]> granicus.if.org Git - clang/blob - lib/Sema/SemaInit.cpp
Fix assert instantiating string init of static variable
[clang] / lib / Sema / SemaInit.cpp
1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/Initialization.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34
35 /// \brief Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_Other
53 };
54
55 /// \brief Check whether the array of type AT can be initialized by the Init
56 /// expression by means of string initialization. Returns SIF_None if so,
57 /// otherwise returns a StringInitFailureKind that describes why the
58 /// initialization would not work.
59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                           ASTContext &Context) {
61   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62     return SIF_Other;
63
64   // See if this is a string literal or @encode.
65   Init = Init->IgnoreParens();
66
67   // Handle @encode, which is a narrow string.
68   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69     return SIF_None;
70
71   // Otherwise we can only handle string literals.
72   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73   if (!SL)
74     return SIF_Other;
75
76   const QualType ElemTy =
77       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79   switch (SL->getKind()) {
80   case StringLiteral::Ascii:
81   case StringLiteral::UTF8:
82     // char array can be initialized with a narrow string.
83     // Only allow char x[] = "foo";  not char x[] = L"foo";
84     if (ElemTy->isCharType())
85       return SIF_None;
86     if (IsWideCharCompatible(ElemTy, Context))
87       return SIF_NarrowStringIntoWideChar;
88     return SIF_Other;
89   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90   // "An array with element type compatible with a qualified or unqualified
91   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92   // string literal with the corresponding encoding prefix (L, u, or U,
93   // respectively), optionally enclosed in braces.
94   case StringLiteral::UTF16:
95     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96       return SIF_None;
97     if (ElemTy->isCharType())
98       return SIF_WideStringIntoChar;
99     if (IsWideCharCompatible(ElemTy, Context))
100       return SIF_IncompatWideStringIntoWideChar;
101     return SIF_Other;
102   case StringLiteral::UTF32:
103     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104       return SIF_None;
105     if (ElemTy->isCharType())
106       return SIF_WideStringIntoChar;
107     if (IsWideCharCompatible(ElemTy, Context))
108       return SIF_IncompatWideStringIntoWideChar;
109     return SIF_Other;
110   case StringLiteral::Wide:
111     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112       return SIF_None;
113     if (ElemTy->isCharType())
114       return SIF_WideStringIntoChar;
115     if (IsWideCharCompatible(ElemTy, Context))
116       return SIF_IncompatWideStringIntoWideChar;
117     return SIF_Other;
118   }
119
120   llvm_unreachable("missed a StringLiteral kind?");
121 }
122
123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                           ASTContext &Context) {
125   const ArrayType *arrayType = Context.getAsArrayType(declType);
126   if (!arrayType)
127     return SIF_Other;
128   return IsStringInit(init, arrayType, Context);
129 }
130
131 /// Update the type of a string literal, including any surrounding parentheses,
132 /// to match the type of the object which it is initializing.
133 static void updateStringLiteralType(Expr *E, QualType Ty) {
134   while (true) {
135     E->setType(Ty);
136     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137       break;
138     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139       E = PE->getSubExpr();
140     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141       E = UO->getSubExpr();
142     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143       E = GSE->getResultExpr();
144     else
145       llvm_unreachable("unexpected expr in string literal init");
146   }
147 }
148
149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                             Sema &S) {
151   // Get the length of the string as parsed.
152   auto *ConstantArrayTy =
153       cast<ConstantArrayType>(Str->getType()->getUnqualifiedDesugaredType());
154   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
155
156   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157     // C99 6.7.8p14. We have an array of character type with unknown size
158     // being initialized to a string literal.
159     llvm::APInt ConstVal(32, StrLength);
160     // Return a new array type (C99 6.7.8p22).
161     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                            ConstVal,
163                                            ArrayType::Normal, 0);
164     updateStringLiteralType(Str, DeclT);
165     return;
166   }
167
168   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170   // We have an array of character type with known size.  However,
171   // the size may be smaller or larger than the string we are initializing.
172   // FIXME: Avoid truncation for 64-bit length strings.
173   if (S.getLangOpts().CPlusPlus) {
174     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175       // For Pascal strings it's OK to strip off the terminating null character,
176       // so the example below is valid:
177       //
178       // unsigned char a[2] = "\pa";
179       if (SL->isPascal())
180         StrLength--;
181     }
182   
183     // [dcl.init.string]p2
184     if (StrLength > CAT->getSize().getZExtValue())
185       S.Diag(Str->getLocStart(),
186              diag::err_initializer_string_for_char_array_too_long)
187         << Str->getSourceRange();
188   } else {
189     // C99 6.7.8p14.
190     if (StrLength-1 > CAT->getSize().getZExtValue())
191       S.Diag(Str->getLocStart(),
192              diag::ext_initializer_string_for_char_array_too_long)
193         << Str->getSourceRange();
194   }
195
196   // Set the type to the actual size that we are initializing.  If we have
197   // something like:
198   //   char x[1] = "foo";
199   // then this will set the string literal's type to char[1].
200   updateStringLiteralType(Str, DeclT);
201 }
202
203 //===----------------------------------------------------------------------===//
204 // Semantic checking for initializer lists.
205 //===----------------------------------------------------------------------===//
206
207 /// @brief Semantic checking for initializer lists.
208 ///
209 /// The InitListChecker class contains a set of routines that each
210 /// handle the initialization of a certain kind of entity, e.g.,
211 /// arrays, vectors, struct/union types, scalars, etc. The
212 /// InitListChecker itself performs a recursive walk of the subobject
213 /// structure of the type to be initialized, while stepping through
214 /// the initializer list one element at a time. The IList and Index
215 /// parameters to each of the Check* routines contain the active
216 /// (syntactic) initializer list and the index into that initializer
217 /// list that represents the current initializer. Each routine is
218 /// responsible for moving that Index forward as it consumes elements.
219 ///
220 /// Each Check* routine also has a StructuredList/StructuredIndex
221 /// arguments, which contains the current "structured" (semantic)
222 /// initializer list and the index into that initializer list where we
223 /// are copying initializers as we map them over to the semantic
224 /// list. Once we have completed our recursive walk of the subobject
225 /// structure, we will have constructed a full semantic initializer
226 /// list.
227 ///
228 /// C99 designators cause changes in the initializer list traversal,
229 /// because they make the initialization "jump" into a specific
230 /// subobject and then continue the initialization from that
231 /// point. CheckDesignatedInitializer() recursively steps into the
232 /// designated subobject and manages backing out the recursion to
233 /// initialize the subobjects after the one designated.
234 namespace {
235 class InitListChecker {
236   Sema &SemaRef;
237   bool hadError;
238   bool VerifyOnly; // no diagnostics, no structure building
239   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240   InitListExpr *FullyStructuredList;
241
242   void CheckImplicitInitList(const InitializedEntity &Entity,
243                              InitListExpr *ParentIList, QualType T,
244                              unsigned &Index, InitListExpr *StructuredList,
245                              unsigned &StructuredIndex);
246   void CheckExplicitInitList(const InitializedEntity &Entity,
247                              InitListExpr *IList, QualType &T,
248                              InitListExpr *StructuredList,
249                              bool TopLevelObject = false);
250   void CheckListElementTypes(const InitializedEntity &Entity,
251                              InitListExpr *IList, QualType &DeclType,
252                              bool SubobjectIsDesignatorContext,
253                              unsigned &Index,
254                              InitListExpr *StructuredList,
255                              unsigned &StructuredIndex,
256                              bool TopLevelObject = false);
257   void CheckSubElementType(const InitializedEntity &Entity,
258                            InitListExpr *IList, QualType ElemType,
259                            unsigned &Index,
260                            InitListExpr *StructuredList,
261                            unsigned &StructuredIndex);
262   void CheckComplexType(const InitializedEntity &Entity,
263                         InitListExpr *IList, QualType DeclType,
264                         unsigned &Index,
265                         InitListExpr *StructuredList,
266                         unsigned &StructuredIndex);
267   void CheckScalarType(const InitializedEntity &Entity,
268                        InitListExpr *IList, QualType DeclType,
269                        unsigned &Index,
270                        InitListExpr *StructuredList,
271                        unsigned &StructuredIndex);
272   void CheckReferenceType(const InitializedEntity &Entity,
273                           InitListExpr *IList, QualType DeclType,
274                           unsigned &Index,
275                           InitListExpr *StructuredList,
276                           unsigned &StructuredIndex);
277   void CheckVectorType(const InitializedEntity &Entity,
278                        InitListExpr *IList, QualType DeclType, unsigned &Index,
279                        InitListExpr *StructuredList,
280                        unsigned &StructuredIndex);
281   void CheckStructUnionTypes(const InitializedEntity &Entity,
282                              InitListExpr *IList, QualType DeclType,
283                              RecordDecl::field_iterator Field,
284                              bool SubobjectIsDesignatorContext, unsigned &Index,
285                              InitListExpr *StructuredList,
286                              unsigned &StructuredIndex,
287                              bool TopLevelObject = false);
288   void CheckArrayType(const InitializedEntity &Entity,
289                       InitListExpr *IList, QualType &DeclType,
290                       llvm::APSInt elementIndex,
291                       bool SubobjectIsDesignatorContext, unsigned &Index,
292                       InitListExpr *StructuredList,
293                       unsigned &StructuredIndex);
294   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
295                                   InitListExpr *IList, DesignatedInitExpr *DIE,
296                                   unsigned DesigIdx,
297                                   QualType &CurrentObjectType,
298                                   RecordDecl::field_iterator *NextField,
299                                   llvm::APSInt *NextElementIndex,
300                                   unsigned &Index,
301                                   InitListExpr *StructuredList,
302                                   unsigned &StructuredIndex,
303                                   bool FinishSubobjectInit,
304                                   bool TopLevelObject);
305   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
306                                            QualType CurrentObjectType,
307                                            InitListExpr *StructuredList,
308                                            unsigned StructuredIndex,
309                                            SourceRange InitRange);
310   void UpdateStructuredListElement(InitListExpr *StructuredList,
311                                    unsigned &StructuredIndex,
312                                    Expr *expr);
313   int numArrayElements(QualType DeclType);
314   int numStructUnionElements(QualType DeclType);
315
316   static ExprResult PerformEmptyInit(Sema &SemaRef,
317                                      SourceLocation Loc,
318                                      const InitializedEntity &Entity,
319                                      bool VerifyOnly);
320   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
321                                const InitializedEntity &ParentEntity,
322                                InitListExpr *ILE, bool &RequiresSecondPass);
323   void FillInEmptyInitializations(const InitializedEntity &Entity,
324                                   InitListExpr *ILE, bool &RequiresSecondPass);
325   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
326                               Expr *InitExpr, FieldDecl *Field,
327                               bool TopLevelObject);
328   void CheckEmptyInitializable(const InitializedEntity &Entity,
329                                SourceLocation Loc);
330
331 public:
332   InitListChecker(Sema &S, const InitializedEntity &Entity,
333                   InitListExpr *IL, QualType &T, bool VerifyOnly);
334   bool HadError() { return hadError; }
335
336   // @brief Retrieves the fully-structured initializer list used for
337   // semantic analysis and code generation.
