4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Pool import support functions.
28 * To import a pool, we rely on reading the configuration information from the
29 * ZFS label of each device. If we successfully read the label, then we
30 * organize the configuration information in the following hierarchy:
32 * pool guid -> toplevel vdev guid -> label txg
34 * Duplicate entries matching this same tuple will be discarded. Once we have
35 * examined every device, we pick the best label txg config for each toplevel
36 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
37 * update any paths that have changed. Finally, we attempt to import the pool
38 * using our derived config, and record the results.
53 #include <sys/dktp/fdisk.h>
54 #include <sys/efi_partition.h>
55 #include <thread_pool.h>
57 #include <sys/vdev_impl.h>
60 #include "libzfs_impl.h"
63 * Intermediate structures used to gather configuration information.
65 typedef struct config_entry {
68 struct config_entry *ce_next;
71 typedef struct vdev_entry {
73 config_entry_t *ve_configs;
74 struct vdev_entry *ve_next;
77 typedef struct pool_entry {
79 vdev_entry_t *pe_vdevs;
80 struct pool_entry *pe_next;
83 typedef struct name_entry {
86 struct name_entry *ne_next;
89 typedef struct pool_list {
95 get_devid(const char *path)
101 if ((fd = open(path, O_RDONLY)) < 0)
106 if (devid_get(fd, &devid) == 0) {
107 if (devid_get_minor_name(fd, &minor) == 0)
108 ret = devid_str_encode(devid, minor);
110 devid_str_free(minor);
120 * Go through and fix up any path and/or devid information for the given vdev
124 fix_paths(nvlist_t *nv, name_entry_t *names)
129 name_entry_t *ne, *best;
133 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
134 &child, &children) == 0) {
135 for (c = 0; c < children; c++)
136 if (fix_paths(child[c], names) != 0)
142 * This is a leaf (file or disk) vdev. In either case, go through
143 * the name list and see if we find a matching guid. If so, replace
144 * the path and see if we can calculate a new devid.
146 * There may be multiple names associated with a particular guid, in
147 * which case we have overlapping slices or multiple paths to the same
148 * disk. If this is the case, then we want to pick the path that is
149 * the most similar to the original, where "most similar" is the number
150 * of matching characters starting from the end of the path. This will
151 * preserve slice numbers even if the disks have been reorganized, and
152 * will also catch preferred disk names if multiple paths exist.
154 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
155 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
160 for (ne = names; ne != NULL; ne = ne->ne_next) {
161 if (ne->ne_guid == guid) {
162 const char *src, *dst;
170 src = ne->ne_name + strlen(ne->ne_name) - 1;
171 dst = path + strlen(path) - 1;
172 for (count = 0; src >= ne->ne_name && dst >= path;
173 src--, dst--, count++)
178 * At this point, 'count' is the number of characters
179 * matched from the end.
181 if (count > matched || best == NULL) {
191 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
194 if ((devid = get_devid(best->ne_name)) == NULL) {
195 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
197 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
199 devid_str_free(devid);
206 * Add the given configuration to the list of known devices.
209 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
212 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
219 * If this is a hot spare not currently in use or level 2 cache
220 * device, add it to the list of names to translate, but don't do
223 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
225 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
226 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
227 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
230 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
234 ne->ne_guid = vdev_guid;
235 ne->ne_next = pl->names;
241 * If we have a valid config but cannot read any of these fields, then
242 * it means we have a half-initialized label. In vdev_label_init()
243 * we write a label with txg == 0 so that we can identify the device
244 * in case the user refers to the same disk later on. If we fail to
245 * create the pool, we'll be left with a label in this state
246 * which should not be considered part of a valid pool.
248 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
250 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
252 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
254 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
255 &txg) != 0 || txg == 0) {
261 * First, see if we know about this pool. If not, then add it to the
262 * list of known pools.
