warnings in this structure.
707 %
708 */
709
710 static Quantum ApplyFunction(Quantum pixel,const MagickFunction function,
711   const unsigned long number_parameters,const double *parameters,
712   ExceptionInfo *exception)
713 {
714   MagickRealType
715     result;
716
717   register long
718     i;
719
720   (void) exception;
721   result=0.0;
722   switch (function)
723   {
724     case PolynomialFunction:
725     {
726       /*
727        * Polynomial
728        * Parameters:   polynomial constants,  highest to lowest order
729        *   For example:      c0*x^3 + c1*x^2 + c2*x  + c3
730        */
731       result=0.0;
732       for (i=0; i < (long) number_parameters; i++)
733         result = result*QuantumScale*pixel + parameters[i];
734       result *= QuantumRange;
735       break;
736     }
737     case SinusoidFunction:
738     {
739       /* Sinusoid Function
740        * Parameters:   Freq, Phase, Ampl, bias
741        */
742       double  freq,phase,ampl,bias;
743       freq  = ( number_parameters >= 1 ) ? parameters[0] : 1.0;
744       phase = ( number_parameters >= 2 ) ? parameters[1] : 0.0;
745       ampl  = ( number_parameters >= 3 ) ? parameters[2] : 0.5;
746       bias  = ( number_parameters >= 4 ) ? parameters[3] : 0.5;
747       result=(MagickRealType) (QuantumRange*(ampl*sin((double) (2.0*MagickPI*
748         (freq*QuantumScale*pixel + phase/360.0) )) + bias ) );
749       break;
750     }
751     case ArcsinFunction:
752     {
753       /* Arcsin Function  (peged at range limits for invalid results)
754        * Parameters:   Width, Center, Range, Bias
755        */
756       double  width,range,center,bias;
757       width  = ( number_parameters >= 1 ) ? parameters[0] : 1.0;
758       center = ( number_parameters >= 2 ) ? parameters[1] : 0.5;
759       range  = ( number_parameters >= 3 ) ? parameters[2] : 1.0;
760       bias   = ( number_parameters >= 4 ) ? parameters[3] : 0.5;
761       result = 2.0/width*(QuantumScale*pixel - center);
762       if ( result <= -1.0 )
763         result = bias - range/2.0;
764       else if ( result >= 1.0 )
765         result = bias + range/2.0;
766       else
767         result=range/MagickPI*asin((double)result) + bias;
768       result *= QuantumRange;
769       break;
770     }
771     case ArctanFunction:
772     {
773       /* Arctan Function
774        * Parameters:   Slope, Center, Range, Bias
775        */
776       double  slope,range,center,bias;
777       slope  = ( number_parameters >= 1 ) ? parameters[0] : 1.0;
778       center = ( number_parameters >= 2 ) ? parameters[1] : 0.5;
779       range  = ( number_parameters >= 3 ) ? parameters[2] : 1.0;
780       bias   = ( number_parameters >= 4 ) ? parameters[3] : 0.5;
781       result = MagickPI*slope*(QuantumScale*pixel - center);
782       result=(MagickRealType) (QuantumRange*(range/MagickPI*atan((double)
783                   result) + bias ) );
784       break;
785     }
786     case UndefinedFunction:
787       break;
788   }
789   return(ClampToQuantum(result));
790 }
791
792 MagickExport MagickBooleanType FunctionImage(Image *image,
793   const MagickFunction function,const unsigned long number_parameters,
794   const double *parameters,ExceptionInfo *exception)
795 {
796   MagickBooleanType
797     status;
798
799   status=FunctionImageChannel(image,AllChannels,function,number_parameters,
800     parameters,exception);
801   return(status);
802 }
803
804 MagickExport MagickBooleanType FunctionImageChannel(Image *image,
805   const ChannelType channel,const MagickFunction function,
806   const unsigned long number_parameters,const double *parameters,
807   ExceptionInfo *exception)
808 {
809 #define FunctionImageTag  "Function/Image "
810
811   CacheView
812     *image_view;
813
814   long
815     progress,
816     y;
817
818   MagickBooleanType
819     status;
820
821   assert(image != (Image *) NULL);
822   assert(image->signature == MagickSignature);
823   if (image->debug != MagickFalse)
824     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
825   assert(exception != (ExceptionInfo *) NULL);
826   assert(exception->signature == MagickSignature);
827   if (SetImageStorageClass(image,DirectClass) == MagickFalse)
828     {
829       InheritException(exception,&image->exception);
830       return(MagickFalse);
831     }
832   status=MagickTrue;
833   progress=0;
834   image_view=AcquireCacheView(image);
835 #if defined(MAGICKCORE_OPENMP_SUPPORT)
836   #pragma omp parallel for schedule(dynamic,4) shared(progress,status)
837 #endif
838   for (y=0; y < (long) image->rows; y++)
839   {
840     register IndexPacket
841       *restrict indexes;
842
843     register long
844       x;
845
846     register PixelPacket
847       *restrict q;
848
849     if (status == MagickFalse)
850       continue;
851     q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
852     if (q == (PixelPacket *) NULL)
853       {
854         status=MagickFalse;
855         continue;
856       }