338   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
339 };
340 } // end anonymous namespace
341
342 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
343                                              SourceLocation Loc,
344                                              const InitializedEntity &Entity,
345                                              bool VerifyOnly) {
346   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
347                                                             true);
348   MultiExprArg SubInit;
349   Expr *InitExpr;
350   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
351
352   // C++ [dcl.init.aggr]p7:
353   //   If there are fewer initializer-clauses in the list than there are
354   //   members in the aggregate, then each member not explicitly initialized
355   //   ...
356   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
357       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
358   if (EmptyInitList) {
359     // C++1y / DR1070:
360     //   shall be initialized [...] from an empty initializer list.
361     //
362     // We apply the resolution of this DR to C++11 but not C++98, since C++98
363     // does not have useful semantics for initialization from an init list.
364     // We treat this as copy-initialization, because aggregate initialization
365     // always performs copy-initialization on its elements.
366     //
367     // Only do this if we're initializing a class type, to avoid filling in
368     // the initializer list where possible.
369     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
370                    InitListExpr(SemaRef.Context, Loc, None, Loc);
371     InitExpr->setType(SemaRef.Context.VoidTy);
372     SubInit = InitExpr;
373     Kind = InitializationKind::CreateCopy(Loc, Loc);
374   } else {
375     // C++03:
376     //   shall be value-initialized.
377   }
378
379   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
380   // libstdc++4.6 marks the vector default constructor as explicit in
381   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
382   // stlport does so too. Look for std::__debug for libstdc++, and for
383   // std:: for stlport.  This is effectively a compiler-side implementation of
384   // LWG2193.
385   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
386           InitializationSequence::FK_ExplicitConstructor) {
387     OverloadCandidateSet::iterator Best;
388     OverloadingResult O =
389         InitSeq.getFailedCandidateSet()
390             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
391     (void)O;
392     assert(O == OR_Success && "Inconsistent overload resolution");
393     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
394     CXXRecordDecl *R = CtorDecl->getParent();
395
396     if (CtorDecl->getMinRequiredArguments() == 0 &&
397         CtorDecl->isExplicit() && R->getDeclName() &&
398         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
399
400
401       bool IsInStd = false;
402       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
403            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
404         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
405           IsInStd = true;
406       }
407
408       if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 
409               .Cases("basic_string", "deque", "forward_list", true)
410               .Cases("list", "map", "multimap", "multiset", true)
411               .Cases("priority_queue", "queue", "set", "stack", true)
412               .Cases("unordered_map", "unordered_set", "vector", true)
413               .Default(false)) {
414         InitSeq.InitializeFrom(
415             SemaRef, Entity,
416             InitializationKind::CreateValue(Loc, Loc, Loc, true),
417             MultiExprArg(), /*TopLevelOfInitList=*/false);
418         // Emit a warning for this.  System header warnings aren't shown
419         // by default, but people working on system headers should see it.
420         if (!VerifyOnly) {
421           SemaRef.Diag(CtorDecl->getLocation(),
422                        diag::warn_invalid_initializer_from_system_header);
423           SemaRef.Diag(Entity.getDecl()->getLocation(),
424                        diag::note_used_in_initialization_here);
425         }
426       }
427     }
428   }
429   if (!InitSeq) {
430     if (!VerifyOnly) {
431       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
432       if (Entity.getKind() == InitializedEntity::EK_Member)
433         SemaRef.Diag(Entity.getDecl()->getLocation(),
434                      diag::note_in_omitted_aggregate_initializer)
435           << /*field*/1 << Entity.getDecl();
436       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
437         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
438           << /*array element*/0 << Entity.getElementIndex();
439     }
440     return ExprError();
441   }
442
443   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
444                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
445 }
446
447 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
448                                               SourceLocation Loc) {
449   assert(VerifyOnly &&
450          "CheckEmptyInitializable is only inteded for verification mode.");
451   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true).isInvalid())
452     hadError = true;
453 }
454
455 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
456                                         const InitializedEntity &ParentEntity,
457                                               InitListExpr *ILE,
458                                               bool &RequiresSecondPass) {
459   SourceLocation Loc = ILE->getLocEnd();
460   unsigned NumInits = ILE->getNumInits();
461   InitializedEntity MemberEntity
462     = InitializedEntity::InitializeMember(Field, &ParentEntity);
463   if (Init >= NumInits || !ILE->getInit(Init)) {
464     // C++1y [dcl.init.aggr]p7:
465     //   If there are fewer initializer-clauses in the list than there are
466     //   members in the aggregate, then each member not explicitly initialized
467     //   shall be initialized from its brace-or-equal-initializer [...]
468     if (Field->hasInClassInitializer()) {
469       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
470       if (DIE.isInvalid()) {
471         hadError = true;
472         return;
473       }
474       if (Init < NumInits)
475         ILE->setInit(Init, DIE.get());
476       else {
477         ILE->updateInit(SemaRef.Context, Init, DIE.get());
478         RequiresSecondPass = true;
479       }
480       return;
481     }
482
483     if (Field->getType()->isReferenceType()) {
484       // C++ [dcl.init.aggr]p9:
485       //   If an incomplete or empty initializer-list leaves a
486       //   member of reference type uninitialized, the program is
487       //   ill-formed.
488       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
489         << Field->getType()
490         << ILE->getSyntacticForm()->getSourceRange();
491       SemaRef.Diag(Field->getLocation(),
492                    diag::note_uninit_reference_member);
493       hadError = true;
494       return;
495     }
496
497     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
498                                              /*VerifyOnly*/false);
499     if (MemberInit.isInvalid()) {
500       hadError = true;
501       return;
502     }
503
504     if (hadError) {
505       // Do nothing
506     } else if (Init < NumInits) {
507       ILE->setInit(Init, MemberInit.getAs<Expr>());
508     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
509       // Empty initialization requires a constructor call, so
510       // extend the initializer list to include the constructor
511       // call and make a note that we'll need to take another pass
512       // through the initializer list.
513       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
514       RequiresSecondPass = true;
515     }
516   } else if (InitListExpr *InnerILE
517                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
518     FillInEmptyInitializations(MemberEntity, InnerILE,
519                                RequiresSecondPass);
520 }
521
522 /// Recursively replaces NULL values within the given initializer list
523 /// with expressions that perform value-initialization of the
524 /// appropriate type.
525 void
526 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
527                                             InitListExpr *ILE,
528                                             bool &RequiresSecondPass) {
529   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
530          "Should not have void type");
531
532   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
533     const RecordDecl *RDecl = RType->getDecl();
534     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
535       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
536                               Entity, ILE, RequiresSecondPass);
537     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
538              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
539       for (auto *Field : RDecl->fields()) {
540         if (Field->hasInClassInitializer()) {
541           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass);
542           break;
543         }
544       }
545     } else {
546       unsigned Init = 0;
547       for (auto *Field : RDecl->fields()) {
548         if (Field->isUnnamedBitfield())
549           continue;
550
551         if (hadError)
552           return;
553
554         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass);
555         if (hadError)
556           return;
557
558         ++Init;
559
560         // Only look at the first initialization of a union.
