]> granicus.if.org Git - imagemagick/blob - magick/feature.c
(no commit message)
[imagemagick] / magick / feature.c
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %                                                                             %
4 %                                                                             %
5 %                                                                             %
6 %               FFFFF  EEEEE   AAA   TTTTT  U   U  RRRR   EEEEE               %
7 %               F      E      A   A    T    U   U  R   R  E                   %
8 %               FFF    EEE    AAAAA    T    U   U  RRRR   EEE                 %
9 %               F      E      A   A    T    U   U  R R    E                   %
10 %               F      EEEEE  A   A    T     UUU   R  R   EEEEE               %
11 %                                                                             %
12 %                                                                             %
13 %                      MagickCore Image Feature Methods                       %
14 %                                                                             %
15 %                              Software Design                                %
16 %                                John Cristy                                  %
17 %                                 July 1992                                   %
18 %                                                                             %
19 %                                                                             %
20 %  Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization      %
21 %  dedicated to making software imaging solutions freely available.           %
22 %                                                                             %
23 %  You may not use this file except in compliance with the License.  You may  %
24 %  obtain a copy of the License at                                            %
25 %                                                                             %
26 %    http://www.imagemagick.org/script/license.php                            %
27 %                                                                             %
28 %  Unless required by applicable law or agreed to in writing, software        %
29 %  distributed under the License is distributed on an "AS IS" BASIS,          %
30 %  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
31 %  See the License for the specific language governing permissions and        %
32 %  limitations under the License.                                             %
33 %                                                                             %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %
37 %
38 */
39 \f
40 /*
41   Include declarations.
42 */
43 #include "magick/studio.h"
44 #include "magick/property.h"
45 #include "magick/animate.h"
46 #include "magick/blob.h"
47 #include "magick/blob-private.h"
48 #include "magick/cache.h"
49 #include "magick/cache-private.h"
50 #include "magick/cache-view.h"
51 #include "magick/client.h"
52 #include "magick/color.h"
53 #include "magick/color-private.h"
54 #include "magick/colorspace.h"
55 #include "magick/colorspace-private.h"
56 #include "magick/composite.h"
57 #include "magick/composite-private.h"
58 #include "magick/compress.h"
59 #include "magick/constitute.h"
60 #include "magick/deprecate.h"
61 #include "magick/display.h"
62 #include "magick/draw.h"
63 #include "magick/enhance.h"
64 #include "magick/exception.h"
65 #include "magick/exception-private.h"
66 #include "magick/feature.h"
67 #include "magick/gem.h"
68 #include "magick/geometry.h"
69 #include "magick/list.h"
70 #include "magick/image-private.h"
71 #include "magick/magic.h"
72 #include "magick/magick.h"
73 #include "magick/memory_.h"
74 #include "magick/module.h"
75 #include "magick/monitor.h"
76 #include "magick/monitor-private.h"
77 #include "magick/option.h"
78 #include "magick/paint.h"
79 #include "magick/pixel-private.h"
80 #include "magick/profile.h"
81 #include "magick/quantize.h"
82 #include "magick/random_.h"
83 #include "magick/segment.h"
84 #include "magick/semaphore.h"
85 #include "magick/signature-private.h"
86 #include "magick/string_.h"
87 #include "magick/thread-private.h"
88 #include "magick/timer.h"
89 #include "magick/utility.h"
90 #include "magick/version.h"
91 \f
92 /*
93 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
94 %                                                                             %
95 %                                                                             %
96 %                                                                             %
97 %   G e t I m a g e C h a n n e l F e a t u r e s                             %
98 %                                                                             %
99 %                                                                             %
100 %                                                                             %
101 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
102 %
103 %  GetImageChannelFeatures() returns features for each channel in the image in
104 %  each of four directions (horizontal, vertical, left and right diagonals)
105 %  for the specified distance.  The features include the angular second
106 %  moment, contrast, correlation, sum of squares: variance, inverse difference
107 %  moment, sum average, sum varience, sum entropy, entropy, difference variance,%  difference entropy, information measures of correlation 1, information
108 %  measures of correlation 2, and maximum correlation coefficient.  You can
109 %  access the red channel contrast, for example, like this:
110 %
111 %      channel_features=GetImageChannelFeatures(image,1,exception);
112 %      contrast=channel_features[RedChannel].contrast[0];
113 %
114 %  Use MagickRelinquishMemory() to free the features buffer.
115 %
116 %  The format of the GetImageChannelFeatures method is:
117 %
118 %      ChannelFeatures *GetImageChannelFeatures(const Image *image,
119 %        const size_t distance,ExceptionInfo *exception)
120 %
121 %  A description of each parameter follows:
122 %
123 %    o image: the image.
124 %
125 %    o distance: the distance.
126 %
127 %    o exception: return any errors or warnings in this structure.
128 %
129 */
130
131 static inline ssize_t MagickAbsoluteValue(const ssize_t x)
132 {
133   if (x < 0)
134     return(-x);
135   return(x);
136 }
137
138 MagickExport ChannelFeatures *GetImageChannelFeatures(const Image *image,
139   const size_t distance,ExceptionInfo *exception)
140 {
141   typedef struct _ChannelStatistics
142   {
143     DoublePixelPacket
144       direction[4];  /* horizontal, vertical, left and right diagonals */
145   } ChannelStatistics;
146
147   CacheView
148     *image_view;
149
150   ChannelFeatures
151     *channel_features;
152
153   ChannelStatistics
154     **cooccurrence,
155     correlation,
156     *density_x,
157     *density_xy,
158     *density_y,
159     entropy_x,
160     entropy_xy,
161     entropy_xy1,
162     entropy_xy2,
163     entropy_y,
164     mean,
165     **Q,
166     *sum,
167     sum_squares,
168     variance;
169
170   LongPixelPacket
171     gray,
172     *grays;
173
174   MagickBooleanType
175     status;
176
177   register ssize_t
178     i;
179
180   size_t
181     length;
182
183   ssize_t
184     y,
185     z;
186
187   unsigned int
188     number_grays;
189
190   assert(image != (Image *) NULL);
191   assert(image->signature == MagickSignature);
192   if (image->debug != MagickFalse)
193     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
194   if ((image->columns < (distance+1)) || (image->rows < (distance+1)))
195     return((ChannelFeatures *) NULL);
196   length=AllChannels+1UL;
197   channel_features=(ChannelFeatures *) AcquireQuantumMemory(length,
198     sizeof(*channel_features));
199   if (channel_features == (ChannelFeatures *) NULL)
200     ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
201   (void) ResetMagickMemory(channel_features,0,length*
202     sizeof(*channel_features));