264 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
265 if (pe->pe_guid == pool_guid)
270 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
274 pe->pe_guid = pool_guid;
275 pe->pe_next = pl->pools;
280 * Second, see if we know about this toplevel vdev. Add it if its
283 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
284 if (ve->ve_guid == top_guid)
289 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
293 ve->ve_guid = top_guid;
294 ve->ve_next = pe->pe_vdevs;
299 * Third, see if we have a config with a matching transaction group. If
300 * so, then we do nothing. Otherwise, add it to the list of known
303 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
304 if (ce->ce_txg == txg)
309 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
314 ce->ce_config = config;
315 ce->ce_next = ve->ve_configs;
322 * At this point we've successfully added our config to the list of
323 * known configs. The last thing to do is add the vdev guid -> path
324 * mappings so that we can fix up the configuration as necessary before
327 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
330 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
335 ne->ne_guid = vdev_guid;
336 ne->ne_next = pl->names;
343 * Returns true if the named pool matches the given GUID.
346 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
352 if (zpool_open_silent(hdl, name, &zhp) != 0)
360 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
365 *isactive = (theguid == guid);
370 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
373 zfs_cmd_t zc = { "\0", "\0", "\0", "\0", 0 };
376 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
379 if (zcmd_alloc_dst_nvlist(hdl, &zc,
380 zc.zc_nvlist_conf_size * 2) != 0) {
381 zcmd_free_nvlists(&zc);
385 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
386 &zc)) != 0 && errno == ENOMEM) {
387 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
388 zcmd_free_nvlists(&zc);
394 zcmd_free_nvlists(&zc);
398 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
399 zcmd_free_nvlists(&zc);
403 zcmd_free_nvlists(&zc);
408 * Determine if the vdev id is a hole in the namespace.
411 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
415 for (c = 0; c < holes; c++) {
417 /* Top-level is a hole */
418 if (hole_array[c] == id)
425 * Convert our list of pools into the definitive set of configurations. We
426 * start by picking the best config for each toplevel vdev. Once that's done,
427 * we assemble the toplevel vdevs into a full config for the pool. We make a
428 * pass to fix up any incorrect paths, and then add it to the main list to
429 * return to the user.
432 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
437 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
438 nvlist_t **spares, **l2cache;
439 uint_t i, nspares, nl2cache;
440 boolean_t config_seen;
442 char *name, *hostname;
443 uint64_t version, guid;
445 nvlist_t **child = NULL;
447 uint64_t *hole_array, max_id;
452 boolean_t found_one = B_FALSE;
453 boolean_t valid_top_config = B_FALSE;
455 if (nvlist_alloc(&ret, 0, 0) != 0)
458 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
459 uint64_t id, max_txg = 0;
461 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
463 config_seen = B_FALSE;
466 * Iterate over all toplevel vdevs. Grab the pool configuration
467 * from the first one we find, and then go through the rest and
468 * add them as necessary to the 'vdevs' member of the config.
470 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
473 * Determine the best configuration for this vdev by
474 * selecting the config with the latest transaction
478 for (ce = ve->ve_configs; ce != NULL;
481 if (ce->ce_txg > best_txg) {
483 best_txg = ce->ce_txg;
488 * We rely on the fact that the max txg for the
489 * pool will contain the most up-to-date information
490 * about the valid top-levels in the vdev namespace.
492 if (best_txg > max_txg) {
493 (void) nvlist_remove(config,
494 ZPOOL_CONFIG_VDEV_CHILDREN,
496 (void) nvlist_remove(config,
497 ZPOOL_CONFIG_HOLE_ARRAY,
498 DATA_TYPE_UINT64_ARRAY);
504 valid_top_config = B_FALSE;
506 if (nvlist_lookup_uint64(tmp,
507 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
508 verify(nvlist_add_uint64(config,
509 ZPOOL_CONFIG_VDEV_CHILDREN,
511 valid_top_config = B_TRUE;
514 if (nvlist_lookup_uint64_array(tmp,
515 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
517 verify(nvlist_add_uint64_array(config,
518 ZPOOL_CONFIG_HOLE_ARRAY,
519 hole_array, holes) == 0);
525 * Copy the relevant pieces of data to the pool
532 * hostid (if available)
533 * hostname (if available)
537 verify(nvlist_lookup_uint64(tmp,
538 ZPOOL_CONFIG_VERSION, &version) == 0);
539 if (nvlist_add_uint64(config,
540 ZPOOL_CONFIG_VERSION, version) != 0)
542 verify(nvlist_lookup_uint64(tmp,
543 ZPOOL_CONFIG_POOL_GUID, &guid) == 0);
544 if (nvlist_add_uint64(config,
545 ZPOOL_CONFIG_POOL_GUID, guid) != 0)
547 verify(nvlist_lookup_string(tmp,
548 ZPOOL_CONFIG_POOL_NAME, &name) == 0);
549 if (nvlist_add_string(config,
550 ZPOOL_CONFIG_POOL_NAME, name) != 0)
552 verify(nvlist_lookup_uint64(tmp,
553 ZPOOL_CONFIG_POOL_STATE, &state) == 0);
554 if (nvlist_add_uint64(config,
555 ZPOOL_CONFIG_POOL_STATE, state) != 0)
558 if (nvlist_lookup_uint64(tmp,
559 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
560 if (nvlist_add_uint64(config,
561 ZPOOL_CONFIG_HOSTID, hostid) != 0)
563 verify(nvlist_lookup_string(tmp,
564 ZPOOL_CONFIG_HOSTNAME,
566 if (nvlist_add_string(config,
567 ZPOOL_CONFIG_HOSTNAME,
572 config_seen = B_TRUE;
576 * Add this top-level vdev to the child array.