561         if (RDecl->isUnion())
562           break;
563       }
564     }
565
566     return;
567   }
568
569   QualType ElementType;
570
571   InitializedEntity ElementEntity = Entity;
572   unsigned NumInits = ILE->getNumInits();
573   unsigned NumElements = NumInits;
574   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
575     ElementType = AType->getElementType();
576     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
577       NumElements = CAType->getSize().getZExtValue();
578     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
579                                                          0, Entity);
580   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
581     ElementType = VType->getElementType();
582     NumElements = VType->getNumElements();
583     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
584                                                          0, Entity);
585   } else
586     ElementType = ILE->getType();
587
588   for (unsigned Init = 0; Init != NumElements; ++Init) {
589     if (hadError)
590       return;
591
592     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
593         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
594       ElementEntity.setElementIndex(Init);
595
596     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
597     if (!InitExpr && !ILE->hasArrayFiller()) {
598       ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
599                                                 ElementEntity,
600                                                 /*VerifyOnly*/false);
601       if (ElementInit.isInvalid()) {
602         hadError = true;
603         return;
604       }
605
606       if (hadError) {
607         // Do nothing
608       } else if (Init < NumInits) {
609         // For arrays, just set the expression used for value-initialization
610         // of the "holes" in the array.
611         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
612           ILE->setArrayFiller(ElementInit.getAs<Expr>());
613         else
614           ILE->setInit(Init, ElementInit.getAs<Expr>());
615       } else {
616         // For arrays, just set the expression used for value-initialization
617         // of the rest of elements and exit.
618         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
619           ILE->setArrayFiller(ElementInit.getAs<Expr>());
620           return;
621         }
622
623         if (!isa<ImplicitValueInitExpr>(ElementInit.get())) {
624           // Empty initialization requires a constructor call, so
625           // extend the initializer list to include the constructor
626           // call and make a note that we'll need to take another pass
627           // through the initializer list.
628           ILE->updateInit(SemaRef.Context, Init, ElementInit.getAs<Expr>());
629           RequiresSecondPass = true;
630         }
631       }
632     } else if (InitListExpr *InnerILE
633                  = dyn_cast_or_null<InitListExpr>(InitExpr))
634       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass);
635   }
636 }
637
638
639 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
640                                  InitListExpr *IL, QualType &T,
641                                  bool VerifyOnly)
642   : SemaRef(S), VerifyOnly(VerifyOnly) {
643   hadError = false;
644
645   FullyStructuredList =
646       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
647   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
648                         /*TopLevelObject=*/true);
649
650   if (!hadError && !VerifyOnly) {
651     bool RequiresSecondPass = false;
652     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
653     if (RequiresSecondPass && !hadError)
654       FillInEmptyInitializations(Entity, FullyStructuredList,
655                                  RequiresSecondPass);
656   }
657 }
658
659 int InitListChecker::numArrayElements(QualType DeclType) {
660   // FIXME: use a proper constant
661   int maxElements = 0x7FFFFFFF;
662   if (const ConstantArrayType *CAT =
663         SemaRef.Context.getAsConstantArrayType(DeclType)) {
664     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
665   }
666   return maxElements;
667 }
668
669 int InitListChecker::numStructUnionElements(QualType DeclType) {
670   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
671   int InitializableMembers = 0;
672   for (const auto *Field : structDecl->fields())
673     if (!Field->isUnnamedBitfield())
674       ++InitializableMembers;
675
676   if (structDecl->isUnion())
677     return std::min(InitializableMembers, 1);
678   return InitializableMembers - structDecl->hasFlexibleArrayMember();
679 }
680
681 /// Check whether the range of the initializer \p ParentIList from element
682 /// \p Index onwards can be used to initialize an object of type \p T. Update
683 /// \p Index to indicate how many elements of the list were consumed.
684 ///
685 /// This also fills in \p StructuredList, from element \p StructuredIndex
686 /// onwards, with the fully-braced, desugared form of the initialization.
687 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
688                                             InitListExpr *ParentIList,
689                                             QualType T, unsigned &Index,
690                                             InitListExpr *StructuredList,
691                                             unsigned &StructuredIndex) {
692   int maxElements = 0;
693
694   if (T->isArrayType())
695     maxElements = numArrayElements(T);
696   else if (T->isRecordType())
697     maxElements = numStructUnionElements(T);
698   else if (T->isVectorType())
699     maxElements = T->getAs<VectorType>()->getNumElements();
700   else
701     llvm_unreachable("CheckImplicitInitList(): Illegal type");
702
703   if (maxElements == 0) {
704     if (!VerifyOnly)
705       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
706                    diag::err_implicit_empty_initializer);
707     ++Index;
708     hadError = true;
709     return;
710   }
711
712   // Build a structured initializer list corresponding to this subobject.
713   InitListExpr *StructuredSubobjectInitList
714     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
715                                  StructuredIndex,
716           SourceRange(ParentIList->getInit(Index)->getLocStart(),
717                       ParentIList->getSourceRange().getEnd()));
718   unsigned StructuredSubobjectInitIndex = 0;
719
720   // Check the element types and build the structural subobject.
721   unsigned StartIndex = Index;
722   CheckListElementTypes(Entity, ParentIList, T,
723                         /*SubobjectIsDesignatorContext=*/false, Index,
724                         StructuredSubobjectInitList,
725                         StructuredSubobjectInitIndex);
726
727   if (!VerifyOnly) {
728     StructuredSubobjectInitList->setType(T);
729
730     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
731     // Update the structured sub-object initializer so that it's ending
732     // range corresponds with the end of the last initializer it used.
733     if (EndIndex < ParentIList->getNumInits()) {
734       SourceLocation EndLoc
735         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
736       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
737     }
738
739     // Complain about missing braces.
740     if (T->isArrayType() || T->isRecordType()) {
741       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
742                    diag::warn_missing_braces)
743           << StructuredSubobjectInitList->getSourceRange()
744           << FixItHint::CreateInsertion(
745                  StructuredSubobjectInitList->getLocStart(), "{")
746           << FixItHint::CreateInsertion(
747                  SemaRef.getLocForEndOfToken(
748                      StructuredSubobjectInitList->getLocEnd()),
749                  "}");
750     }
751   }
752 }
753
754 /// Check whether the initializer \p IList (that was written with explicit
755 /// braces) can be used to initialize an object of type \p T.
756 ///
757 /// This also fills in \p StructuredList with the fully-braced, desugared
758 /// form of the initialization.
759 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
760                                             InitListExpr *IList, QualType &T,
761                                             InitListExpr *StructuredList,
762                                             bool TopLevelObject) {
763   if (!VerifyOnly) {
764     SyntacticToSemantic[IList] = StructuredList;
765     StructuredList->setSyntacticForm(IList);
766   }
767
768   unsigned Index = 0, StructuredIndex = 0;
769   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
770                         Index, StructuredList, StructuredIndex, TopLevelObject);
771   if (!VerifyOnly) {
772     QualType ExprTy = T;
773     if (!ExprTy->isArrayType())
774       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
775     IList->setType(ExprTy);
776     StructuredList->setType(ExprTy);
777   }
778   if (hadError)
779     return;
780
781   if (Index < IList->getNumInits()) {
782     // We have leftover initializers
783     if (VerifyOnly) {
784       if (SemaRef.getLangOpts().CPlusPlus ||
785           (SemaRef.getLangOpts().OpenCL &&
786            IList->getType()->isVectorType())) {
787         hadError = true;
788       }
789       return;
790     }
791
792     if (StructuredIndex == 1 &&
793         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
794             SIF_None) {
795       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
796       if (SemaRef.getLangOpts().CPlusPlus) {
797         DK = diag::err_excess_initializers_in_char_array_initializer;
798         hadError = true;
799       }
800       // Special-case
801       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
802         << IList->getInit(Index)->getSourceRange();
803     } else if (!T->isIncompleteType()) {
804       // Don't complain for incomplete types, since we'll get an error
805       // elsewhere
806       QualType CurrentObjectType = StructuredList->getType();
807       int initKind =
808         CurrentObjectType->isArrayType()? 0 :
809         CurrentObjectType->isVectorType()? 1 :
810         CurrentObjectType->isScalarType()? 2 :
811         CurrentObjectType->isUnionType()? 3 :
812         4;
813
814       unsigned DK = diag::ext_excess_initializers;
815       if (SemaRef.getLangOpts().CPlusPlus) {
816         DK = diag::err_excess_initializers;
817         hadError = true;
818       }
819       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
820         DK = diag::err_excess_initializers;
821         hadError = true;
822       }
823
824       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
825         << initKind << IList->getInit(Index)->getSourceRange();
826     }
827   }
828
829   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
830       !TopLevelObject)
831     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
832       << IList->getSourceRange()
833       << FixItHint::CreateRemoval(IList->getLocStart())
834       << FixItHint::CreateRemoval(IList->getLocEnd());
835 }
836
837 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
838                                             InitListExpr *IList,
839                                             QualType &DeclType,
840                                             bool SubobjectIsDesignatorContext,
841                                             unsigned &Index,
842                                             InitListExpr *StructuredList,
843                                             unsigned &StructuredIndex,
844                                             bool TopLevelObject) {
845   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
846     // Explicitly braced initializer for complex type can be real+imaginary
847     // parts.