203   /*
204     Form grays.
205   */
206   grays=(LongPixelPacket *) AcquireQuantumMemory(MaxMap+1UL,sizeof(*grays));
207   if (grays == (LongPixelPacket *) NULL)
208     {
209       channel_features=(ChannelFeatures *) RelinquishMagickMemory(
210         channel_features);
211       (void) ThrowMagickException(exception,GetMagickModule(),
212         ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
213       return(channel_features);
214     }
215   for (i=0; i <= (ssize_t) MaxMap; i++)
216   {
217     grays[i].red=(~0U);
218     grays[i].green=(~0U);
219     grays[i].blue=(~0U);
220     grays[i].opacity=(~0U);
221     grays[i].index=(~0U);
222   }
223   status=MagickTrue;
224   image_view=AcquireCacheView(image);
225 #if defined(MAGICKCORE_OPENMP_SUPPORT)
226   #pragma omp parallel for schedule(dynamic,4) shared(status)
227 #endif
228   for (y=0; y < (ssize_t) image->rows; y++)
229   {
230     register const IndexPacket
231       *restrict indexes;
232
233     register const PixelPacket
234       *restrict p;
235
236     register ssize_t
237       x;
238
239     if (status == MagickFalse)
240       continue;
241     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
242     if (p == (const PixelPacket *) NULL)
243       {
244         status=MagickFalse;
245         continue;
246       }
247     indexes=GetCacheViewVirtualIndexQueue(image_view);
248     for (x=0; x < (ssize_t) image->columns; x++)
249     {
250       grays[ScaleQuantumToMap(p->red)].red=
251         ScaleQuantumToMap(p->red);
252       grays[ScaleQuantumToMap(p->green)].green=
253         ScaleQuantumToMap(p->green);
254       grays[ScaleQuantumToMap(p->blue)].blue=
255         ScaleQuantumToMap(p->blue);
256       if (image->matte != MagickFalse)
257         grays[ScaleQuantumToMap(p->opacity)].opacity=
258           ScaleQuantumToMap(p->opacity);
259       if (image->colorspace == CMYKColorspace)
260         grays[ScaleQuantumToMap(indexes[x])].index=
261           ScaleQuantumToMap(indexes[x]);
262       p++;
263     }
264   }
265   image_view=DestroyCacheView(image_view);
266   if (status == MagickFalse)
267     {
268       grays=(LongPixelPacket *) RelinquishMagickMemory(grays);
269       channel_features=(ChannelFeatures *) RelinquishMagickMemory(
270         channel_features);
271       return(channel_features);
272     }
273   (void) ResetMagickMemory(&gray,0,sizeof(gray));
274   for (i=0; i <= (ssize_t) MaxMap; i++)
275   {
276     if (grays[i].red != ~0U)
277       grays[gray.red++].red=grays[i].red;
278     if (grays[i].green != ~0U)
279       grays[gray.green++].green=grays[i].green;
280     if (grays[i].blue != ~0U)
281       grays[gray.blue++].blue=grays[i].blue;
282     if (image->matte != MagickFalse)
283       if (grays[i].opacity != ~0U)
284         grays[gray.opacity++].opacity=grays[i].opacity;
285     if (image->colorspace == CMYKColorspace)
286       if (grays[i].index != ~0U)
287         grays[gray.index++].index=grays[i].index;
288   }
289   /*
290     Allocate spatial dependence matrix.
291   */
292   number_grays=gray.red;
293   if (gray.green > number_grays)
294     number_grays=gray.green;
295   if (gray.blue > number_grays)
296     number_grays=gray.blue;
297   if (image->matte != MagickFalse)
298     if (gray.opacity > number_grays)
299       number_grays=gray.opacity;
300   if (image->colorspace == CMYKColorspace)
301     if (gray.index > number_grays)
302       number_grays=gray.index;
303   cooccurrence=(ChannelStatistics **) AcquireQuantumMemory(number_grays,
304     sizeof(*cooccurrence));
305   density_x=(ChannelStatistics *) AcquireQuantumMemory(2*(number_grays+1),
306     sizeof(*density_x));
307   density_xy=(ChannelStatistics *) AcquireQuantumMemory(2*(number_grays+1),
308     sizeof(*density_xy));
309   density_y=(ChannelStatistics *) AcquireQuantumMemory(2*(number_grays+1),
310     sizeof(*density_y));
311   Q=(ChannelStatistics **) AcquireQuantumMemory(number_grays,sizeof(*Q));
312   sum=(ChannelStatistics *) AcquireQuantumMemory(number_grays,sizeof(*sum));
313   if ((cooccurrence == (ChannelStatistics **) NULL) ||
314       (density_x == (ChannelStatistics *) NULL) ||
315       (density_xy == (ChannelStatistics *) NULL) ||
316       (density_y == (ChannelStatistics *) NULL) ||
317       (Q == (ChannelStatistics **) NULL) ||
318       (sum == (ChannelStatistics *) NULL))
319     {
320       if (Q != (ChannelStatistics **) NULL)
321         {
322           for (i=0; i < (ssize_t) number_grays; i++)
323             Q[i]=(ChannelStatistics *) RelinquishMagickMemory(Q[i]);
324           Q=(ChannelStatistics **) RelinquishMagickMemory(Q);
325         }
326       if (sum != (ChannelStatistics *) NULL)
327         sum=(ChannelStatistics *) RelinquishMagickMemory(sum);
328       if (density_y != (ChannelStatistics *) NULL)
329         density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
330       if (density_xy != (ChannelStatistics *) NULL)
331         density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
332       if (density_x != (ChannelStatistics *) NULL)
333         density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
334       if (cooccurrence != (ChannelStatistics **) NULL)
335         {
336           for (i=0; i < (ssize_t) number_grays; i++)
337             cooccurrence[i]=(ChannelStatistics *)
338               RelinquishMagickMemory(cooccurrence[i]);
339           cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(
340             cooccurrence);
341         }
342       grays=(LongPixelPacket *) RelinquishMagickMemory(grays);
343       channel_features=(ChannelFeatures *) RelinquishMagickMemory(
344         channel_features);
345       (void) ThrowMagickException(exception,GetMagickModule(),
346         ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
347       return(channel_features);
348     }
349   (void) ResetMagickMemory(&correlation,0,sizeof(correlation));
350   (void) ResetMagickMemory(density_x,0,2*(number_grays+1)*sizeof(*density_x));
351   (void) ResetMagickMemory(density_xy,0,2*(number_grays+1)*sizeof(*density_xy));
352   (void) ResetMagickMemory(density_y,0,2*(number_grays+1)*sizeof(*density_y));
353   (void) ResetMagickMemory(&mean,0,sizeof(mean));
354   (void) ResetMagickMemory(sum,0,number_grays*sizeof(*sum));
355   (void) ResetMagickMemory(&sum_squares,0,sizeof(sum_squares));
356   (void) ResetMagickMemory(density_xy,0,2*number_grays*sizeof(*density_xy));
357   (void) ResetMagickMemory(&entropy_x,0,sizeof(entropy_x));
358   (void) ResetMagickMemory(&entropy_xy,0,sizeof(entropy_xy));
359   (void) ResetMagickMemory(&entropy_xy1,0,sizeof(entropy_xy1));
360   (void) ResetMagickMemory(&entropy_xy2,0,sizeof(entropy_xy2));
361   (void) ResetMagickMemory(&entropy_y,0,sizeof(entropy_y));
362   (void) ResetMagickMemory(&variance,0,sizeof(variance));
363   for (i=0; i < (ssize_t) number_grays; i++)
364   {
365     cooccurrence[i]=(ChannelStatistics *) AcquireQuantumMemory(number_grays,
366       sizeof(**cooccurrence));
367     Q[i]=(ChannelStatistics *) AcquireQuantumMemory(number_grays,sizeof(**Q));
368     if ((cooccurrence[i] == (ChannelStatistics *) NULL) ||
369         (Q[i] == (ChannelStatistics *) NULL))
370       break;
371     (void) ResetMagickMemory(cooccurrence[i],0,number_grays*
372       sizeof(**cooccurrence));
373     (void) ResetMagickMemory(Q[i],0,number_grays*sizeof(**Q));
374   }
375   if (i < (ssize_t) number_grays)
376     {
377       for (i--; i >= 0; i--)
378       {
379         if (Q[i] != (ChannelStatistics *) NULL)
380           Q[i]=(ChannelStatistics *) RelinquishMagickMemory(Q[i]);
381         if (cooccurrence[i] != (ChannelStatistics *) NULL)
382           cooccurrence[i]=(ChannelStatistics *)
383             RelinquishMagickMemory(cooccurrence[i]);
384       }
385       Q=(ChannelStatistics **) RelinquishMagickMemory(Q);
386       cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
387       sum=(ChannelStatistics *) RelinquishMagickMemory(sum);
388       density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
389       density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
390       density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
391       grays=(LongPixelPacket *) RelinquishMagickMemory(grays);
392       channel_features=(ChannelFeatures *) RelinquishMagickMemory(
393         channel_features);
394       (void) ThrowMagickException(exception,GetMagickModule(),
395         ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
396       return(channel_features);