578 verify(nvlist_lookup_nvlist(tmp,
579 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
580 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
583 if (id >= children) {
586 newchild = zfs_alloc(hdl, (id + 1) *
587 sizeof (nvlist_t *));
588 if (newchild == NULL)
591 for (c = 0; c < children; c++)
592 newchild[c] = child[c];
598 if (nvlist_dup(nvtop, &child[id], 0) != 0)
604 * If we have information about all the top-levels then
605 * clean up the nvlist which we've constructed. This
606 * means removing any extraneous devices that are
607 * beyond the valid range or adding devices to the end
608 * of our array which appear to be missing.
610 if (valid_top_config) {
611 if (max_id < children) {
612 for (c = max_id; c < children; c++)
613 nvlist_free(child[c]);
615 } else if (max_id > children) {
618 newchild = zfs_alloc(hdl, (max_id) *
619 sizeof (nvlist_t *));
620 if (newchild == NULL)
623 for (c = 0; c < children; c++)
624 newchild[c] = child[c];
632 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
636 * The vdev namespace may contain holes as a result of
637 * device removal. We must add them back into the vdev
638 * tree before we process any missing devices.
641 ASSERT(valid_top_config);
643 for (c = 0; c < children; c++) {
646 if (child[c] != NULL ||
647 !vdev_is_hole(hole_array, holes, c))
650 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
655 * Holes in the namespace are treated as
656 * "hole" top-level vdevs and have a
657 * special flag set on them.
659 if (nvlist_add_string(holey,
661 VDEV_TYPE_HOLE) != 0 ||
662 nvlist_add_uint64(holey,
663 ZPOOL_CONFIG_ID, c) != 0 ||
664 nvlist_add_uint64(holey,
665 ZPOOL_CONFIG_GUID, 0ULL) != 0)
672 * Look for any missing top-level vdevs. If this is the case,
673 * create a faked up 'missing' vdev as a placeholder. We cannot
674 * simply compress the child array, because the kernel performs
675 * certain checks to make sure the vdev IDs match their location
676 * in the configuration.
678 for (c = 0; c < children; c++) {
679 if (child[c] == NULL) {
681 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
684 if (nvlist_add_string(missing,
686 VDEV_TYPE_MISSING) != 0 ||
687 nvlist_add_uint64(missing,
688 ZPOOL_CONFIG_ID, c) != 0 ||
689 nvlist_add_uint64(missing,
690 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
691 nvlist_free(missing);
699 * Put all of this pool's top-level vdevs into a root vdev.
701 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
703 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
704 VDEV_TYPE_ROOT) != 0 ||
705 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
706 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
707 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
708 child, children) != 0) {
713 for (c = 0; c < children; c++)
714 nvlist_free(child[c]);
720 * Go through and fix up any paths and/or devids based on our
721 * known list of vdev GUID -> path mappings.
723 if (fix_paths(nvroot, pl->names) != 0) {
729 * Add the root vdev to this pool's configuration.
731 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
739 * zdb uses this path to report on active pools that were
740 * imported or created using -R.
746 * Determine if this pool is currently active, in which case we
747 * can't actually import it.