848     CheckComplexType(Entity, IList, DeclType, Index,
849                      StructuredList, StructuredIndex);
850   } else if (DeclType->isScalarType()) {
851     CheckScalarType(Entity, IList, DeclType, Index,
852                     StructuredList, StructuredIndex);
853   } else if (DeclType->isVectorType()) {
854     CheckVectorType(Entity, IList, DeclType, Index,
855                     StructuredList, StructuredIndex);
856   } else if (DeclType->isRecordType()) {
857     assert(DeclType->isAggregateType() &&
858            "non-aggregate records should be handed in CheckSubElementType");
859     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
860     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
861                           SubobjectIsDesignatorContext, Index,
862                           StructuredList, StructuredIndex,
863                           TopLevelObject);
864   } else if (DeclType->isArrayType()) {
865     llvm::APSInt Zero(
866                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
867                     false);
868     CheckArrayType(Entity, IList, DeclType, Zero,
869                    SubobjectIsDesignatorContext, Index,
870                    StructuredList, StructuredIndex);
871   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
872     // This type is invalid, issue a diagnostic.
873     ++Index;
874     if (!VerifyOnly)
875       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
876         << DeclType;
877     hadError = true;
878   } else if (DeclType->isReferenceType()) {
879     CheckReferenceType(Entity, IList, DeclType, Index,
880                        StructuredList, StructuredIndex);
881   } else if (DeclType->isObjCObjectType()) {
882     if (!VerifyOnly)
883       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
884         << DeclType;
885     hadError = true;
886   } else {
887     if (!VerifyOnly)
888       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
889         << DeclType;
890     hadError = true;
891   }
892 }
893
894 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
895                                           InitListExpr *IList,
896                                           QualType ElemType,
897                                           unsigned &Index,
898                                           InitListExpr *StructuredList,
899                                           unsigned &StructuredIndex) {
900   Expr *expr = IList->getInit(Index);
901
902   if (ElemType->isReferenceType())
903     return CheckReferenceType(Entity, IList, ElemType, Index,
904                               StructuredList, StructuredIndex);
905
906   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
907     if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
908       InitListExpr *InnerStructuredList
909         = getStructuredSubobjectInit(IList, Index, ElemType,
910                                      StructuredList, StructuredIndex,
911                                      SubInitList->getSourceRange());
912       CheckExplicitInitList(Entity, SubInitList, ElemType,
913                             InnerStructuredList);
914       ++StructuredIndex;
915       ++Index;
916       return;
917     }
918     assert(SemaRef.getLangOpts().CPlusPlus &&
919            "non-aggregate records are only possible in C++");
920     // C++ initialization is handled later.
921   } else if (isa<ImplicitValueInitExpr>(expr)) {
922     // This happens during template instantiation when we see an InitListExpr
923     // that we've already checked once.
924     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
925            "found implicit initialization for the wrong type");
926     if (!VerifyOnly)
927       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
928     ++Index;
929     return;
930   }
931
932   // FIXME: Need to handle atomic aggregate types with implicit init lists.
933   if (ElemType->isScalarType() || ElemType->isAtomicType())
934     return CheckScalarType(Entity, IList, ElemType, Index,
935                            StructuredList, StructuredIndex);
936
937   assert((ElemType->isRecordType() || ElemType->isVectorType() ||
938           ElemType->isArrayType()) && "Unexpected type");
939
940   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
941     // arrayType can be incomplete if we're initializing a flexible
942     // array member.  There's nothing we can do with the completed
943     // type here, though.
944
945     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
946       if (!VerifyOnly) {
947         CheckStringInit(expr, ElemType, arrayType, SemaRef);
948         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
949       }
950       ++Index;
951       return;
952     }
953
954     // Fall through for subaggregate initialization.
955
956   } else if (SemaRef.getLangOpts().CPlusPlus) {
957     // C++ [dcl.init.aggr]p12:
958     //   All implicit type conversions (clause 4) are considered when
959     //   initializing the aggregate member with an initializer from
960     //   an initializer-list. If the initializer can initialize a
961     //   member, the member is initialized. [...]
962
963     // FIXME: Better EqualLoc?
964     InitializationKind Kind =
965       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
966     InitializationSequence Seq(SemaRef, Entity, Kind, expr);
967
968     if (Seq) {
969       if (!VerifyOnly) {
970         ExprResult Result =
971           Seq.Perform(SemaRef, Entity, Kind, expr);
972         if (Result.isInvalid())
973           hadError = true;
974
975         UpdateStructuredListElement(StructuredList, StructuredIndex,
976                                     Result.getAs<Expr>());
977       }
978       ++Index;
979       return;
980     }
981
982     // Fall through for subaggregate initialization
983   } else {
984     // C99 6.7.8p13:
985     //
986     //   The initializer for a structure or union object that has
987     //   automatic storage duration shall be either an initializer
988     //   list as described below, or a single expression that has
989     //   compatible structure or union type. In the latter case, the
990     //   initial value of the object, including unnamed members, is
991     //   that of the expression.
992     ExprResult ExprRes = expr;
993     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
994         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
995                                                  !VerifyOnly)
996           != Sema::Incompatible) {
997       if (ExprRes.isInvalid())
998         hadError = true;
999       else {
1000         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1001           if (ExprRes.isInvalid())
1002             hadError = true;
1003       }
1004       UpdateStructuredListElement(StructuredList, StructuredIndex,
1005                                   ExprRes.getAs<Expr>());
1006       ++Index;
1007       return;
1008     }
1009     ExprRes.get();
1010     // Fall through for subaggregate initialization
1011   }
1012
1013   // C++ [dcl.init.aggr]p12:
1014   //
1015   //   [...] Otherwise, if the member is itself a non-empty
1016   //   subaggregate, brace elision is assumed and the initializer is
1017   //   considered for the initialization of the first member of
1018   //   the subaggregate.
1019   if (!SemaRef.getLangOpts().OpenCL && 
1020       (ElemType->isAggregateType() || ElemType->isVectorType())) {
1021     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1022                           StructuredIndex);
1023     ++StructuredIndex;
1024   } else {
1025     if (!VerifyOnly) {
1026       // We cannot initialize this element, so let
1027       // PerformCopyInitialization produce the appropriate diagnostic.
1028       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1029                                         /*TopLevelOfInitList=*/true);
1030     }
1031     hadError = true;
1032     ++Index;
1033     ++StructuredIndex;
1034   }
1035 }
1036
1037 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1038                                        InitListExpr *IList, QualType DeclType,
1039                                        unsigned &Index,
1040                                        InitListExpr *StructuredList,
1041                                        unsigned &StructuredIndex) {
1042   assert(Index == 0 && "Index in explicit init list must be zero");
1043
1044   // As an extension, clang supports complex initializers, which initialize
1045   // a complex number component-wise.  When an explicit initializer list for
1046   // a complex number contains two two initializers, this extension kicks in:
1047   // it exepcts the initializer list to contain two elements convertible to
1048   // the element type of the complex type. The first element initializes
1049   // the real part, and the second element intitializes the imaginary part.
1050
1051   if (IList->getNumInits() != 2)
1052     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1053                            StructuredIndex);
1054
1055   // This is an extension in C.  (The builtin _Complex type does not exist
1056   // in the C++ standard.)
1057   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1058     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1059       << IList->getSourceRange();
1060
1061   // Initialize the complex number.
1062   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1063   InitializedEntity ElementEntity =
1064     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1065
1066   for (unsigned i = 0; i < 2; ++i) {
1067     ElementEntity.setElementIndex(Index);
1068     CheckSubElementType(ElementEntity, IList, elementType, Index,
1069                         StructuredList, StructuredIndex);
1070   }
1071 }
1072
1073
1074 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1075                                       InitListExpr *IList, QualType DeclType,
1076                                       unsigned &Index,
1077                                       InitListExpr *StructuredList,
1078                                       unsigned &StructuredIndex) {
1079   if (Index >= IList->getNumInits()) {
1080     if (!VerifyOnly)
1081       SemaRef.Diag(IList->getLocStart(),
1082                    SemaRef.getLangOpts().CPlusPlus11 ?
1083                      diag::warn_cxx98_compat_empty_scalar_initializer :
1084                      diag::err_empty_scalar_initializer)
1085         << IList->getSourceRange();
1086     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1087     ++Index;
1088     ++StructuredIndex;
1089     return;
1090   }
1091
1092   Expr *expr = IList->getInit(Index);
1093   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1094     // FIXME: This is invalid, and accepting it causes overload resolution
1095     // to pick the wrong overload in some corner cases.