397     }
398   /*
399     Initialize spatial dependence matrix.
400   */
401   status=MagickTrue;
402   image_view=AcquireCacheView(image);
403 #if defined(MAGICKCORE_OPENMP_SUPPORT)
404   #pragma omp parallel for schedule(dynamic,4) shared(status)
405 #endif
406   for (y=0; y < (ssize_t) image->rows; y++)
407   {
408     register const IndexPacket
409       *restrict indexes;
410
411     register const PixelPacket
412       *restrict p;
413
414     register ssize_t
415       x;
416
417     ssize_t
418       offset,
419       u,
420       v;
421
422     if (status == MagickFalse)
423       continue;
424     p=GetCacheViewVirtualPixels(image_view,-(ssize_t) distance,y,image->columns+
425       2*distance,distance+1,exception);
426     if (p == (const PixelPacket *) NULL)
427       {
428         status=MagickFalse;
429         continue;
430       }
431     indexes=GetCacheViewVirtualIndexQueue(image_view);
432     p+=distance;
433     indexes+=distance;
434     for (x=0; x < (ssize_t) image->columns; x++)
435     {
436       for (i=0; i < 4; i++)
437       {
438         switch (i)
439         {
440           case 0:
441           default:
442           {
443             /*
444               Horizontal adjacency.
445             */
446             offset=(ssize_t) distance;
447             break;
448           }
449           case 1:
450           {
451             /*
452               Vertical adjacency.
453             */
454             offset=(ssize_t) (image->columns+2*distance);
455             break;
456           }
457           case 2:
458           {
459             /*
460               Right diagonal adjacency.
461             */
462             offset=(ssize_t) ((image->columns+2*distance)-distance);
463             break;
464           }
465           case 3:
466           {
467             /*
468               Left diagonal adjacency.
469             */
470             offset=(ssize_t) ((image->columns+2*distance)+distance);
471             break;
472           }
473         }
474         u=0;
475         v=0;
476         while (grays[u].red != ScaleQuantumToMap(p->red))
477           u++;
478         while (grays[v].red != ScaleQuantumToMap((p+offset)->red))
479           v++;
480         cooccurrence[u][v].direction[i].red++;
481         cooccurrence[v][u].direction[i].red++;
482         u=0;
483         v=0;
484         while (grays[u].green != ScaleQuantumToMap(p->green))
485           u++;
486         while (grays[v].green != ScaleQuantumToMap((p+offset)->green))
487           v++;
488         cooccurrence[u][v].direction[i].green++;
489         cooccurrence[v][u].direction[i].green++;
490         u=0;
491         v=0;
492         while (grays[u].blue != ScaleQuantumToMap(p->blue))
493           u++;
494         while (grays[v].blue != ScaleQuantumToMap((p+offset)->blue))
495           v++;
496         cooccurrence[u][v].direction[i].blue++;
497         cooccurrence[v][u].direction[i].blue++;
498         if (image->matte != MagickFalse)
499           {
500             u=0;
501             v=0;
502             while (grays[u].opacity != ScaleQuantumToMap(p->opacity))
503               u++;
504             while (grays[v].opacity != ScaleQuantumToMap((p+offset)->opacity))
505               v++;
506             cooccurrence[u][v].direction[i].opacity++;
507             cooccurrence[v][u].direction[i].opacity++;
508           }
509         if (image->colorspace == CMYKColorspace)
510           {
511             u=0;
512             v=0;
513             while (grays[u].index != ScaleQuantumToMap(indexes[x]))
514               u++;
515             while (grays[v].index != ScaleQuantumToMap(indexes[x+offset]))
516               v++;
517             cooccurrence[u][v].direction[i].index++;
518             cooccurrence[v][u].direction[i].index++;
519           }
520       }
521       p++;
522     }
523   }
524   grays=(LongPixelPacket *) RelinquishMagickMemory(grays);
525   image_view=DestroyCacheView(image_view);
526   if (status == MagickFalse)
527     {
528       for (i=0; i < (ssize_t) number_grays; i++)
529         cooccurrence[i]=(ChannelStatistics *)
530           RelinquishMagickMemory(cooccurrence[i]);
531       cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
532       channel_features=(ChannelFeatures *) RelinquishMagickMemory(
533         channel_features);
534       (void) ThrowMagickException(exception,GetMagickModule(),
535         ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
536       return(channel_features);
537     }
538   /*
539     Normalize spatial dependence matrix.
540   */
541 #if defined(MAGICKCORE_OPENMP_SUPPORT)
542   #pragma omp parallel for schedule(dynamic,4) shared(status)
543 #endif
544   for (i=0; i < 4; i++)
545   {
546     double
547       normalize;
548
549     switch (i)
550     {
551       case 0:
552       default:
553       {
554         /*
555           Horizontal adjacency.
556         */
557         normalize=2.0*image->rows*(image->columns-distance);
558         break;
559       }
560       case 1:
561       {
562         /*
563           Vertical adjacency.
564         */
565         normalize=2.0*(image->rows-distance)*image->columns;
566         break;
567       }
568       case 2:
569       {
570         /*
571           Right diagonal adjacency.
572         */
573         normalize=2.0*(image->rows-distance)*(image->columns-distance);
574         break;
575       }
576       case 3:
577       {
578         /*
579           Left diagonal adjacency.
580         */
581         normalize=2.0*(image->rows-distance)*(image->columns-distance);
582         break;
583       }
584     }
585     for (y=0; y < (ssize_t) number_grays; y++)
586     {
587       register ssize_t
588         x;
589
590       for (x=0; x < (ssize_t) number_grays; x++)
591       {
592         cooccurrence[x][y].direction[i].red/=normalize;
593         cooccurrence[x][y].direction[i].green/=normalize;
594         cooccurrence[x][y].direction[i].blue/=normalize;
595         if (image->matte != MagickFalse)
596           cooccurrence[x][y].direction[i].opacity/=normalize;
597         if (image->colorspace == CMYKColorspace)
598           cooccurrence[x][y].direction[i].index/=normalize;
599       }
600     }
601   }
602   /*
603     Compute texture features.
604   */
605 #if defined(MAGICKCORE_OPENMP_SUPPORT)
606   #pragma omp parallel for schedule(dynamic,4) shared(status)
607 #endif
608   for (i=0; i < 4; i++)
609   {
610     register ssize_t
611       y;
612
613     for (y=0; y < (ssize_t) number_grays; y++)
614     {
615       register ssize_t
616         x;
617
618       for (x=0; x < (ssize_t) number_grays; x++)
619       {
620         /*
621           Angular second moment:  measure of homogeneity of the image.
622         */
623         channel_features[RedChannel].angular_second_moment[i]+=
624           cooccurrence[x][y].direction[i].red*
625           cooccurrence[x][y].direction[i].red;
626         channel_features[GreenChannel].angular_second_moment[i]+=
627           cooccurrence[x][y].direction[i].green*
628           cooccurrence[x][y].direction[i].green;
629         channel_features[BlueChannel].angular_second_moment[i]+=
630           cooccurrence[x][y].direction[i].blue*
631           cooccurrence[x][y].direction[i].blue;
632         if (image->matte != MagickFalse)
633           channel_features[OpacityChannel].angular_second_moment[i]+=
634             cooccurrence[x][y].direction[i].opacity*
635             cooccurrence[x][y].direction[i].opacity;
636         if (image->colorspace == CMYKColorspace)
637           channel_features[BlackChannel].angular_second_moment[i]+=
638             cooccurrence[x][y].direction[i].index*
639             cooccurrence[x][y].direction[i].index;
640         /*
641           Correlation: measure of linear-dependencies in the image.
642         */
643         sum[y].direction[i].red+=cooccurrence[x][y].direction[i].red;
644         sum[y].direction[i].green+=cooccurrence[x][y].direction[i].green;
645         sum[y].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
646         if (image->matte != MagickFalse)
647           sum[y].direction[i].opacity+=cooccurrence[x][y].direction[i].opacity;
648         if (image->colorspace == CMYKColorspace)
649           sum[y].direction[i].index+=cooccurrence[x][y].direction[i].index;
650         correlation.direction[i].red+=x*y*cooccurrence[x][y].direction[i].red;
651         correlation.direction[i].green+=x*y*
652           cooccurrence[x][y].direction[i].green;
653         correlation.direction[i].blue+=x*y*
654           cooccurrence[x][y].direction[i].blue;
655         if (image->matte != MagickFalse)
656           correlation.direction[i].opacity+=x*y*
657             cooccurrence[x][y].direction[i].opacity;
658         if (image->colorspace == CMYKColorspace)
659           correlation.direction[i].index+=x*y*
660             cooccurrence[x][y].direction[i].index;
661         /*
662           Inverse Difference Moment.
663         */
664         channel_features[RedChannel].inverse_difference_moment[i]+=
665           cooccurrence[x][y].direction[i].red/((y-x)*(y-x)+1);
666         channel_features[GreenChannel].inverse_difference_moment[i]+=
667           cooccurrence[x][y].direction[i].green/((y-x)*(y-x)+1);
668         channel_features[BlueChannel].inverse_difference_moment[i]+=
669           cooccurrence[x][y].direction[i].blue/((y-x)*(y-x)+1);
670         if (image->matte != MagickFalse)
671           channel_features[OpacityChannel].inverse_difference_moment[i]+=
672             cooccurrence[x][y].direction[i].opacity/((y-x)*(y-x)+1);
673         if (image->colorspace == CMYKColorspace)
674           channel_features[IndexChannel].inverse_difference_moment[i]+=
675             cooccurrence[x][y].direction[i].index/((y-x)*(y-x)+1);
676         /*
677           Sum average.
678         */
679         density_xy[y+x+2].direction[i].red+=
680           cooccurrence[x][y].direction[i].red;
681         density_xy[y+x+2].direction[i].green+=
682           cooccurrence[x][y].direction[i].green;
683         density_xy[y+x+2].direction[i].blue+=
684           cooccurrence[x][y].direction[i].blue;
685         if (image->matte != MagickFalse)
686           density_xy[y+x+2].direction[i].opacity+=
687             cooccurrence[x][y].direction[i].opacity;
688         if (image->colorspace == CMYKColorspace)
689           density_xy[y+x+2].direction[i].index+=
690             cooccurrence[x][y].direction[i].index;
691         /*
692           Entropy.
693         */
694         channel_features[RedChannel].entropy[i]-=
695           cooccurrence[x][y].direction[i].red*
696           log10(cooccurrence[x][y].direction[i].red+MagickEpsilon);
697         channel_features[GreenChannel].entropy[i]-=
698           cooccurrence[x][y].direction[i].green*
699           log10(cooccurrence[x][y].direction[i].green+MagickEpsilon);
700         channel_features[BlueChannel].entropy[i]-=
701           cooccurrence[x][y].direction[i].blue*
702           log10(cooccurrence[x][y].direction[i].blue+MagickEpsilon);
703         if (image->matte != MagickFalse)
704           channel_features[OpacityChannel].entropy[i]-=
705             cooccurrence[x][y].direction[i].opacity*
706             log10(cooccurrence[x][y].direction[i].opacity+MagickEpsilon);
707         if (image->colorspace == CMYKColorspace)
708           channel_features[IndexChannel].entropy[i]-=
709             cooccurrence[x][y].direction[i].index*
710             log10(cooccurrence[x][y].direction[i].index+MagickEpsilon);