749 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
751 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
754 if (pool_active(hdl, name, guid, &isactive) != 0)
763 if ((nvl = refresh_config(hdl, config)) == NULL) {
773 * Go through and update the paths for spares, now that we have
776 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
778 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
779 &spares, &nspares) == 0) {
780 for (i = 0; i < nspares; i++) {
781 if (fix_paths(spares[i], pl->names) != 0)
787 * Update the paths for l2cache devices.
789 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
790 &l2cache, &nl2cache) == 0) {
791 for (i = 0; i < nl2cache; i++) {
792 if (fix_paths(l2cache[i], pl->names) != 0)
798 * Restore the original information read from the actual label.
800 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
802 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
805 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
807 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
813 * Add this pool to the list of configs.
815 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
817 if (nvlist_add_nvlist(ret, name, config) != 0)
833 (void) no_memory(hdl);
837 for (c = 0; c < children; c++)
838 nvlist_free(child[c]);
845 * Return the offset of the given label.
848 label_offset(uint64_t size, int l)
850 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
851 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
852 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
856 * Given a file descriptor, read the label information and return an nvlist
857 * describing the configuration, if there is one.
860 zpool_read_label(int fd, nvlist_t **config)
862 struct stat64 statbuf;
865 uint64_t state, txg, size;
869 if (fstat64(fd, &statbuf) == -1)
871 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
873 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
876 for (l = 0; l < VDEV_LABELS; l++) {
877 if (pread64(fd, label, sizeof (vdev_label_t),
878 label_offset(size, l)) != sizeof (vdev_label_t))
881 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
882 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
885 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
886 &state) != 0 || state > POOL_STATE_L2CACHE) {
887 nvlist_free(*config);
891 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
892 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
893 &txg) != 0 || txg == 0)) {
894 nvlist_free(*config);
907 typedef struct rdsk_node {
910 libzfs_handle_t *rn_hdl;
914 boolean_t rn_nozpool;
918 slice_cache_compare(const void *arg1, const void *arg2)
920 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
921 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
922 char *nm1slice, *nm2slice;
926 * slices zero and two are the most likely to provide results,
929 nm1slice = strstr(nm1, "s0");
930 nm2slice = strstr(nm2, "s0");
931 if (nm1slice && !nm2slice) {
934 if (!nm1slice && nm2slice) {
937 nm1slice = strstr(nm1, "s2");
938 nm2slice = strstr(nm2, "s2");
939 if (nm1slice && !nm2slice) {
942 if (!nm1slice && nm2slice) {
946 rv = strcmp(nm1, nm2);
949 return (rv > 0 ? 1 : -1);
953 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
954 diskaddr_t size, uint_t blksz)
958 char sname[MAXNAMELEN];
960 tmpnode.rn_name = &sname[0];
961 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
964 * protect against division by zero for disk labels that
965 * contain a bogus sector size
969 /* too small to contain a zpool? */
970 if ((size < (SPA_MINDEVSIZE / blksz)) &&
971 (node = avl_find(r, &tmpnode, NULL)))
972 node->rn_nozpool = B_TRUE;
976 nozpool_all_slices(avl_tree_t *r, const char *sname)
978 char diskname[MAXNAMELEN];
982 (void) strncpy(diskname, sname, MAXNAMELEN);
983 if (((ptr = strrchr(diskname, 's')) == NULL) &&
984 ((ptr = strrchr(diskname, 'p')) == NULL))
988 for (i = 0; i < NDKMAP; i++)
989 check_one_slice(r, diskname, i, 0, 1);
991 for (i = 0; i <= FD_NUMPART; i++)
992 check_one_slice(r, diskname, i, 0, 1);
996 check_slices(avl_tree_t *r, int fd, const char *sname)
1000 char diskname[MAXNAMELEN];
1004 (void) strncpy(diskname, sname, MAXNAMELEN);
1005 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1009 if (read_extvtoc(fd, &vtoc) >= 0) {
1010 for (i = 0; i < NDKMAP; i++)
1011 check_one_slice(r, diskname, i,
1012 vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1013 } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1015 * on x86 we'll still have leftover links that point
1016 * to slices s[9-15], so use NDKMAP instead
1018 for (i = 0; i < NDKMAP; i++)
1019 check_one_slice(r, diskname, i,
1020 gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1021 /* nodes p[1-4] are never used with EFI labels */
1023 for (i = 1; i <= FD_NUMPART; i++)
1024 check_one_slice(r, diskname, i, 0, 1);
1030 zpool_open_func(void *arg)
1032 rdsk_node_t *rn = arg;
1033 struct stat64 statbuf;
1039 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1040 /* symlink to a device that's no longer there */
1041 if (errno == ENOENT)
1042 nozpool_all_slices(rn->rn_avl, rn->rn_name);
1046 * Ignore failed stats. We only want regular
1047 * files, character devs and block devs.