857     indexes=GetCacheViewAuthenticIndexQueue(image_view);
858     for (x=0; x < (long) image->columns; x++)
859     {
860       if ((channel & RedChannel) != 0)
861         q->red=ApplyFunction(q->red,function,number_parameters,parameters,
862           exception);
863       if ((channel & GreenChannel) != 0)
864         q->green=ApplyFunction(q->green,function,number_parameters,parameters,
865           exception);
866       if ((channel & BlueChannel) != 0)
867         q->blue=ApplyFunction(q->blue,function,number_parameters,parameters,
868           exception);
869       if ((channel & OpacityChannel) != 0)
870         {
871           if (image->matte == MagickFalse)
872             q->opacity=ApplyFunction(q->opacity,function,number_parameters,
873               parameters,exception);
874           else
875             q->opacity=(Quantum) QuantumRange-ApplyFunction((Quantum)
876               GetAlphaPixelComponent(q),function,number_parameters,parameters,
877               exception);
878         }
879       if (((channel & IndexChannel) != 0) && (indexes != (IndexPacket *) NULL))
880         indexes[x]=(IndexPacket) ApplyFunction(indexes[x],function,
881           number_parameters,parameters,exception);
882       q++;
883     }
884     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
885       status=MagickFalse;
886     if (image->progress_monitor != (MagickProgressMonitor) NULL)
887       {
888         MagickBooleanType
889           proceed;
890
891 #if defined(MAGICKCORE_OPENMP_SUPPORT)
892   #pragma omp critical (MagickCore_FunctionImageChannel)
893 #endif
894         proceed=SetImageProgress(image,FunctionImageTag,progress++,image->rows);
895         if (proceed == MagickFalse)
896           status=MagickFalse;
897       }
898   }
899   image_view=DestroyCacheView(image_view);
900   return(status);
901 }
902 \f
903 /*
904 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
905 %                                                                             %
906 %                                                                             %
907 %                                                                             %
908 +   G e t I m a g e C h a n n e l E x t r e m a                               %
909 %                                                                             %
910 %                                                                             %
911 %                                                                             %
912 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
913 %
914 %  GetImageChannelExtrema() returns the extrema of one or more image channels.
915 %
916 %  The format of the GetImageChannelExtrema method is:
917 %
918 %      MagickBooleanType GetImageChannelExtrema(const Image *image,
919 %        const ChannelType channel,unsigned long *minima,unsigned long *maxima,
920 %        ExceptionInfo *exception)
921 %
922 %  A description of each parameter follows:
923 %
924 %    o image: the image.
925 %
926 %    o channel: the channel.
927 %
928 %    o minima: the minimum value in the channel.
929 %
930 %    o maxima: the maximum value in the channel.
931 %
932 %    o exception: return any errors or warnings in this structure.
933 %
934 */
935
936 MagickExport MagickBooleanType GetImageExtrema(const Image *image,
937   unsigned long *minima,unsigned long *maxima,ExceptionInfo *exception)
938 {
939   return(GetImageChannelExtrema(image,AllChannels,minima,maxima,exception));
940 }
941
942 MagickExport MagickBooleanType GetImageChannelExtrema(const Image *image,
943   const ChannelType channel,unsigned long *minima,unsigned long *maxima,
944   ExceptionInfo *exception)
945 {
946   double
947     max,
948     min;
949
950   MagickBooleanType
951     status;
952
953   assert(image != (Image *) NULL);
954   assert(image->signature == MagickSignature);
955   if (image->debug != MagickFalse)
956     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
957   status=GetImageChannelRange(image,channel,&min,&max,exception);
958   *minima=(unsigned long) (min+0.5);
959   *maxima=(unsigned long) (max+0.5);
960   return(status);
961 }
962 \f
963 /*
964 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
965 %                                                                             %
966 %                                                                             %
967 %                                                                             %
968 %   G e t I m a g e C h a n n e l M e a n                                     %
969 %                                                                             %
970 %                                                                             %
971 %                                                                             %
972 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
973 %
974 %  GetImageChannelMean() returns the mean and standard deviation of one or more
975 %  image channels.