711         /*
712           Information Measures of Correlation.
713         */
714         density_x[x].direction[i].red+=cooccurrence[x][y].direction[i].red;
715         density_x[x].direction[i].green+=cooccurrence[x][y].direction[i].green;
716         density_x[x].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
717         if (image->matte != MagickFalse)
718           density_x[x].direction[i].opacity+=
719             cooccurrence[x][y].direction[i].opacity;
720         if (image->colorspace == CMYKColorspace)
721           density_x[x].direction[i].index+=
722             cooccurrence[x][y].direction[i].index;
723         density_y[y].direction[i].red+=cooccurrence[x][y].direction[i].red;
724         density_y[y].direction[i].green+=cooccurrence[x][y].direction[i].green;
725         density_y[y].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
726         if (image->matte != MagickFalse)
727           density_y[y].direction[i].opacity+=
728             cooccurrence[x][y].direction[i].opacity;
729         if (image->colorspace == CMYKColorspace)
730           density_y[y].direction[i].index+=
731             cooccurrence[x][y].direction[i].index;
732       }
733       mean.direction[i].red+=y*sum[y].direction[i].red;
734       sum_squares.direction[i].red+=y*y*sum[y].direction[i].red;
735       mean.direction[i].green+=y*sum[y].direction[i].green;
736       sum_squares.direction[i].green+=y*y*sum[y].direction[i].green;
737       mean.direction[i].blue+=y*sum[y].direction[i].blue;
738       sum_squares.direction[i].blue+=y*y*sum[y].direction[i].blue;
739       if (image->matte != MagickFalse)
740         {
741           mean.direction[i].opacity+=y*sum[y].direction[i].opacity;
742           sum_squares.direction[i].opacity+=y*y*sum[y].direction[i].opacity;
743         }
744       if (image->colorspace == CMYKColorspace)
745         {
746           mean.direction[i].index+=y*sum[y].direction[i].index;
747           sum_squares.direction[i].index+=y*y*sum[y].direction[i].index;
748         }
749     }
750     /*
751       Correlation: measure of linear-dependencies in the image.
752     */
753     channel_features[RedChannel].correlation[i]=
754       (correlation.direction[i].red-mean.direction[i].red*
755       mean.direction[i].red)/(sqrt(sum_squares.direction[i].red-
756       (mean.direction[i].red*mean.direction[i].red))*sqrt(
757       sum_squares.direction[i].red-(mean.direction[i].red*
758       mean.direction[i].red)));
759     channel_features[GreenChannel].correlation[i]=
760       (correlation.direction[i].green-mean.direction[i].green*
761       mean.direction[i].green)/(sqrt(sum_squares.direction[i].green-
762       (mean.direction[i].green*mean.direction[i].green))*sqrt(
763       sum_squares.direction[i].green-(mean.direction[i].green*
764       mean.direction[i].green)));
765     channel_features[BlueChannel].correlation[i]=
766       (correlation.direction[i].blue-mean.direction[i].blue*
767       mean.direction[i].blue)/(sqrt(sum_squares.direction[i].blue-
768       (mean.direction[i].blue*mean.direction[i].blue))*sqrt(
769       sum_squares.direction[i].blue-(mean.direction[i].blue*
770       mean.direction[i].blue)));
771     if (image->matte != MagickFalse)
772       channel_features[OpacityChannel].correlation[i]=
773         (correlation.direction[i].opacity-mean.direction[i].opacity*
774         mean.direction[i].opacity)/(sqrt(sum_squares.direction[i].opacity-
775         (mean.direction[i].opacity*mean.direction[i].opacity))*sqrt(
776         sum_squares.direction[i].opacity-(mean.direction[i].opacity*
777         mean.direction[i].opacity)));
778     if (image->colorspace == CMYKColorspace)
779       channel_features[IndexChannel].correlation[i]=
780         (correlation.direction[i].index-mean.direction[i].index*
781         mean.direction[i].index)/(sqrt(sum_squares.direction[i].index-
782         (mean.direction[i].index*mean.direction[i].index))*sqrt(
783         sum_squares.direction[i].index-(mean.direction[i].index*
784         mean.direction[i].index)));
785   }
786   /*
787     Compute more texture features.
788   */
789 #if defined(MAGICKCORE_OPENMP_SUPPORT)
790   #pragma omp parallel for schedule(dynamic,4) shared(status)
791 #endif
792   for (i=0; i < 4; i++)
793   {
794     register ssize_t
795       x;
796
797     for (x=2; x < (ssize_t) (2*number_grays); x++)
798     {
799       /*
800         Sum average.
801       */
802       channel_features[RedChannel].sum_average[i]+=
803         x*density_xy[x].direction[i].red;
804       channel_features[GreenChannel].sum_average[i]+=
805         x*density_xy[x].direction[i].green;
806       channel_features[BlueChannel].sum_average[i]+=
807         x*density_xy[x].direction[i].blue;
808       if (image->matte != MagickFalse)
809         channel_features[OpacityChannel].sum_average[i]+=
810           x*density_xy[x].direction[i].opacity;
811       if (image->colorspace == CMYKColorspace)
812         channel_features[IndexChannel].sum_average[i]+=
813           x*density_xy[x].direction[i].index;
814       /*
815         Sum entropy.
816       */
817       channel_features[RedChannel].sum_entropy[i]-=
818         density_xy[x].direction[i].red*
819         log10(density_xy[x].direction[i].red+MagickEpsilon);
820       channel_features[GreenChannel].sum_entropy[i]-=
821         density_xy[x].direction[i].green*
822         log10(density_xy[x].direction[i].green+MagickEpsilon);
823       channel_features[BlueChannel].sum_entropy[i]-=
824         density_xy[x].direction[i].blue*
825         log10(density_xy[x].direction[i].blue+MagickEpsilon);
826       if (image->matte != MagickFalse)
827         channel_features[OpacityChannel].sum_entropy[i]-=
828           density_xy[x].direction[i].opacity*
829           log10(density_xy[x].direction[i].opacity+MagickEpsilon);
830       if (image->colorspace == CMYKColorspace)
831         channel_features[IndexChannel].sum_entropy[i]-=
832           density_xy[x].direction[i].index*
833           log10(density_xy[x].direction[i].index+MagickEpsilon);
834       /*
835         Sum variance.
836       */
837       channel_features[RedChannel].sum_variance[i]+=
838         (x-channel_features[RedChannel].sum_entropy[i])*
839         (x-channel_features[RedChannel].sum_entropy[i])*
840         density_xy[x].direction[i].red;
841       channel_features[GreenChannel].sum_variance[i]+=
842         (x-channel_features[GreenChannel].sum_entropy[i])*
843         (x-channel_features[GreenChannel].sum_entropy[i])*
844         density_xy[x].direction[i].green;
845       channel_features[BlueChannel].sum_variance[i]+=
846         (x-channel_features[BlueChannel].sum_entropy[i])*
847         (x-channel_features[BlueChannel].sum_entropy[i])*
848         density_xy[x].direction[i].blue;
849       if (image->matte != MagickFalse)
850         channel_features[OpacityChannel].sum_variance[i]+=
851           (x-channel_features[OpacityChannel].sum_entropy[i])*
852           (x-channel_features[OpacityChannel].sum_entropy[i])*
853           density_xy[x].direction[i].opacity;
854       if (image->colorspace == CMYKColorspace)
855         channel_features[IndexChannel].sum_variance[i]+=
856           (x-channel_features[IndexChannel].sum_entropy[i])*
857           (x-channel_features[IndexChannel].sum_entropy[i])*
858           density_xy[x].direction[i].index;