1096     if (!VerifyOnly)
1097       SemaRef.Diag(SubIList->getLocStart(),
1098                    diag::ext_many_braces_around_scalar_init)
1099         << SubIList->getSourceRange();
1100
1101     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1102                     StructuredIndex);
1103     return;
1104   } else if (isa<DesignatedInitExpr>(expr)) {
1105     if (!VerifyOnly)
1106       SemaRef.Diag(expr->getLocStart(),
1107                    diag::err_designator_for_scalar_init)
1108         << DeclType << expr->getSourceRange();
1109     hadError = true;
1110     ++Index;
1111     ++StructuredIndex;
1112     return;
1113   }
1114
1115   if (VerifyOnly) {
1116     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1117       hadError = true;
1118     ++Index;
1119     return;
1120   }
1121
1122   ExprResult Result =
1123     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1124                                       /*TopLevelOfInitList=*/true);
1125
1126   Expr *ResultExpr = nullptr;
1127
1128   if (Result.isInvalid())
1129     hadError = true; // types weren't compatible.
1130   else {
1131     ResultExpr = Result.getAs<Expr>();
1132
1133     if (ResultExpr != expr) {
1134       // The type was promoted, update initializer list.
1135       IList->setInit(Index, ResultExpr);
1136     }
1137   }
1138   if (hadError)
1139     ++StructuredIndex;
1140   else
1141     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1142   ++Index;
1143 }
1144
1145 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1146                                          InitListExpr *IList, QualType DeclType,
1147                                          unsigned &Index,
1148                                          InitListExpr *StructuredList,
1149                                          unsigned &StructuredIndex) {
1150   if (Index >= IList->getNumInits()) {
1151     // FIXME: It would be wonderful if we could point at the actual member. In
1152     // general, it would be useful to pass location information down the stack,
1153     // so that we know the location (or decl) of the "current object" being
1154     // initialized.
1155     if (!VerifyOnly)
1156       SemaRef.Diag(IList->getLocStart(),
1157                     diag::err_init_reference_member_uninitialized)
1158         << DeclType
1159         << IList->getSourceRange();
1160     hadError = true;
1161     ++Index;
1162     ++StructuredIndex;
1163     return;
1164   }
1165
1166   Expr *expr = IList->getInit(Index);
1167   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1168     if (!VerifyOnly)
1169       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1170         << DeclType << IList->getSourceRange();
1171     hadError = true;
1172     ++Index;
1173     ++StructuredIndex;
1174     return;
1175   }
1176
1177   if (VerifyOnly) {
1178     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1179       hadError = true;
1180     ++Index;
1181     return;
1182   }
1183
1184   ExprResult Result =
1185       SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1186                                         /*TopLevelOfInitList=*/true);
1187
1188   if (Result.isInvalid())
1189     hadError = true;
1190
1191   expr = Result.getAs<Expr>();
1192   IList->setInit(Index, expr);
1193
1194   if (hadError)
1195     ++StructuredIndex;
1196   else
1197     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1198   ++Index;
1199 }
1200
1201 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1202                                       InitListExpr *IList, QualType DeclType,
1203                                       unsigned &Index,
1204                                       InitListExpr *StructuredList,
1205                                       unsigned &StructuredIndex) {
1206   const VectorType *VT = DeclType->getAs<VectorType>();
1207   unsigned maxElements = VT->getNumElements();
1208   unsigned numEltsInit = 0;
1209   QualType elementType = VT->getElementType();
1210
1211   if (Index >= IList->getNumInits()) {
1212     // Make sure the element type can be value-initialized.
1213     if (VerifyOnly)
1214       CheckEmptyInitializable(
1215           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1216           IList->getLocEnd());
1217     return;
1218   }
1219
1220   if (!SemaRef.getLangOpts().OpenCL) {
1221     // If the initializing element is a vector, try to copy-initialize
1222     // instead of breaking it apart (which is doomed to failure anyway).
1223     Expr *Init = IList->getInit(Index);
1224     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1225       if (VerifyOnly) {
1226         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1227           hadError = true;
1228         ++Index;
1229         return;
1230       }
1231
1232   ExprResult Result =
1233       SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1234                                         /*TopLevelOfInitList=*/true);
1235
1236       Expr *ResultExpr = nullptr;
1237       if (Result.isInvalid())
1238         hadError = true; // types weren't compatible.
1239       else {
1240         ResultExpr = Result.getAs<Expr>();
1241
1242         if (ResultExpr != Init) {
1243           // The type was promoted, update initializer list.
1244           IList->setInit(Index, ResultExpr);
1245         }
1246       }
1247       if (hadError)
1248         ++StructuredIndex;
1249       else
1250         UpdateStructuredListElement(StructuredList, StructuredIndex,
1251                                     ResultExpr);
1252       ++Index;
1253       return;
1254     }
1255
1256     InitializedEntity ElementEntity =
1257       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1258
1259     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1260       // Don't attempt to go past the end of the init list
1261       if (Index >= IList->getNumInits()) {
1262         if (VerifyOnly)
1263           CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1264         break;
1265       }
1266
1267       ElementEntity.setElementIndex(Index);
1268       CheckSubElementType(ElementEntity, IList, elementType, Index,
1269                           StructuredList, StructuredIndex);
1270     }
1271
1272     if (VerifyOnly)
1273       return;
1274
1275     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1276     const VectorType *T = Entity.getType()->getAs<VectorType>();
1277     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1278                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1279       // The ability to use vector initializer lists is a GNU vector extension
1280       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1281       // endian machines it works fine, however on big endian machines it 
1282       // exhibits surprising behaviour:
1283       //
1284       //   uint32x2_t x = {42, 64};
1285       //   return vget_lane_u32(x, 0); // Will return 64.
1286       //
1287       // Because of this, explicitly call out that it is non-portable.
1288       //
1289       SemaRef.Diag(IList->getLocStart(),
1290                    diag::warn_neon_vector_initializer_non_portable);
1291
1292       const char *typeCode;
1293       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1294
1295       if (elementType->isFloatingType())
1296         typeCode = "f";
1297       else if (elementType->isSignedIntegerType())
1298         typeCode = "s";
1299       else if (elementType->isUnsignedIntegerType())
1300         typeCode = "u";
1301       else
1302         llvm_unreachable("Invalid element type!");
1303
1304       SemaRef.Diag(IList->getLocStart(),
1305                    SemaRef.Context.getTypeSize(VT) > 64 ?
1306                    diag::note_neon_vector_initializer_non_portable_q :
1307                    diag::note_neon_vector_initializer_non_portable)
1308         << typeCode << typeSize;
1309     }
1310
1311     return;
1312   }
1313
1314   InitializedEntity ElementEntity =
1315     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1316
1317   // OpenCL initializers allows vectors to be constructed from vectors.
1318   for (unsigned i = 0; i < maxElements; ++i) {
1319     // Don't attempt to go past the end of the init list
1320     if (Index >= IList->getNumInits())
1321       break;
1322
1323     ElementEntity.setElementIndex(Index);
1324
1325     QualType IType = IList->getInit(Index)->getType();
1326     if (!IType->isVectorType()) {
1327       CheckSubElementType(ElementEntity, IList, elementType, Index,
1328                           StructuredList, StructuredIndex);
1329       ++numEltsInit;
1330     } else {
1331       QualType VecType;
1332       const VectorType *IVT = IType->getAs<VectorType>();
1333       unsigned numIElts = IVT->getNumElements();
1334
1335       if (IType->isExtVectorType())
1336         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1337       else
1338         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1339                                                 IVT->getVectorKind());
1340       CheckSubElementType(ElementEntity, IList, VecType, Index,
1341                           StructuredList, StructuredIndex);
1342       numEltsInit += numIElts;
1343     }
1344   }
1345
1346   // OpenCL requires all elements to be initialized.
1347   if (numEltsInit != maxElements) {
1348     if (!VerifyOnly)
1349       SemaRef.Diag(IList->getLocStart(),
1350                    diag::err_vector_incorrect_num_initializers)
1351         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1352     hadError = true;
1353   }
1354 }
1355
1356 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1357                                      InitListExpr *IList, QualType &DeclType,
1358                                      llvm::APSInt elementIndex,
1359                                      bool SubobjectIsDesignatorContext,
1360                                      unsigned &Index,
1361                                      InitListExpr *StructuredList,
1362                                      unsigned &StructuredIndex) {
1363   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1364
1365   // Check for the special-case of initializing an array with a string.
1366   if (Index < IList->getNumInits()) {
1367     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1368         SIF_None) {
1369       // We place the string literal directly into the resulting
1370       // initializer list. This is the only place where the structure
1371       // of the structured initializer list doesn't match exactly,
1372       // because doing so would involve allocating one character
1373       // constant for each string.