976 %
977 %  The format of the GetImageChannelMean method is:
978 %
979 %      MagickBooleanType GetImageChannelMean(const Image *image,
980 %        const ChannelType channel,double *mean,double *standard_deviation,
981 %        ExceptionInfo *exception)
982 %
983 %  A description of each parameter follows:
984 %
985 %    o image: the image.
986 %
987 %    o channel: the channel.
988 %
989 %    o mean: the average value in the channel.
990 %
991 %    o standard_deviation: the standard deviation of the channel.
992 %
993 %    o exception: return any errors or warnings in this structure.
994 %
995 */
996
997 MagickExport MagickBooleanType GetImageMean(const Image *image,double *mean,
998   double *standard_deviation,ExceptionInfo *exception)
999 {
1000   MagickBooleanType
1001     status;
1002
1003   status=GetImageChannelMean(image,AllChannels,mean,standard_deviation,
1004     exception);
1005   return(status);
1006 }
1007
1008 MagickExport MagickBooleanType GetImageChannelMean(const Image *image,
1009   const ChannelType channel,double *mean,double *standard_deviation,
1010   ExceptionInfo *exception)
1011 {
1012   double
1013     area;
1014
1015   long
1016     y;
1017
1018   assert(image != (Image *) NULL);
1019   assert(image->signature == MagickSignature);
1020   if (image->debug != MagickFalse)
1021     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1022   *mean=0.0;
1023   *standard_deviation=0.0;
1024   area=0.0;
1025   for (y=0; y < (long) image->rows; y++)
1026   {
1027     register const IndexPacket
1028       *restrict indexes;
1029
1030     register const PixelPacket
1031       *restrict p;
1032
1033     register long
1034       x;
1035
1036     p=GetVirtualPixels(image,0,y,image->columns,1,exception);
1037     if (p == (const PixelPacket *) NULL)
1038       break;
1039     indexes=GetVirtualIndexQueue(image);
1040     for (x=0; x < (long) image->columns; x++)
1041     {
1042       if ((channel & RedChannel) != 0)
1043         {
1044           *mean+=GetRedPixelComponent(p);
1045           *standard_deviation+=(double) p->red*GetRedPixelComponent(p);
1046           area++;
1047         }
1048       if ((channel & GreenChannel) != 0)
1049         {
1050           *mean+=GetGreenPixelComponent(p);
1051           *standard_deviation+=(double) p->green*GetGreenPixelComponent(p);
1052           area++;
1053         }
1054       if ((channel & BlueChannel) != 0)
1055         {
1056           *mean+=GetBluePixelComponent(p);
1057           *standard_deviation+=(double) p->blue*GetBluePixelComponent(p);
1058           area++;
1059         }
1060       if ((channel & OpacityChannel) != 0)
1061         {
1062           *mean+=GetOpacityPixelComponent(p);
1063           *standard_deviation+=(double) p->opacity*GetOpacityPixelComponent(p);
1064           area++;
1065         }
1066       if (((channel & IndexChannel) != 0) &&
1067           (image->colorspace == CMYKColorspace))
1068         {
1069           *mean+=indexes[x];
1070           *standard_deviation+=(double) indexes[x]*indexes[x];
1071           area++;
1072         }
1073       p++;
1074     }
1075   }
1076   if (y < (long) image->rows)
1077     return(MagickFalse);
1078   if (area != 0)
1079     {
1080       *mean/=area;
1081       *standard_deviation/=area;
1082     }
1083   *standard_deviation=sqrt(*standard_deviation-(*mean*(*mean)));
1084   return(y == (long) image->rows ? MagickTrue : MagickFalse);
1085 }
1086 \f
1087 /*
1088 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1089 %                                                                             %
1090 %                                                                             %
1091 %                                                                             %
1092 %   G e t I m a g e C h a n n e l K u r t o s i s                             %
1093 %                                                                             %
1094 %                                                                             %
1095 %                                                                             %
1096 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1097 %
1098 %  GetImageChannelKurtosis() returns the kurtosis and skewness of one or more
1099 %  image channels.
1100 %
1101 %  The format of the GetImageChannelKurtosis method is:
1102 %
1103 %      MagickBooleanType GetImageChannelKurtosis(const Image *image,
1104 %        const ChannelType channel,double *kurtosis,double *skewness,
1105 %        ExceptionInfo *exception)
1106 %
1107 %  A description of each parameter follows:
1108 %
1109 %    o image: the image.
1110 %
1111 %    o channel: the channel.
1112 %
1113 %    o kurtosis: the kurtosis of the channel.
1114 %
1115 %    o skewness: the skewness of the channel.