859     }
860   }
861   /*
862     Compute more texture features.
863   */
864 #if defined(MAGICKCORE_OPENMP_SUPPORT)
865   #pragma omp parallel for schedule(dynamic,4) shared(status)
866 #endif
867   for (i=0; i < 4; i++)
868   {
869     register ssize_t
870       y;
871
872     for (y=0; y < (ssize_t) number_grays; y++)
873     {
874       register ssize_t
875         x;
876
877       for (x=0; x < (ssize_t) number_grays; x++)
878       {
879         /*
880           Sum of Squares: Variance
881         */
882         variance.direction[i].red+=(y-mean.direction[i].red+1)*
883           (y-mean.direction[i].red+1)*cooccurrence[x][y].direction[i].red;
884         variance.direction[i].green+=(y-mean.direction[i].green+1)*
885           (y-mean.direction[i].green+1)*cooccurrence[x][y].direction[i].green;
886         variance.direction[i].blue+=(y-mean.direction[i].blue+1)*
887           (y-mean.direction[i].blue+1)*cooccurrence[x][y].direction[i].blue;
888         if (image->matte != MagickFalse)
889           variance.direction[i].opacity+=(y-mean.direction[i].opacity+1)*
890             (y-mean.direction[i].opacity+1)*
891             cooccurrence[x][y].direction[i].opacity;
892         if (image->colorspace == CMYKColorspace)
893           variance.direction[i].index+=(y-mean.direction[i].index+1)*
894             (y-mean.direction[i].index+1)*cooccurrence[x][y].direction[i].index;
895         /*
896           Sum average / Difference Variance.
897         */
898         density_xy[MagickAbsoluteValue(y-x)].direction[i].red+=
899           cooccurrence[x][y].direction[i].red;
900         density_xy[MagickAbsoluteValue(y-x)].direction[i].green+=
901           cooccurrence[x][y].direction[i].green;
902         density_xy[MagickAbsoluteValue(y-x)].direction[i].blue+=
903           cooccurrence[x][y].direction[i].blue;
904         if (image->matte != MagickFalse)
905           density_xy[MagickAbsoluteValue(y-x)].direction[i].opacity+=
906             cooccurrence[x][y].direction[i].opacity;
907         if (image->colorspace == CMYKColorspace)
908           density_xy[MagickAbsoluteValue(y-x)].direction[i].index+=
909             cooccurrence[x][y].direction[i].index;
910         /*
911           Information Measures of Correlation.
912         */
913         entropy_xy.direction[i].red-=cooccurrence[x][y].direction[i].red*
914           log10(cooccurrence[x][y].direction[i].red+MagickEpsilon);
915         entropy_xy.direction[i].green-=cooccurrence[x][y].direction[i].green*
916           log10(cooccurrence[x][y].direction[i].green+MagickEpsilon);
917         entropy_xy.direction[i].blue-=cooccurrence[x][y].direction[i].blue*
918           log10(cooccurrence[x][y].direction[i].blue+MagickEpsilon);
919         if (image->matte != MagickFalse)
920           entropy_xy.direction[i].opacity-=
921             cooccurrence[x][y].direction[i].opacity*log10(
922             cooccurrence[x][y].direction[i].opacity+MagickEpsilon);
923         if (image->colorspace == CMYKColorspace)
924           entropy_xy.direction[i].index-=cooccurrence[x][y].direction[i].index*
925             log10(cooccurrence[x][y].direction[i].index+MagickEpsilon);
926         entropy_xy1.direction[i].red-=(cooccurrence[x][y].direction[i].red*
927           log10(density_x[x].direction[i].red*density_y[y].direction[i].red+
928           MagickEpsilon));
929         entropy_xy1.direction[i].green-=(cooccurrence[x][y].direction[i].green*
930           log10(density_x[x].direction[i].green*density_y[y].direction[i].green+
931           MagickEpsilon));
932         entropy_xy1.direction[i].blue-=(cooccurrence[x][y].direction[i].blue*
933           log10(density_x[x].direction[i].blue*density_y[y].direction[i].blue+
934           MagickEpsilon));
935         if (image->matte != MagickFalse)
936           entropy_xy1.direction[i].opacity-=(
937             cooccurrence[x][y].direction[i].opacity*log10(
938             density_x[x].direction[i].opacity*density_y[y].direction[i].opacity+
939             MagickEpsilon));
940         if (image->colorspace == CMYKColorspace)
941           entropy_xy1.direction[i].index-=(
942             cooccurrence[x][y].direction[i].index*log10(
943             density_x[x].direction[i].index*density_y[y].direction[i].index+
944             MagickEpsilon));
945         entropy_xy2.direction[i].red-=(density_x[x].direction[i].red*
946           density_y[y].direction[i].red*log10(density_x[x].direction[i].red*
947           density_y[y].direction[i].red+MagickEpsilon));
948         entropy_xy2.direction[i].green-=(density_x[x].direction[i].green*
949           density_y[y].direction[i].green*log10(density_x[x].direction[i].green*
950           density_y[y].direction[i].green+MagickEpsilon));
951         entropy_xy2.direction[i].blue-=(density_x[x].direction[i].blue*
952           density_y[y].direction[i].blue*log10(density_x[x].direction[i].blue*
953           density_y[y].direction[i].blue+MagickEpsilon));
954         if (image->matte != MagickFalse)
955           entropy_xy2.direction[i].opacity-=(density_x[x].direction[i].opacity*
956             density_y[y].direction[i].opacity*log10(
957             density_x[x].direction[i].opacity*density_y[y].direction[i].opacity+
958             MagickEpsilon));
959         if (image->colorspace == CMYKColorspace)
960           entropy_xy2.direction[i].index-=(density_x[x].direction[i].index*
961             density_y[y].direction[i].index*log10(
962             density_x[x].direction[i].index*density_y[y].direction[i].index+
963             MagickEpsilon));
964       }
965     }
966     channel_features[RedChannel].variance_sum_of_squares[i]=
967       variance.direction[i].red;
968     channel_features[GreenChannel].variance_sum_of_squares[i]=
969       variance.direction[i].green;
970     channel_features[BlueChannel].variance_sum_of_squares[i]=
971       variance.direction[i].blue;
972     if (image->matte != MagickFalse)
973       channel_features[RedChannel].variance_sum_of_squares[i]=
974         variance.direction[i].opacity;
975     if (image->colorspace == CMYKColorspace)
976       channel_features[RedChannel].variance_sum_of_squares[i]=
977         variance.direction[i].index;