1049 if (fstat64(fd, &statbuf) != 0 ||
1050 (!S_ISREG(statbuf.st_mode) &&
1051 !S_ISCHR(statbuf.st_mode) &&
1052 !S_ISBLK(statbuf.st_mode))) {
1056 /* this file is too small to hold a zpool */
1057 if (S_ISREG(statbuf.st_mode) &&
1058 statbuf.st_size < SPA_MINDEVSIZE) {
1061 } else if (!S_ISREG(statbuf.st_mode)) {
1063 * Try to read the disk label first so we don't have to
1064 * open a bunch of minor nodes that can't have a zpool.
1066 check_slices(rn->rn_avl, fd, rn->rn_name);
1069 if ((zpool_read_label(fd, &config)) != 0) {
1071 (void) no_memory(rn->rn_hdl);
1077 rn->rn_config = config;
1078 if (config != NULL) {
1079 assert(rn->rn_nozpool == B_FALSE);
1084 * Given a file descriptor, clear (zero) the label information. This function
1085 * is currently only used in the appliance stack as part of the ZFS sysevent
1089 zpool_clear_label(int fd)
1091 struct stat64 statbuf;
1093 vdev_label_t *label;
1096 if (fstat64(fd, &statbuf) == -1)
1098 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1100 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1103 for (l = 0; l < VDEV_LABELS; l++) {
1104 if (pwrite64(fd, label, sizeof (vdev_label_t),
1105 label_offset(size, l)) != sizeof (vdev_label_t))
1114 * Given a list of directories to search, find all pools stored on disk. This
1115 * includes partial pools which are not available to import. If no args are
1116 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1117 * poolname or guid (but not both) are provided by the caller when trying
1118 * to import a specific pool.
1121 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1123 int i, dirs = iarg->paths;
1125 struct dirent64 *dp;
1126 char path[MAXPATHLEN];
1127 char *end, **dir = iarg->path;
1129 nvlist_t *ret = NULL;
1130 static char *default_dir = "/dev/dsk";
1131 pool_list_t pools = { 0 };
1132 pool_entry_t *pe, *penext;
1133 vdev_entry_t *ve, *venext;
1134 config_entry_t *ce, *cenext;
1135 name_entry_t *ne, *nenext;
1136 avl_tree_t slice_cache;
1146 * Go through and read the label configuration information from every
1147 * possible device, organizing the information according to pool GUID
1148 * and toplevel GUID.
1150 for (i = 0; i < dirs; i++) {
1155 /* use realpath to normalize the path */
1156 if (realpath(dir[i], path) == 0) {
1157 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1158 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1161 end = &path[strlen(path)];
1164 pathleft = &path[sizeof (path)] - end;
1167 * Using raw devices instead of block devices when we're
1168 * reading the labels skips a bunch of slow operations during
1169 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1171 if (strcmp(path, "/dev/dsk/") == 0)
1172 rdsk = "/dev/rdsk/";
1176 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1177 (dirp = fdopendir(dfd)) == NULL) {
1178 zfs_error_aux(hdl, strerror(errno));
1179 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1180 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1185 avl_create(&slice_cache, slice_cache_compare,
1186 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1188 * This is not MT-safe, but we have no MT consumers of libzfs
1190 while ((dp = readdir64(dirp)) != NULL) {
1191 const char *name = dp->d_name;
1192 if (name[0] == '.' &&
1193 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1196 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1197 slice->rn_name = zfs_strdup(hdl, name);
1198 slice->rn_avl = &slice_cache;
1199 slice->rn_dfd = dfd;
1200 slice->rn_hdl = hdl;
1201 slice->rn_nozpool = B_FALSE;
1202 avl_add(&slice_cache, slice);
1205 * create a thread pool to do all of this in parallel;
1206 * rn_nozpool is not protected, so this is racy in that
1207 * multiple tasks could decide that the same slice can
1208 * not hold a zpool, which is benign. Also choose
1209 * double the number of processors; we hold a lot of
1210 * locks in the kernel, so going beyond this doesn't
1213 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1215 for (slice = avl_first(&slice_cache); slice;
1216 (slice = avl_walk(&slice_cache, slice,
1218 (void) tpool_dispatch(t, zpool_open_func, slice);
1223 while ((slice = avl_destroy_nodes(&slice_cache,
1224 &cookie)) != NULL) {
1225 if (slice->rn_config != NULL) {
1226 nvlist_t *config = slice->rn_config;
1227 boolean_t matched = B_TRUE;
1229 if (iarg->poolname != NULL) {
1232 matched = nvlist_lookup_string(config,
1233 ZPOOL_CONFIG_POOL_NAME,
1235 strcmp(iarg->poolname, pname) == 0;
1236 } else if (iarg->guid != 0) {
1239 matched = nvlist_lookup_uint64(config,