1116 %
1117 %    o exception: return any errors or warnings in this structure.
1118 %
1119 */
1120
1121 MagickExport MagickBooleanType GetImageKurtosis(const Image *image,
1122   double *kurtosis,double *skewness,ExceptionInfo *exception)
1123 {
1124   MagickBooleanType
1125     status;
1126
1127   status=GetImageChannelKurtosis(image,AllChannels,kurtosis,skewness,
1128     exception);
1129   return(status);
1130 }
1131
1132 MagickExport MagickBooleanType GetImageChannelKurtosis(const Image *image,
1133   const ChannelType channel,double *kurtosis,double *skewness,
1134   ExceptionInfo *exception)
1135 {
1136   double
1137     area,
1138     mean,
1139     standard_deviation,
1140     sum_squares,
1141     sum_cubes,
1142     sum_fourth_power;
1143
1144   long
1145     y;
1146
1147   assert(image != (Image *) NULL);
1148   assert(image->signature == MagickSignature);
1149   if (image->debug != MagickFalse)
1150     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1151   *kurtosis=0.0;
1152   *skewness=0.0;
1153   area=0.0;
1154   mean=0.0;
1155   standard_deviation=0.0;
1156   sum_squares=0.0;
1157   sum_cubes=0.0;
1158   sum_fourth_power=0.0;
1159   for (y=0; y < (long) image->rows; y++)
1160   {
1161     register const IndexPacket
1162       *restrict indexes;
1163
1164     register const PixelPacket
1165       *restrict p;
1166
1167     register long
1168       x;
1169
1170     p=GetVirtualPixels(image,0,y,image->columns,1,exception);
1171     if (p == (const PixelPacket *) NULL)
1172       break;
1173     indexes=GetVirtualIndexQueue(image);
1174     for (x=0; x < (long) image->columns; x++)
1175     {
1176       if ((channel & RedChannel) != 0)
1177         {
1178           mean+=GetRedPixelComponent(p);
1179           sum_squares+=(double) p->red*GetRedPixelComponent(p);
1180           sum_cubes+=(double) p->red*p->red*GetRedPixelComponent(p);
1181           sum_fourth_power+=(double) p->red*p->red*p->red*
1182             GetRedPixelComponent(p);
1183           area++;
1184         }
1185       if ((channel & GreenChannel) != 0)
1186         {
1187           mean+=GetGreenPixelComponent(p);
1188           sum_squares+=(double) p->green*GetGreenPixelComponent(p);
1189           sum_cubes+=(double) p->green*p->green*GetGreenPixelComponent(p);
1190           sum_fourth_power+=(double) p->green*p->green*p->green*
1191             GetGreenPixelComponent(p);
1192           area++;
1193         }
1194       if ((channel & BlueChannel) != 0)
1195         {
1196           mean+=GetBluePixelComponent(p);
1197           sum_squares+=(double) p->blue*GetBluePixelComponent(p);
1198           sum_cubes+=(double) p->blue*p->blue*GetBluePixelComponent(p);
1199           sum_fourth_power+=(double) p->blue*p->blue*p->blue*
1200             GetBluePixelComponent(p);
1201           area++;
1202         }
1203       if ((channel & OpacityChannel) != 0)
1204         {
1205           mean+=GetOpacityPixelComponent(p);
1206           sum_squares+=(double) p->opacity*GetOpacityPixelComponent(p);
1207           sum_cubes+=(double) p->opacity*p->opacity*GetOpacityPixelComponent(p);
1208           sum_fourth_power+=(double) p->opacity*p->opacity*p->opacity*
1209             GetOpacityPixelComponent(p);
1210           area++;
1211         }
1212       if (((channel & IndexChannel) != 0) &&
1213           (image->colorspace == CMYKColorspace))
1214         {
1215           mean+=indexes[x];
1216           sum_squares+=(double) indexes[x]*indexes[x];
1217           sum_cubes+=(double) indexes[x]*indexes[x]*indexes[x];
1218           sum_fourth_power+=(double) indexes[x]*indexes[x]*indexes[x]*
1219             indexes[x];
1220           area++;
1221         }
1222       p++;
1223     }
1224   }
1225   if (y < (long) image->rows)
1226     return(MagickFalse);
1227   if (area != 0.0)
1228     {
1229       mean/=area;
1230       sum_squares/=area;
1231       sum_cubes/=area;
1232       sum_fourth_power/=area;
1233     }
1234   standard_deviation=sqrt(sum_squares-(mean*mean));
1235   if (standard_deviation != 0.0)
1236     {
1237       *kurtosis=sum_fourth_power-4.0*mean*sum_cubes+6.0*mean*mean*sum_squares-
1238         3.0*mean*mean*mean*mean;
1239       *kurtosis/=standard_deviation*standard_deviation*standard_deviation*
1240         standard_deviation;
1241       *kurtosis-=3.0;
1242       *skewness=sum_cubes-3.0*mean*sum_squares+2.0*mean*mean*mean;
1243       *skewness/=standard_deviation*standard_deviation*standard_deviation;
1244     }
1245   return(y == (long) image->rows ? MagickTrue : MagickFalse);
1246 }
1247 \f
1248 /*
1249 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1250 %                                                                             %
1251 %                                                                             %
1252 %                                                                             %
1253 %   G e t I m a g e C h a n n e l R a n g e                                   %
1254 %                                                                             %
1255 %                                                                             %
1256 %                                                                             %
1257 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1258 %
1259 %  GetImageChannelRange() returns the range of one or more image channels.