978   }
979   /*
980     Compute more texture features.
981   */
982   (void) ResetMagickMemory(&variance,0,sizeof(variance));
983   (void) ResetMagickMemory(&sum_squares,0,sizeof(sum_squares));
984 #if defined(MAGICKCORE_OPENMP_SUPPORT)
985   #pragma omp parallel for schedule(dynamic,4) shared(status)
986 #endif
987   for (i=0; i < 4; i++)
988   {
989     register ssize_t
990       x;
991
992     for (x=0; x < (ssize_t) number_grays; x++)
993     {
994       /*
995         Difference variance.
996       */
997       variance.direction[i].red+=density_xy[x].direction[i].red;
998       variance.direction[i].green+=density_xy[x].direction[i].green;
999       variance.direction[i].blue+=density_xy[x].direction[i].blue;
1000       if (image->matte != MagickFalse)
1001         variance.direction[i].opacity+=density_xy[x].direction[i].opacity;
1002       if (image->colorspace == CMYKColorspace)
1003         variance.direction[i].index+=density_xy[x].direction[i].index;
1004       sum_squares.direction[i].red+=density_xy[x].direction[i].red*
1005         density_xy[x].direction[i].red;
1006       sum_squares.direction[i].green+=density_xy[x].direction[i].green*
1007         density_xy[x].direction[i].green;
1008       sum_squares.direction[i].blue+=density_xy[x].direction[i].blue*
1009         density_xy[x].direction[i].blue;
1010       if (image->matte != MagickFalse)
1011         sum_squares.direction[i].opacity+=density_xy[x].direction[i].opacity*
1012           density_xy[x].direction[i].opacity;
1013       if (image->colorspace == CMYKColorspace)
1014         sum_squares.direction[i].index+=density_xy[x].direction[i].index*
1015           density_xy[x].direction[i].index;
1016       /*
1017         Difference entropy.
1018       */
1019       channel_features[RedChannel].difference_entropy[i]-=
1020         density_xy[x].direction[i].red*
1021         log10(density_xy[x].direction[i].red+MagickEpsilon);
1022       channel_features[GreenChannel].difference_entropy[i]-=
1023         density_xy[x].direction[i].green*
1024         log10(density_xy[x].direction[i].green+MagickEpsilon);
1025       channel_features[BlueChannel].difference_entropy[i]-=
1026         density_xy[x].direction[i].blue*
1027         log10(density_xy[x].direction[i].blue+MagickEpsilon);
1028       if (image->matte != MagickFalse)
1029         channel_features[OpacityChannel].difference_entropy[i]-=
1030           density_xy[x].direction[i].opacity*
1031           log10(density_xy[x].direction[i].opacity+MagickEpsilon);
1032       if (image->colorspace == CMYKColorspace)
1033         channel_features[IndexChannel].difference_entropy[i]-=
1034           density_xy[x].direction[i].index*
1035           log10(density_xy[x].direction[i].index+MagickEpsilon);
1036       /*
1037         Information Measures of Correlation.
1038       */
1039       entropy_x.direction[i].red-=(density_x[x].direction[i].red*
1040         log10(density_x[x].direction[i].red+MagickEpsilon));
1041       entropy_x.direction[i].green-=(density_x[x].direction[i].green*
1042         log10(density_x[x].direction[i].green+MagickEpsilon));
1043       entropy_x.direction[i].blue-=(density_x[x].direction[i].blue*
1044         log10(density_x[x].direction[i].blue+MagickEpsilon));
1045       if (image->matte != MagickFalse)
1046         entropy_x.direction[i].opacity-=(density_x[x].direction[i].opacity*
1047           log10(density_x[x].direction[i].opacity+MagickEpsilon));
1048       if (image->colorspace == CMYKColorspace)
1049         entropy_x.direction[i].index-=(density_x[x].direction[i].index*
1050           log10(density_x[x].direction[i].index+MagickEpsilon));
1051       entropy_y.direction[i].red-=(density_y[y].direction[i].red*
1052         log10(density_y[y].direction[i].red+MagickEpsilon));
1053       entropy_y.direction[i].green-=(density_y[y].direction[i].green*
1054         log10(density_y[y].direction[i].green+MagickEpsilon));
1055       entropy_y.direction[i].blue-=(density_y[y].direction[i].blue*
1056         log10(density_y[y].direction[i].blue+MagickEpsilon));
1057       if (image->matte != MagickFalse)
1058         entropy_y.direction[i].opacity-=(density_y[y].direction[i].opacity*
1059           log10(density_y[y].direction[i].opacity+MagickEpsilon));
1060       if (image->colorspace == CMYKColorspace)
1061         entropy_y.direction[i].index-=(density_y[y].direction[i].index*
1062           log10(density_y[y].direction[i].index+MagickEpsilon));
1063     }
1064     /*
1065       Difference variance.
1066     */
1067     channel_features[RedChannel].difference_variance[i]=
1068       (((double) number_grays*number_grays*sum_squares.direction[i].red)-
1069       (variance.direction[i].red*variance.direction[i].red))/
1070       ((double) number_grays*number_grays*number_grays*number_grays);
1071     channel_features[GreenChannel].difference_variance[i]=
1072       (((double) number_grays*number_grays*sum_squares.direction[i].green)-
1073       (variance.direction[i].green*variance.direction[i].green))/
1074       ((double) number_grays*number_grays*number_grays*number_grays);
1075     channel_features[BlueChannel].difference_variance[i]=
1076       (((double) number_grays*number_grays*sum_squares.direction[i].blue)-
1077       (variance.direction[i].blue*variance.direction[i].blue))/
1078       ((double) number_grays*number_grays*number_grays*number_grays);
1079     if (image->matte != MagickFalse)
1080       channel_features[OpacityChannel].difference_variance[i]=
1081         (((double) number_grays*number_grays*sum_squares.direction[i].opacity)-
1082         (variance.direction[i].opacity*variance.direction[i].opacity))/
1083         ((double) number_grays*number_grays*number_grays*number_grays);
1084     if (image->colorspace == CMYKColorspace)
1085       channel_features[IndexChannel].difference_variance[i]=
1086         (((double) number_grays*number_grays*sum_squares.direction[i].index)-
1087         (variance.direction[i].index*variance.direction[i].index))/
1088         ((double) number_grays*number_grays*number_grays*number_grays);
1089     /*
1090       Information Measures of Correlation.
1091     */
1092     channel_features[RedChannel].measure_of_correlation_1[i]=
1093       (entropy_xy.direction[i].red-entropy_xy1.direction[i].red)/
1094       (entropy_x.direction[i].red > entropy_y.direction[i].red ?
1095        entropy_x.direction[i].red : entropy_y.direction[i].red);
1096     channel_features[GreenChannel].measure_of_correlation_1[i]=
1097       (entropy_xy.direction[i].green-entropy_xy1.direction[i].green)/
1098       (entropy_x.direction[i].green > entropy_y.direction[i].green ?