1240 ZPOOL_CONFIG_POOL_GUID,
1242 iarg->guid == this_guid;
1245 nvlist_free(config);
1249 /* use the non-raw path for the config */
1250 (void) strlcpy(end, slice->rn_name, pathleft);
1251 if (add_config(hdl, &pools, path, config) != 0)
1254 free(slice->rn_name);
1257 avl_destroy(&slice_cache);
1259 (void) closedir(dirp);
1263 ret = get_configs(hdl, &pools, iarg->can_be_active);
1266 for (pe = pools.pools; pe != NULL; pe = penext) {
1267 penext = pe->pe_next;
1268 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1269 venext = ve->ve_next;
1270 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1271 cenext = ce->ce_next;
1273 nvlist_free(ce->ce_config);
1281 for (ne = pools.names; ne != NULL; ne = nenext) {
1282 nenext = ne->ne_next;
1289 (void) closedir(dirp);
1295 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1297 importargs_t iarg = { 0 };
1302 return (zpool_find_import_impl(hdl, &iarg));
1306 * Given a cache file, return the contents as a list of importable pools.
1307 * poolname or guid (but not both) are provided by the caller when trying
1308 * to import a specific pool.
1311 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1312 char *poolname, uint64_t guid)
1316 struct stat64 statbuf;
1317 nvlist_t *raw, *src, *dst;
1324 verify(poolname == NULL || guid == 0);
1326 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1327 zfs_error_aux(hdl, "%s", strerror(errno));
1328 (void) zfs_error(hdl, EZFS_BADCACHE,
1329 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1333 if (fstat64(fd, &statbuf) != 0) {
1334 zfs_error_aux(hdl, "%s", strerror(errno));
1336 (void) zfs_error(hdl, EZFS_BADCACHE,
1337 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1341 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1346 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1349 (void) zfs_error(hdl, EZFS_BADCACHE,
1350 dgettext(TEXT_DOMAIN,
1351 "failed to read cache file contents"));
1357 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1359 (void) zfs_error(hdl, EZFS_BADCACHE,
1360 dgettext(TEXT_DOMAIN,
1361 "invalid or corrupt cache file contents"));
1368 * Go through and get the current state of the pools and refresh their
1371 if (nvlist_alloc(&pools, 0, 0) != 0) {
1372 (void) no_memory(hdl);
1378 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1379 verify(nvpair_value_nvlist(elem, &src) == 0);
1381 verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1383 if (poolname != NULL && strcmp(poolname, name) != 0)
1386 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1389 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1391 if (guid != this_guid)
1395 if (pool_active(hdl, name, this_guid, &active) != 0) {
1404 if ((dst = refresh_config(hdl, src)) == NULL) {
1410 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1411 (void) no_memory(hdl);
1425 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1427 importargs_t *import = data;
1430 if (import->poolname != NULL) {
1433 verify(nvlist_lookup_string(zhp->zpool_config,
1434 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1435 if (strcmp(pool_name, import->poolname) == 0)
1440 verify(nvlist_lookup_uint64(zhp->zpool_config,
1441 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1442 if (pool_guid == import->guid)
1451 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1453 verify(import->poolname == NULL || import->guid == 0);
1456 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1458 if (import->cachefile != NULL)
1459 return (zpool_find_import_cached(hdl, import->cachefile,
1460 import->poolname, import->guid));
1462 return (zpool_find_import_impl(hdl, import));
1466 find_guid(nvlist_t *nv, uint64_t guid)
1472 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1476 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1477 &child, &children) == 0) {
1478 for (c = 0; c < children; c++)
1479 if (find_guid(child[c], guid))
1486 typedef struct aux_cbdata {
1487 const char *cb_type;
1489 zpool_handle_t *cb_zhp;
1493 find_aux(zpool_handle_t *zhp, void *data)
1495 aux_cbdata_t *cbp = data;
1501 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1504 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1505 &list, &count) == 0) {
1506 for (i = 0; i < count; i++) {
1507 verify(nvlist_lookup_uint64(list[i],
1508 ZPOOL_CONFIG_GUID, &guid) == 0);
1509 if (guid == cbp->cb_guid) {
1521 * Determines if the pool is in use. If so, it returns true and the state of
1522 * the pool as well as the name of the pool. Both strings are allocated and
1523 * must be freed by the caller.