1260 %
1261 %  The format of the GetImageChannelRange method is:
1262 %
1263 %      MagickBooleanType GetImageChannelRange(const Image *image,
1264 %        const ChannelType channel,double *minima,double *maxima,
1265 %        ExceptionInfo *exception)
1266 %
1267 %  A description of each parameter follows:
1268 %
1269 %    o image: the image.
1270 %
1271 %    o channel: the channel.
1272 %
1273 %    o minima: the minimum value in the channel.
1274 %
1275 %    o maxima: the maximum value in the channel.
1276 %
1277 %    o exception: return any errors or warnings in this structure.
1278 %
1279 */
1280
1281 MagickExport MagickBooleanType GetImageRange(const Image *image,
1282   double *minima,double *maxima,ExceptionInfo *exception)
1283 {
1284   return(GetImageChannelRange(image,AllChannels,minima,maxima,exception));
1285 }
1286
1287 MagickExport MagickBooleanType GetImageChannelRange(const Image *image,
1288   const ChannelType channel,double *minima,double *maxima,
1289   ExceptionInfo *exception)
1290 {
1291   long
1292     y;
1293
1294   MagickPixelPacket
1295     pixel;
1296
1297   assert(image != (Image *) NULL);
1298   assert(image->signature == MagickSignature);
1299   if (image->debug != MagickFalse)
1300     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1301   *maxima=(-1.0E-37);
1302   *minima=1.0E+37;
1303   GetMagickPixelPacket(image,&pixel);
1304   for (y=0; y < (long) image->rows; y++)
1305   {
1306     register const IndexPacket
1307       *restrict indexes;
1308
1309     register const PixelPacket
1310       *restrict p;
1311
1312     register long
1313       x;
1314
1315     p=GetVirtualPixels(image,0,y,image->columns,1,exception);
1316     if (p == (const PixelPacket *) NULL)
1317       break;
1318     indexes=GetVirtualIndexQueue(image);
1319     for (x=0; x < (long) image->columns; x++)
1320     {
1321       SetMagickPixelPacket(image,p,indexes+x,&pixel);
1322       if ((channel & RedChannel) != 0)
1323         {
1324           if (pixel.red < *minima)
1325             *minima=(double) pixel.red;
1326           if (pixel.red > *maxima)
1327             *maxima=(double) pixel.red;
1328         }
1329       if ((channel & GreenChannel) != 0)
1330         {
1331           if (pixel.green < *minima)
1332             *minima=(double) pixel.green;
1333           if (pixel.green > *maxima)
1334             *maxima=(double) pixel.green;
1335         }
1336       if ((channel & BlueChannel) != 0)
1337         {
1338           if (pixel.blue < *minima)
1339             *minima=(double) pixel.blue;
1340           if (pixel.blue > *maxima)
1341             *maxima=(double) pixel.blue;
1342         }
1343       if ((channel & OpacityChannel) != 0)
1344         {
1345           if (pixel.opacity < *minima)
1346             *minima=(double) pixel.opacity;
1347           if (pixel.opacity > *maxima)
1348             *maxima=(double) pixel.opacity;
1349         }
1350       if (((channel & IndexChannel) != 0) &&
1351           (image->colorspace == CMYKColorspace))
1352         {
1353           if ((double) indexes[x] < *minima)
1354             *minima=(double) indexes[x];
1355           if ((double) indexes[x] > *maxima)
1356             *maxima=(double) indexes[x];
1357         }
1358       p++;
1359     }
1360   }
1361   return(y == (long) image->rows ? MagickTrue : MagickFalse);
1362 }
1363 \f
1364 /*
1365 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1366 %                                                                             %
1367 %                                                                             %
1368 %                                                                             %
1369 %   G e t I m a g e C h a n n e l S t a t i s t i c s                         %
1370 %                                                                             %
1371 %                                                                             %
1372 %                                                                             %
1373 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1374 %
1375 %  GetImageChannelStatistics() returns statistics for each channel in the
1376 %  image.  The statistics include the channel depth, its minima, maxima, mean,
1377 %  standard deviation, kurtosis and skewness.  You can access the red channel
1378 %  mean, for example, like this:
1379 %
1380 %      channel_statistics=GetImageChannelStatistics(image,excepton);
1381 %      red_mean=channel_statistics[RedChannel].mean;
1382 %
1383 %  Use MagickRelinquishMemory() to free the statistics buffer.