1099        entropy_x.direction[i].green : entropy_y.direction[i].green);
1100     channel_features[BlueChannel].measure_of_correlation_1[i]=
1101       (entropy_xy.direction[i].blue-entropy_xy1.direction[i].blue)/
1102       (entropy_x.direction[i].blue > entropy_y.direction[i].blue ?
1103        entropy_x.direction[i].blue : entropy_y.direction[i].blue);
1104     if (image->matte != MagickFalse)
1105       channel_features[OpacityChannel].measure_of_correlation_1[i]=
1106         (entropy_xy.direction[i].opacity-entropy_xy1.direction[i].opacity)/
1107         (entropy_x.direction[i].opacity > entropy_y.direction[i].opacity ?
1108          entropy_x.direction[i].opacity : entropy_y.direction[i].opacity);
1109     if (image->colorspace == CMYKColorspace)
1110       channel_features[IndexChannel].measure_of_correlation_1[i]=
1111         (entropy_xy.direction[i].index-entropy_xy1.direction[i].index)/
1112         (entropy_x.direction[i].index > entropy_y.direction[i].index ?
1113          entropy_x.direction[i].index : entropy_y.direction[i].index);
1114     channel_features[RedChannel].measure_of_correlation_2[i]=
1115       (sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].red-
1116       entropy_xy.direction[i].red)))));
1117     channel_features[GreenChannel].measure_of_correlation_2[i]=
1118       (sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].green-
1119       entropy_xy.direction[i].green)))));
1120     channel_features[BlueChannel].measure_of_correlation_2[i]=
1121       (sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].blue-
1122       entropy_xy.direction[i].blue)))));
1123     if (image->matte != MagickFalse)
1124       channel_features[OpacityChannel].measure_of_correlation_2[i]=
1125         (sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].opacity-
1126         entropy_xy.direction[i].opacity)))));
1127     if (image->colorspace == CMYKColorspace)
1128       channel_features[IndexChannel].measure_of_correlation_2[i]=
1129         (sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].index-
1130         entropy_xy.direction[i].index)))));
1131   }
1132   /*
1133     Compute more texture features.
1134   */
1135 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1136   #pragma omp parallel for schedule(dynamic,4) shared(status)
1137 #endif
1138   for (i=0; i < 4; i++)
1139   {
1140     for (z=0; z < (ssize_t) number_grays; z++)
1141     {
1142       register ssize_t
1143         y;
1144
1145       ChannelStatistics
1146         pixel;
1147
1148       (void) ResetMagickMemory(&pixel,0,sizeof(pixel));
1149       for (y=0; y < (ssize_t) number_grays; y++)
1150       {
1151         register ssize_t
1152           x;
1153
1154         for (x=0; x < (ssize_t) number_grays; x++)
1155         {
1156           /*
1157             Contrast:  amount of local variations present in an image.
1158           */
1159           if (((y-x) == z) || ((x-y) == z))
1160             {
1161               pixel.direction[i].red+=cooccurrence[x][y].direction[i].red;
1162               pixel.direction[i].green+=cooccurrence[x][y].direction[i].green;
1163               pixel.direction[i].blue+=cooccurrence[x][y].direction[i].blue;
1164               if (image->matte != MagickFalse)
1165                 pixel.direction[i].opacity+=
1166                   cooccurrence[x][y].direction[i].opacity;
1167               if (image->colorspace == CMYKColorspace)
1168                 pixel.direction[i].index+=cooccurrence[x][y].direction[i].index;
1169             }
1170           /*
1171             Maximum Correlation Coefficient.
1172           */
1173           Q[z][y].direction[i].red+=cooccurrence[z][x].direction[i].red*
1174             cooccurrence[y][x].direction[i].red/density_x[z].direction[i].red/
1175             density_y[x].direction[i].red;
1176           Q[z][y].direction[i].green+=cooccurrence[z][x].direction[i].green*
1177             cooccurrence[y][x].direction[i].green/
1178             density_x[z].direction[i].green/density_y[x].direction[i].red;
1179           Q[z][y].direction[i].blue+=cooccurrence[z][x].direction[i].blue*
1180             cooccurrence[y][x].direction[i].blue/density_x[z].direction[i].blue/
1181             density_y[x].direction[i].blue;
1182           if (image->matte != MagickFalse)
1183             Q[z][y].direction[i].opacity+=
1184               cooccurrence[z][x].direction[i].opacity*
1185               cooccurrence[y][x].direction[i].opacity/
1186               density_x[z].direction[i].opacity/
1187               density_y[x].direction[i].opacity;
1188           if (image->colorspace == CMYKColorspace)
1189             Q[z][y].direction[i].index+=cooccurrence[z][x].direction[i].index*
1190               cooccurrence[y][x].direction[i].index/
1191               density_x[z].direction[i].index/density_y[x].direction[i].index;
1192         }
1193       }
1194       channel_features[RedChannel].contrast[i]+=z*z*pixel.direction[i].red;
1195       channel_features[GreenChannel].contrast[i]+=z*z*pixel.direction[i].green;
1196       channel_features[BlueChannel].contrast[i]+=z*z*pixel.direction[i].blue;
1197       if (image->matte != MagickFalse)
1198         channel_features[OpacityChannel].contrast[i]+=z*z*
1199           pixel.direction[i].opacity;
1200       if (image->colorspace == CMYKColorspace)
1201         channel_features[BlackChannel].contrast[i]+=z*z*
1202           pixel.direction[i].index;
1203     }
1204     /*
1205       Maximum Correlation Coefficient.
1206       Future: return second largest eigenvalue of Q.
1207     */
1208     channel_features[RedChannel].maximum_correlation_coefficient[i]=
1209       sqrt((double) -1.0);
1210     channel_features[GreenChannel].maximum_correlation_coefficient[i]=
1211       sqrt((double) -1.0);
1212     channel_features[BlueChannel].maximum_correlation_coefficient[i]=
1213       sqrt((double) -1.0);
1214     if (image->matte != MagickFalse)
1215       channel_features[OpacityChannel].maximum_correlation_coefficient[i]=
1216         sqrt((double) -1.0);
1217     if (image->colorspace == CMYKColorspace)
1218       channel_features[IndexChannel].maximum_correlation_coefficient[i]=
1219         sqrt((double) -1.0);
1220   }
1221   /*
1222     Relinquish resources.
1223   */
1224   sum=(ChannelStatistics *) RelinquishMagickMemory(sum);
1225   for (i=0; i < (ssize_t) number_grays; i++)
1226     Q[i]=(ChannelStatistics *) RelinquishMagickMemory(Q[i]);
1227   Q=(ChannelStatistics **) RelinquishMagickMemory(Q);
1228   density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
1229   density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
1230   density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
1231   for (i=0; i < (ssize_t) number_grays; i++)
1232     cooccurrence[i]=(ChannelStatistics *)
1233       RelinquishMagickMemory(cooccurrence[i]);
1234   cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
1235   return(channel_features);
1236 }