1526 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1532 uint64_t guid, vdev_guid;
1533 zpool_handle_t *zhp;
1534 nvlist_t *pool_config;
1535 uint64_t stateval, isspare;
1536 aux_cbdata_t cb = { 0 };
1541 if (zpool_read_label(fd, &config) != 0) {
1542 (void) no_memory(hdl);
1549 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1551 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1554 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1555 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1557 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1562 case POOL_STATE_EXPORTED:
1564 * A pool with an exported state may in fact be imported
1565 * read-only, so check the in-core state to see if it's
1566 * active and imported read-only. If it is, set
1567 * its state to active.
1569 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1570 (zhp = zpool_open_canfail(hdl, name)) != NULL &&
1571 zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1572 stateval = POOL_STATE_ACTIVE;
1577 case POOL_STATE_ACTIVE:
1579 * For an active pool, we have to determine if it's really part
1580 * of a currently active pool (in which case the pool will exist
1581 * and the guid will be the same), or whether it's part of an
1582 * active pool that was disconnected without being explicitly
1585 if (pool_active(hdl, name, guid, &isactive) != 0) {
1586 nvlist_free(config);
1592 * Because the device may have been removed while
1593 * offlined, we only report it as active if the vdev is
1594 * still present in the config. Otherwise, pretend like
1597 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1598 (pool_config = zpool_get_config(zhp, NULL))
1602 verify(nvlist_lookup_nvlist(pool_config,
1603 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1604 ret = find_guid(nvroot, vdev_guid);
1610 * If this is an active spare within another pool, we
1611 * treat it like an unused hot spare. This allows the
1612 * user to create a pool with a hot spare that currently
1613 * in use within another pool. Since we return B_TRUE,
1614 * libdiskmgt will continue to prevent generic consumers
1615 * from using the device.
1617 if (ret && nvlist_lookup_uint64(config,
1618 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1619 stateval = POOL_STATE_SPARE;
1624 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1629 case POOL_STATE_SPARE:
1631 * For a hot spare, it can be either definitively in use, or
1632 * potentially active. To determine if it's in use, we iterate
1633 * over all pools in the system and search for one with a spare
1634 * with a matching guid.
1636 * Due to the shared nature of spares, we don't actually report
1637 * the potentially active case as in use. This means the user
1638 * can freely create pools on the hot spares of exported pools,
1639 * but to do otherwise makes the resulting code complicated, and
1640 * we end up having to deal with this case anyway.
1643 cb.cb_guid = vdev_guid;
1644 cb.cb_type = ZPOOL_CONFIG_SPARES;
1645 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1646 name = (char *)zpool_get_name(cb.cb_zhp);
1653 case POOL_STATE_L2CACHE:
1656 * Check if any pool is currently using this l2cache device.
1659 cb.cb_guid = vdev_guid;
1660 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1661 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1662 name = (char *)zpool_get_name(cb.cb_zhp);
1675 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1677 zpool_close(cb.cb_zhp);
1678 nvlist_free(config);
1681 *state = (pool_state_t)stateval;
1685 zpool_close(cb.cb_zhp);
1687 nvlist_free(config);