1384 %
1385 %  The format of the GetImageChannelStatistics method is:
1386 %
1387 %      ChannelStatistics *GetImageChannelStatistics(const Image *image,
1388 %        ExceptionInfo *exception)
1389 %
1390 %  A description of each parameter follows:
1391 %
1392 %    o image: the image.
1393 %
1394 %    o exception: return any errors or warnings in this structure.
1395 %
1396 */
1397 MagickExport ChannelStatistics *GetImageChannelStatistics(const Image *image,
1398   ExceptionInfo *exception)
1399 {
1400   ChannelStatistics
1401     *channel_statistics;
1402
1403   double
1404     area,
1405     sum_squares,
1406     sum_cubes;
1407
1408   long
1409     y;
1410
1411   MagickStatusType
1412     status;
1413
1414   QuantumAny
1415     range;
1416
1417   register long
1418     i;
1419
1420   size_t
1421     length;
1422
1423   unsigned long
1424     channels,
1425     depth;
1426
1427   assert(image != (Image *) NULL);
1428   assert(image->signature == MagickSignature);
1429   if (image->debug != MagickFalse)
1430     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1431   length=AllChannels+1UL;
1432   channel_statistics=(ChannelStatistics *) AcquireQuantumMemory(length,
1433     sizeof(*channel_statistics));
1434   if (channel_statistics == (ChannelStatistics *) NULL)
1435     ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
1436   (void) ResetMagickMemory(channel_statistics,0,length*
1437     sizeof(*channel_statistics));
1438   for (i=0; i <= AllChannels; i++)
1439   {
1440     channel_statistics[i].depth=1;
1441     channel_statistics[i].maxima=(-1.0E-37);
1442     channel_statistics[i].minima=1.0E+37;
1443     channel_statistics[i].mean=0.0;
1444     channel_statistics[i].standard_deviation=0.0;
1445     channel_statistics[i].kurtosis=0.0;
1446     channel_statistics[i].skewness=0.0;
1447   }
1448   for (y=0; y < (long) image->rows; y++)
1449   {
1450     register const IndexPacket
1451       *restrict indexes;
1452
1453     register const PixelPacket
1454       *restrict p;
1455
1456     register long
1457       x;
1458
1459     p=GetVirtualPixels(image,0,y,image->columns,1,exception);
1460     if (p == (const PixelPacket *) NULL)
1461       break;
1462     indexes=GetVirtualIndexQueue(image);
1463     for (x=0; x < (long) image->columns; )
1464     {
1465       if (channel_statistics[RedChannel].depth != MAGICKCORE_QUANTUM_DEPTH)
1466         {
1467           depth=channel_statistics[RedChannel].depth;
1468           range=GetQuantumRange(depth);
1469           status=p->red != ScaleAnyToQuantum(ScaleQuantumToAny(p->red,range),
1470             range) ? MagickTrue : MagickFalse;
1471           if (status != MagickFalse)
1472             {
1473               channel_statistics[RedChannel].depth++;
1474               continue;
1475             }
1476         }
1477       if (channel_statistics[GreenChannel].depth != MAGICKCORE_QUANTUM_DEPTH)
1478         {
1479           depth=channel_statistics[GreenChannel].depth;
1480           range=GetQuantumRange(depth);
1481           status=p->green != ScaleAnyToQuantum(ScaleQuantumToAny(p->green,
1482             range),range) ? MagickTrue : MagickFalse;
1483           if (status != MagickFalse)
1484             {
1485               channel_statistics[GreenChannel].depth++;
1486               continue;
1487             }
1488         }
1489       if (channel_statistics[BlueChannel].depth != MAGICKCORE_QUANTUM_DEPTH)
1490         {
1491           depth=channel_statistics[BlueChannel].depth;
1492           range=GetQuantumRange(depth);
1493           status=p->blue != ScaleAnyToQuantum(ScaleQuantumToAny(p->blue,
1494             range),range) ? MagickTrue : MagickFalse;
1495           if (status != MagickFalse)
1496             {
1497               channel_statistics[BlueChannel].depth++;
1498               continue;
1499             }
1500         }
1501       if (image->matte != MagickFalse)
1502         {
1503           if (channel_statistics[OpacityChannel].depth != MAGICKCORE_QUANTUM_DEPTH)
1504             {
1505               depth=channel_statistics[OpacityChannel].depth;
1506               range=GetQuantumRange(depth);
1507               status=p->opacity != ScaleAnyToQuantum(ScaleQuantumToAny(