1374       if (!VerifyOnly) {
1375         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1376         UpdateStructuredListElement(StructuredList, StructuredIndex,
1377                                     IList->getInit(Index));
1378         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1379       }
1380       ++Index;
1381       return;
1382     }
1383   }
1384   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1385     // Check for VLAs; in standard C it would be possible to check this
1386     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1387     // them in all sorts of strange places).
1388     if (!VerifyOnly)
1389       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1390                     diag::err_variable_object_no_init)
1391         << VAT->getSizeExpr()->getSourceRange();
1392     hadError = true;
1393     ++Index;
1394     ++StructuredIndex;
1395     return;
1396   }
1397
1398   // We might know the maximum number of elements in advance.
1399   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1400                            elementIndex.isUnsigned());
1401   bool maxElementsKnown = false;
1402   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1403     maxElements = CAT->getSize();
1404     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1405     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1406     maxElementsKnown = true;
1407   }
1408
1409   QualType elementType = arrayType->getElementType();
1410   while (Index < IList->getNumInits()) {
1411     Expr *Init = IList->getInit(Index);
1412     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1413       // If we're not the subobject that matches up with the '{' for
1414       // the designator, we shouldn't be handling the
1415       // designator. Return immediately.
1416       if (!SubobjectIsDesignatorContext)
1417         return;
1418
1419       // Handle this designated initializer. elementIndex will be
1420       // updated to be the next array element we'll initialize.
1421       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1422                                      DeclType, nullptr, &elementIndex, Index,
1423                                      StructuredList, StructuredIndex, true,
1424                                      false)) {
1425         hadError = true;
1426         continue;
1427       }
1428
1429       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1430         maxElements = maxElements.extend(elementIndex.getBitWidth());
1431       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1432         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1433       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1434
1435       // If the array is of incomplete type, keep track of the number of
1436       // elements in the initializer.
1437       if (!maxElementsKnown && elementIndex > maxElements)
1438         maxElements = elementIndex;
1439
1440       continue;
1441     }
1442
1443     // If we know the maximum number of elements, and we've already
1444     // hit it, stop consuming elements in the initializer list.
1445     if (maxElementsKnown && elementIndex == maxElements)
1446       break;
1447
1448     InitializedEntity ElementEntity =
1449       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1450                                            Entity);
1451     // Check this element.
1452     CheckSubElementType(ElementEntity, IList, elementType, Index,
1453                         StructuredList, StructuredIndex);
1454     ++elementIndex;
1455
1456     // If the array is of incomplete type, keep track of the number of
1457     // elements in the initializer.
1458     if (!maxElementsKnown && elementIndex > maxElements)
1459       maxElements = elementIndex;
1460   }
1461   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1462     // If this is an incomplete array type, the actual type needs to
1463     // be calculated here.
1464     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1465     if (maxElements == Zero) {
1466       // Sizing an array implicitly to zero is not allowed by ISO C,
1467       // but is supported by GNU.
1468       SemaRef.Diag(IList->getLocStart(),
1469                     diag::ext_typecheck_zero_array_size);
1470     }
1471
1472     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1473                                                      ArrayType::Normal, 0);
1474   }
1475   if (!hadError && VerifyOnly) {
1476     // Check if there are any members of the array that get value-initialized.
1477     // If so, check if doing that is possible.
1478     // FIXME: This needs to detect holes left by designated initializers too.
1479     if (maxElementsKnown && elementIndex < maxElements)
1480       CheckEmptyInitializable(InitializedEntity::InitializeElement(
1481                                                   SemaRef.Context, 0, Entity),
1482                               IList->getLocEnd());
1483   }
1484 }
1485
1486 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1487                                              Expr *InitExpr,
1488                                              FieldDecl *Field,
1489                                              bool TopLevelObject) {
1490   // Handle GNU flexible array initializers.
1491   unsigned FlexArrayDiag;
1492   if (isa<InitListExpr>(InitExpr) &&
1493       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1494     // Empty flexible array init always allowed as an extension
1495     FlexArrayDiag = diag::ext_flexible_array_init;
1496   } else if (SemaRef.getLangOpts().CPlusPlus) {
1497     // Disallow flexible array init in C++; it is not required for gcc
1498     // compatibility, and it needs work to IRGen correctly in general.
1499     FlexArrayDiag = diag::err_flexible_array_init;
1500   } else if (!TopLevelObject) {
1501     // Disallow flexible array init on non-top-level object
1502     FlexArrayDiag = diag::err_flexible_array_init;
1503   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1504     // Disallow flexible array init on anything which is not a variable.
1505     FlexArrayDiag = diag::err_flexible_array_init;
1506   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1507     // Disallow flexible array init on local variables.
1508     FlexArrayDiag = diag::err_flexible_array_init;
1509   } else {
1510     // Allow other cases.
1511     FlexArrayDiag = diag::ext_flexible_array_init;
1512   }
1513
1514   if (!VerifyOnly) {
1515     SemaRef.Diag(InitExpr->getLocStart(),
1516                  FlexArrayDiag)
1517       << InitExpr->getLocStart();
1518     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1519       << Field;
1520   }
1521
1522   return FlexArrayDiag != diag::ext_flexible_array_init;
1523 }
1524
1525 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1526                                             InitListExpr *IList,
1527                                             QualType DeclType,
1528                                             RecordDecl::field_iterator Field,
1529                                             bool SubobjectIsDesignatorContext,
1530                                             unsigned &Index,
1531                                             InitListExpr *StructuredList,
1532                                             unsigned &StructuredIndex,
1533                                             bool TopLevelObject) {
1534   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1535
1536   // If the record is invalid, some of it's members are invalid. To avoid
1537   // confusion, we forgo checking the intializer for the entire record.
1538   if (structDecl->isInvalidDecl()) {
1539     // Assume it was supposed to consume a single initializer.
1540     ++Index;
1541     hadError = true;
1542     return;
1543   }
1544
1545   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1546     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1547
1548     // If there's a default initializer, use it.
1549     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1550       if (VerifyOnly)
1551         return;
1552       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1553            Field != FieldEnd; ++Field) {
1554         if (Field->hasInClassInitializer()) {
1555           StructuredList->setInitializedFieldInUnion(*Field);
1556           // FIXME: Actually build a CXXDefaultInitExpr?
1557           return;
1558         }
1559       }
1560     }
1561
1562     // Value-initialize the first member of the union that isn't an unnamed
1563     // bitfield.
1564     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1565          Field != FieldEnd; ++Field) {
1566       if (!Field->isUnnamedBitfield()) {
1567         if (VerifyOnly)
1568           CheckEmptyInitializable(
1569               InitializedEntity::InitializeMember(*Field, &Entity),
1570               IList->getLocEnd());
1571         else
1572           StructuredList->setInitializedFieldInUnion(*Field);
1573         break;
1574       }
1575     }
1576     return;
1577   }
1578
1579   // If structDecl is a forward declaration, this loop won't do
1580   // anything except look at designated initializers; That's okay,
1581   // because an error should get printed out elsewhere. It might be
1582   // worthwhile to skip over the rest of the initializer, though.
1583   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1584   RecordDecl::field_iterator FieldEnd = RD->field_end();
1585   bool InitializedSomething = false;
1586   bool CheckForMissingFields = true;
1587   while (Index < IList->getNumInits()) {
1588     Expr *Init = IList->getInit(Index);
1589
1590     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1591       // If we're not the subobject that matches up with the '{' for
1592       // the designator, we shouldn't be handling the
1593       // designator. Return immediately.
1594       if (!SubobjectIsDesignatorContext)
1595         return;
1596
1597       // Handle this designated initializer. Field will be updated to
1598       // the next field that we'll be initializing.
1599       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1600                                      DeclType, &Field, nullptr, Index,
1601                                      StructuredList, StructuredIndex,
1602                                      true, TopLevelObject))
1603         hadError = true;
1604
1605       InitializedSomething = true;
1606
1607       // Disable check for missing fields when designators are used.
1608       // This matches gcc behaviour.
1609       CheckForMissingFields = false;
1610       continue;
1611     }
1612
1613     if (Field == FieldEnd) {
1614       // We've run out of fields. We're done.
1615       break;
1616     }
1617
1618     // We've already initialized a member of a union. We're done.
1619     if (InitializedSomething && DeclType->isUnionType())
1620       break;
1621
1622     // If we've hit the flexible array member at the end, we're done.
1623     if (Field->getType()->isIncompleteArrayType())
1624       break;
1625
1626     if (Field->isUnnamedBitfield()) {
1627       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1628       ++Field;
1629       continue;
1630     }
1631
1632     // Make sure we can use this declaration.
1633     bool InvalidUse;
1634     if (VerifyOnly)
1635       InvalidUse = !SemaRef.CanUseDecl(*Field);
1636     else
1637       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1638                                           IList->getInit(Index)->getLocStart());
1639     if (InvalidUse) {
1640       ++Index;
1641       ++Field;
1642       hadError = true;
1643       continue;
1644     }
1645
1646     InitializedEntity MemberEntity =
1647       InitializedEntity::InitializeMember(*Field, &Entity);
1648     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1649                         StructuredList, StructuredIndex);
1650     InitializedSomething = true;
1651
1652     if (DeclType->isUnionType() && !VerifyOnly) {
1653       // Initialize the first field within the union.