1508                 p->opacity,range),range) ? MagickTrue : MagickFalse;
1509               if (status != MagickFalse)
1510                 {
1511                   channel_statistics[OpacityChannel].depth++;
1512                   continue;
1513                 }
1514             }
1515           }
1516       if (image->colorspace == CMYKColorspace)
1517         {
1518           if (channel_statistics[BlackChannel].depth != MAGICKCORE_QUANTUM_DEPTH)
1519             {
1520               depth=channel_statistics[BlackChannel].depth;
1521               range=GetQuantumRange(depth);
1522               status=indexes[x] != ScaleAnyToQuantum(ScaleQuantumToAny(
1523                 indexes[x],range),range) ? MagickTrue : MagickFalse;
1524               if (status != MagickFalse)
1525                 {
1526                   channel_statistics[BlackChannel].depth++;
1527                   continue;
1528                 }
1529             }
1530         }
1531       if ((double) p->red < channel_statistics[RedChannel].minima)
1532         channel_statistics[RedChannel].minima=(double) GetRedPixelComponent(p);
1533       if ((double) p->red > channel_statistics[RedChannel].maxima)
1534         channel_statistics[RedChannel].maxima=(double) GetRedPixelComponent(p);
1535       channel_statistics[RedChannel].mean+=GetRedPixelComponent(p);
1536       channel_statistics[RedChannel].standard_deviation+=(double) p->red*
1537         GetRedPixelComponent(p);
1538       channel_statistics[RedChannel].kurtosis+=(double) p->red*p->red*
1539         p->red*GetRedPixelComponent(p);
1540       channel_statistics[RedChannel].skewness+=(double) p->red*p->red*
1541         GetRedPixelComponent(p);
1542       if ((double) p->green < channel_statistics[GreenChannel].minima)
1543         channel_statistics[GreenChannel].minima=(double)
1544           GetGreenPixelComponent(p);
1545       if ((double) p->green > channel_statistics[GreenChannel].maxima)
1546         channel_statistics[GreenChannel].maxima=(double)
1547           GetGreenPixelComponent(p);
1548       channel_statistics[GreenChannel].mean+=GetGreenPixelComponent(p);
1549       channel_statistics[GreenChannel].standard_deviation+=(double) p->green*
1550         GetGreenPixelComponent(p);
1551       channel_statistics[GreenChannel].kurtosis+=(double) p->green*p->green*
1552         p->green*GetGreenPixelComponent(p);
1553       channel_statistics[GreenChannel].skewness+=(double) p->green*p->green*
1554         GetGreenPixelComponent(p);
1555       if ((double) p->blue < channel_statistics[BlueChannel].minima)
1556         channel_statistics[BlueChannel].minima=(double)
1557           GetBluePixelComponent(p);
1558       if ((double) p->blue > channel_statistics[BlueChannel].maxima)
1559         channel_statistics[BlueChannel].maxima=(double)
1560           GetBluePixelComponent(p);
1561       channel_statistics[BlueChannel].mean+=GetBluePixelComponent(p);
1562       channel_statistics[BlueChannel].standard_deviation+=(double) p->blue*
1563         GetBluePixelComponent(p);
1564       channel_statistics[BlueChannel].kurtosis+=(double) p->blue*p->blue*
1565         p->blue*GetBluePixelComponent(p);
1566       channel_statistics[BlueChannel].skewness+=(double) p->blue*p->blue*
1567         GetBluePixelComponent(p);
1568       if (image->matte != MagickFalse)
1569         {
1570           if ((double) p->opacity < channel_statistics[OpacityChannel].minima)
1571             channel_statistics[OpacityChannel].minima=(double)
1572               GetOpacityPixelComponent(p);
1573           if ((double) p->opacity > channel_statistics[OpacityChannel].maxima)
1574             channel_statistics[OpacityChannel].maxima=(double)
1575               GetOpacityPixelComponent(p);
1576           channel_statistics[OpacityChannel].mean+=GetOpacityPixelComponent(p);
1577           channel_statistics[OpacityChannel].standard_deviation+=(double)
1578             p->opacity*GetOpacityPixelComponent(p);
1579           channel_statistics[OpacityChannel].kurtosis+=(double) p->opacity*
1580             p->opacity*p->opacity*GetOpacityPixelComponent(p);
1581           channel_statistics[OpacityChannel].skewness+=(double) p->opacity*