1654       StructuredList->setInitializedFieldInUnion(*Field);
1655     }
1656
1657     ++Field;
1658   }
1659
1660   // Emit warnings for missing struct field initializers.
1661   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1662       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1663       !DeclType->isUnionType()) {
1664     // It is possible we have one or more unnamed bitfields remaining.
1665     // Find first (if any) named field and emit warning.
1666     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1667          it != end; ++it) {
1668       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1669         SemaRef.Diag(IList->getSourceRange().getEnd(),
1670                      diag::warn_missing_field_initializers) << *it;
1671         break;
1672       }
1673     }
1674   }
1675
1676   // Check that any remaining fields can be value-initialized.
1677   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1678       !Field->getType()->isIncompleteArrayType()) {
1679     // FIXME: Should check for holes left by designated initializers too.
1680     for (; Field != FieldEnd && !hadError; ++Field) {
1681       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1682         CheckEmptyInitializable(
1683             InitializedEntity::InitializeMember(*Field, &Entity),
1684             IList->getLocEnd());
1685     }
1686   }
1687
1688   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1689       Index >= IList->getNumInits())
1690     return;
1691
1692   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1693                              TopLevelObject)) {
1694     hadError = true;
1695     ++Index;
1696     return;
1697   }
1698
1699   InitializedEntity MemberEntity =
1700     InitializedEntity::InitializeMember(*Field, &Entity);
1701
1702   if (isa<InitListExpr>(IList->getInit(Index)))
1703     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1704                         StructuredList, StructuredIndex);
1705   else
1706     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1707                           StructuredList, StructuredIndex);
1708 }
1709
1710 /// \brief Expand a field designator that refers to a member of an
1711 /// anonymous struct or union into a series of field designators that
1712 /// refers to the field within the appropriate subobject.
1713 ///
1714 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1715                                            DesignatedInitExpr *DIE,
1716                                            unsigned DesigIdx,
1717                                            IndirectFieldDecl *IndirectField) {
1718   typedef DesignatedInitExpr::Designator Designator;
1719
1720   // Build the replacement designators.
1721   SmallVector<Designator, 4> Replacements;
1722   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1723        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1724     if (PI + 1 == PE)
1725       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1726                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1727                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1728     else
1729       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1730                                         SourceLocation(), SourceLocation()));
1731     assert(isa<FieldDecl>(*PI));
1732     Replacements.back().setField(cast<FieldDecl>(*PI));
1733   }
1734
1735   // Expand the current designator into the set of replacement
1736   // designators, so we have a full subobject path down to where the
1737   // member of the anonymous struct/union is actually stored.
1738   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1739                         &Replacements[0] + Replacements.size());
1740 }
1741
1742 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1743                                                    DesignatedInitExpr *DIE) {
1744   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1745   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1746   for (unsigned I = 0; I < NumIndexExprs; ++I)
1747     IndexExprs[I] = DIE->getSubExpr(I + 1);
1748   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1749                                     DIE->size(), IndexExprs,
1750                                     DIE->getEqualOrColonLoc(),
1751                                     DIE->usesGNUSyntax(), DIE->getInit());
1752 }
1753
1754 namespace {
1755
1756 // Callback to only accept typo corrections that are for field members of
1757 // the given struct or union.
1758 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1759  public:
1760   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1761       : Record(RD) {}
1762
1763   bool ValidateCandidate(const TypoCorrection &candidate) override {
1764     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1765     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1766   }
1767
1768  private:
1769   RecordDecl *Record;
1770 };
1771
1772 }
1773
1774 /// @brief Check the well-formedness of a C99 designated initializer.
1775 ///
1776 /// Determines whether the designated initializer @p DIE, which
1777 /// resides at the given @p Index within the initializer list @p
1778 /// IList, is well-formed for a current object of type @p DeclType
1779 /// (C99 6.7.8). The actual subobject that this designator refers to
1780 /// within the current subobject is returned in either
1781 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1782 ///
1783 /// @param IList  The initializer list in which this designated
1784 /// initializer occurs.
1785 ///
1786 /// @param DIE The designated initializer expression.
1787 ///
1788 /// @param DesigIdx  The index of the current designator.
1789 ///
1790 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1791 /// into which the designation in @p DIE should refer.
1792 ///
1793 /// @param NextField  If non-NULL and the first designator in @p DIE is
1794 /// a field, this will be set to the field declaration corresponding
1795 /// to the field named by the designator.
1796 ///
1797 /// @param NextElementIndex  If non-NULL and the first designator in @p
1798 /// DIE is an array designator or GNU array-range designator, this
1799 /// will be set to the last index initialized by this designator.
1800 ///
1801 /// @param Index  Index into @p IList where the designated initializer
1802 /// @p DIE occurs.
1803 ///
1804 /// @param StructuredList  The initializer list expression that
1805 /// describes all of the subobject initializers in the order they'll
1806 /// actually be initialized.
1807 ///
1808 /// @returns true if there was an error, false otherwise.
1809 bool
1810 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1811                                             InitListExpr *IList,
1812                                             DesignatedInitExpr *DIE,
1813                                             unsigned DesigIdx,
1814                                             QualType &CurrentObjectType,
1815                                           RecordDecl::field_iterator *NextField,
1816                                             llvm::APSInt *NextElementIndex,
1817                                             unsigned &Index,
1818                                             InitListExpr *StructuredList,
1819                                             unsigned &StructuredIndex,
1820                                             bool FinishSubobjectInit,
1821                                             bool TopLevelObject) {
1822   if (DesigIdx == DIE->size()) {
1823     // Check the actual initialization for the designated object type.
1824     bool prevHadError = hadError;
1825
1826     // Temporarily remove the designator expression from the
1827     // initializer list that the child calls see, so that we don't try
1828     // to re-process the designator.
1829     unsigned OldIndex = Index;
1830     IList->setInit(OldIndex, DIE->getInit());
1831
1832     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1833                         StructuredList, StructuredIndex);
1834
1835     // Restore the designated initializer expression in the syntactic
1836     // form of the initializer list.
1837     if (IList->getInit(OldIndex) != DIE->getInit())
1838       DIE->setInit(IList->getInit(OldIndex));
1839     IList->setInit(OldIndex, DIE);
1840
1841     return hadError && !prevHadError;
1842   }
1843
1844   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1845   bool IsFirstDesignator = (DesigIdx == 0);
1846   if (!VerifyOnly) {
1847     assert((IsFirstDesignator || StructuredList) &&
1848            "Need a non-designated initializer list to start from");
1849
1850     // Determine the structural initializer list that corresponds to the
1851     // current subobject.
1852     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1853       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1854                                    StructuredList, StructuredIndex,
1855                                    SourceRange(D->getLocStart(),
1856                                                DIE->getLocEnd()));
1857     assert(StructuredList && "Expected a structured initializer list");
1858   }
1859
1860   if (D->isFieldDesignator()) {
1861     // C99 6.7.8p7:
1862     //
1863     //   If a designator has the form
1864     //
1865     //      . identifier
1866     //
1867     //   then the current object (defined below) shall have
1868     //   structure or union type and the identifier shall be the
1869     //   name of a member of that type.
1870     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1871     if (!RT) {
1872       SourceLocation Loc = D->getDotLoc();
1873       if (Loc.isInvalid())
1874         Loc = D->getFieldLoc();
1875       if (!VerifyOnly)
1876         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1877           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1878       ++Index;
1879       return true;
1880     }
1881
1882     FieldDecl *KnownField = D->getField();
1883     if (!KnownField) {
1884       IdentifierInfo *FieldName = D->getFieldName();
1885       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1886       for (NamedDecl *ND : Lookup) {
1887         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
1888           KnownField = FD;
1889           break;
1890         }
1891         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
1892           // In verify mode, don't modify the original.
1893           if (VerifyOnly)
1894             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1895           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
1896           D = DIE->getDesignator(DesigIdx);
1897           KnownField = cast<FieldDecl>(*IFD->chain_begin());
1898           break;
1899         }
1900       }
1901       if (!KnownField) {
1902         if (VerifyOnly) {
1903           ++Index;
1904           return true;  // No typo correction when just trying this out.
1905         }
1906
1907         // Name lookup found something, but it wasn't a field.
1908         if (!Lookup.empty()) {
1909           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1910             << FieldName;
1911           SemaRef.Diag(Lookup.front()->getLocation(),
1912                        diag::note_field_designator_found);
1913           ++Index;
1914           return true;
1915         }
1916
1917         // Name lookup didn't find anything.
1918         // Determine whether this was a typo for another field name.
1919         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
1920                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
1921                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
1922                 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
1923                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
1924           SemaRef.diagnoseTypo(
1925               Corrected,
1926               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
1927                 << FieldName << CurrentObjectType);
1928           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
1929           hadError = true;
1930         } else {
1931           // Typo correction didn't find anything.