1582             p->opacity*GetOpacityPixelComponent(p);
1583         }
1584       if (image->colorspace == CMYKColorspace)
1585         {
1586           if ((double) indexes[x] < channel_statistics[BlackChannel].minima)
1587             channel_statistics[BlackChannel].minima=(double) indexes[x];
1588           if ((double) indexes[x] > channel_statistics[BlackChannel].maxima)
1589             channel_statistics[BlackChannel].maxima=(double) indexes[x];
1590           channel_statistics[BlackChannel].mean+=indexes[x];
1591           channel_statistics[BlackChannel].standard_deviation+=(double)
1592             indexes[x]*indexes[x];
1593           channel_statistics[BlackChannel].kurtosis+=(double) indexes[x]*
1594             indexes[x]*indexes[x]*indexes[x];
1595           channel_statistics[BlackChannel].skewness+=(double) indexes[x]*
1596             indexes[x]*indexes[x];
1597         }
1598       x++;
1599       p++;
1600     }
1601   }
1602   area=(double) image->columns*image->rows;
1603   for (i=0; i < AllChannels; i++)
1604   {
1605     channel_statistics[i].mean/=area;
1606     channel_statistics[i].standard_deviation/=area;
1607     channel_statistics[i].kurtosis/=area;
1608     channel_statistics[i].skewness/=area;
1609   }
1610   for (i=0; i < AllChannels; i++)
1611   {
1612     channel_statistics[AllChannels].depth=(unsigned long) MagickMax((double)
1613       channel_statistics[AllChannels].depth,(double)
1614       channel_statistics[i].depth);
1615     channel_statistics[AllChannels].minima=MagickMin(
1616       channel_statistics[AllChannels].minima,channel_statistics[i].minima);
1617     channel_statistics[AllChannels].maxima=MagickMax(
1618       channel_statistics[AllChannels].maxima,channel_statistics[i].maxima);
1619     channel_statistics[AllChannels].mean+=channel_statistics[i].mean;
1620     channel_statistics[AllChannels].standard_deviation+=
1621       channel_statistics[i].standard_deviation;
1622     channel_statistics[AllChannels].kurtosis+=channel_statistics[i].kurtosis;
1623     channel_statistics[AllChannels].skewness+=channel_statistics[i].skewness;
1624   }
1625   channels=4;
1626   if (image->colorspace == CMYKColorspace)
1627     channels++;
1628   channel_statistics[AllChannels].mean/=channels;
1629   channel_statistics[AllChannels].standard_deviation/=channels;
1630   channel_statistics[AllChannels].kurtosis/=channels;
1631   channel_statistics[AllChannels].skewness/=channels;
1632   for (i=0; i <= AllChannels; i++)
1633   {
1634     sum_squares=0.0;
1635     sum_squares=channel_statistics[i].standard_deviation;
1636     sum_cubes=0.0;
1637     sum_cubes=channel_statistics[i].skewness;
1638     channel_statistics[i].standard_deviation=sqrt(
1639       channel_statistics[i].standard_deviation-
1640        (channel_statistics[i].mean*channel_statistics[i].mean));
1641     if (channel_statistics[i].standard_deviation == 0.0)
1642       {
1643         channel_statistics[i].kurtosis=0.0;
1644         channel_statistics[i].skewness=0.0;
1645       }
1646     else
1647       {
1648         channel_statistics[i].skewness=(channel_statistics[i].skewness-
1649           3.0*channel_statistics[i].mean*sum_squares+
1650           2.0*channel_statistics[i].mean*channel_statistics[i].mean*
1651           channel_statistics[i].mean)/
1652           (channel_statistics[i].standard_deviation*
1653            channel_statistics[i].standard_deviation*
1654            channel_statistics[i].standard_deviation);
1655         channel_statistics[i].kurtosis=(channel_statistics[i].kurtosis-
1656           4.0*channel_statistics[i].mean*sum_cubes+
1657           6.0*channel_statistics[i].mean*channel_statistics[i].mean*sum_squares-
1658           3.0*channel_statistics[i].mean*channel_statistics[i].mean*
1659           1.0*channel_statistics[i].mean*channel_statistics[i].mean)/
1660           (channel_statistics[i].standard_deviation*
1661            channel_statistics[i].standard_deviation*
1662            channel_statistics[i].standard_deviation*
1663            channel_statistics[i].standard_deviation)-3.0;
1664       }
1665   }
1666   return(channel_statistics);
1667 }