1932           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1933             << FieldName << CurrentObjectType;
1934           ++Index;
1935           return true;
1936         }
1937       }
1938     }
1939
1940     unsigned FieldIndex = 0;
1941     for (auto *FI : RT->getDecl()->fields()) {
1942       if (FI->isUnnamedBitfield())
1943         continue;
1944       if (KnownField == FI)
1945         break;
1946       ++FieldIndex;
1947     }
1948
1949     RecordDecl::field_iterator Field =
1950         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
1951
1952     // All of the fields of a union are located at the same place in
1953     // the initializer list.
1954     if (RT->getDecl()->isUnion()) {
1955       FieldIndex = 0;
1956       if (!VerifyOnly) {
1957         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
1958         if (CurrentField && CurrentField != *Field) {
1959           assert(StructuredList->getNumInits() == 1
1960                  && "A union should never have more than one initializer!");
1961
1962           // we're about to throw away an initializer, emit warning
1963           SemaRef.Diag(D->getFieldLoc(),
1964                        diag::warn_initializer_overrides)
1965             << D->getSourceRange();
1966           Expr *ExistingInit = StructuredList->getInit(0);
1967           SemaRef.Diag(ExistingInit->getLocStart(),
1968                        diag::note_previous_initializer)
1969             << /*FIXME:has side effects=*/0
1970             << ExistingInit->getSourceRange();
1971
1972           // remove existing initializer
1973           StructuredList->resizeInits(SemaRef.Context, 0);
1974           StructuredList->setInitializedFieldInUnion(nullptr);
1975         }
1976
1977         StructuredList->setInitializedFieldInUnion(*Field);
1978       }
1979     }
1980
1981     // Make sure we can use this declaration.
1982     bool InvalidUse;
1983     if (VerifyOnly)
1984       InvalidUse = !SemaRef.CanUseDecl(*Field);
1985     else
1986       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1987     if (InvalidUse) {
1988       ++Index;
1989       return true;
1990     }
1991
1992     if (!VerifyOnly) {
1993       // Update the designator with the field declaration.
1994       D->setField(*Field);
1995
1996       // Make sure that our non-designated initializer list has space
1997       // for a subobject corresponding to this field.
1998       if (FieldIndex >= StructuredList->getNumInits())
1999         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2000     }
2001
2002     // This designator names a flexible array member.
2003     if (Field->getType()->isIncompleteArrayType()) {
2004       bool Invalid = false;
2005       if ((DesigIdx + 1) != DIE->size()) {
2006         // We can't designate an object within the flexible array
2007         // member (because GCC doesn't allow it).
2008         if (!VerifyOnly) {
2009           DesignatedInitExpr::Designator *NextD
2010             = DIE->getDesignator(DesigIdx + 1);
2011           SemaRef.Diag(NextD->getLocStart(),
2012                         diag::err_designator_into_flexible_array_member)
2013             << SourceRange(NextD->getLocStart(),
2014                            DIE->getLocEnd());
2015           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2016             << *Field;
2017         }
2018         Invalid = true;
2019       }
2020
2021       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2022           !isa<StringLiteral>(DIE->getInit())) {
2023         // The initializer is not an initializer list.
2024         if (!VerifyOnly) {
2025           SemaRef.Diag(DIE->getInit()->getLocStart(),
2026                         diag::err_flexible_array_init_needs_braces)
2027             << DIE->getInit()->getSourceRange();
2028           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2029             << *Field;
2030         }
2031         Invalid = true;
2032       }
2033
2034       // Check GNU flexible array initializer.
2035       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2036                                              TopLevelObject))
2037         Invalid = true;
2038
2039       if (Invalid) {
2040         ++Index;
2041         return true;
2042       }
2043
2044       // Initialize the array.
2045       bool prevHadError = hadError;
2046       unsigned newStructuredIndex = FieldIndex;
2047       unsigned OldIndex = Index;
2048       IList->setInit(Index, DIE->getInit());
2049
2050       InitializedEntity MemberEntity =
2051         InitializedEntity::InitializeMember(*Field, &Entity);
2052       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2053                           StructuredList, newStructuredIndex);
2054
2055       IList->setInit(OldIndex, DIE);
2056       if (hadError && !prevHadError) {
2057         ++Field;
2058         ++FieldIndex;
2059         if (NextField)
2060           *NextField = Field;
2061         StructuredIndex = FieldIndex;
2062         return true;
2063       }
2064     } else {
2065       // Recurse to check later designated subobjects.
2066       QualType FieldType = Field->getType();
2067       unsigned newStructuredIndex = FieldIndex;
2068
2069       InitializedEntity MemberEntity =
2070         InitializedEntity::InitializeMember(*Field, &Entity);
2071       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2072                                      FieldType, nullptr, nullptr, Index,
2073                                      StructuredList, newStructuredIndex,
2074                                      true, false))
2075         return true;
2076     }
2077
2078     // Find the position of the next field to be initialized in this
2079     // subobject.
2080     ++Field;
2081     ++FieldIndex;
2082
2083     // If this the first designator, our caller will continue checking
2084     // the rest of this struct/class/union subobject.
2085     if (IsFirstDesignator) {
2086       if (NextField)
2087         *NextField = Field;
2088       StructuredIndex = FieldIndex;
2089       return false;
2090     }
2091
2092     if (!FinishSubobjectInit)
2093       return false;
2094
2095     // We've already initialized something in the union; we're done.
2096     if (RT->getDecl()->isUnion())
2097       return hadError;
2098
2099     // Check the remaining fields within this class/struct/union subobject.
2100     bool prevHadError = hadError;
2101
2102     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
2103                           StructuredList, FieldIndex);
2104     return hadError && !prevHadError;
2105   }
2106
2107   // C99 6.7.8p6:
2108   //
2109   //   If a designator has the form
2110   //
2111   //      [ constant-expression ]
2112   //
2113   //   then the current object (defined below) shall have array
2114   //   type and the expression shall be an integer constant
2115   //   expression. If the array is of unknown size, any
2116   //   nonnegative value is valid.
2117   //
2118   // Additionally, cope with the GNU extension that permits
2119   // designators of the form
2120   //
2121   //      [ constant-expression ... constant-expression ]
2122   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2123   if (!AT) {
2124     if (!VerifyOnly)
2125       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2126         << CurrentObjectType;
2127     ++Index;
2128     return true;
2129   }
2130
2131   Expr *IndexExpr = nullptr;
2132   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2133   if (D->isArrayDesignator()) {
2134     IndexExpr = DIE->getArrayIndex(*D);
2135     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2136     DesignatedEndIndex = DesignatedStartIndex;
2137   } else {
2138     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2139
2140     DesignatedStartIndex =
2141       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2142     DesignatedEndIndex =
2143       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2144     IndexExpr = DIE->getArrayRangeEnd(*D);
2145
2146     // Codegen can't handle evaluating array range designators that have side
2147     // effects, because we replicate the AST value for each initialized element.
2148     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2149     // elements with something that has a side effect, so codegen can emit an
2150     // "error unsupported" error instead of miscompiling the app.
2151     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2152         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2153       FullyStructuredList->sawArrayRangeDesignator();
2154   }
2155
2156   if (isa<ConstantArrayType>(AT)) {
2157     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2158     DesignatedStartIndex
2159       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2160     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2161     DesignatedEndIndex
2162       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2163     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2164     if (DesignatedEndIndex >= MaxElements) {
2165       if (!VerifyOnly)
2166         SemaRef.Diag(IndexExpr->getLocStart(),
2167                       diag::err_array_designator_too_large)
2168           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2169           << IndexExpr->getSourceRange();
2170       ++Index;
2171       return true;
2172     }
2173   } else {
2174     // Make sure the bit-widths and signedness match.
2175     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2176       DesignatedEndIndex
2177         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2178     else if (DesignatedStartIndex.getBitWidth() <
2179              DesignatedEndIndex.getBitWidth())
2180       DesignatedStartIndex
2181         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2182     DesignatedStartIndex.setIsUnsigned(true);
2183     DesignatedEndIndex.setIsUnsigned(true);
2184   }
2185
2186   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2187     // We're modifying a string literal init; we have to decompose the string
2188     // so we can modify the individual characters.
2189     ASTContext &Context = SemaRef.Context;
2190     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2191
2192     // Compute the character type
2193     QualType CharTy = AT->getElementType();
2194
2195     // Compute the type of the integer literals.
2196     QualType PromotedCharTy = CharTy;
2197     if (CharTy->isPromotableIntegerType())
2198       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2199     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2200
2201     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2202       // Get the length of the string.
2203       uint64_t StrLen = SL->getLength();
2204       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2205         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2206       StructuredList->resizeInits(Context, StrLen);
2207
2208       // Build a literal for each character in the string, and put them into
2209       // the init list.
2210       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2211         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2212         Expr *Init = new (Context) IntegerLiteral(
2213             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2214         if (CharTy != PromotedCharTy)
2215           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2216                                           Init, nullptr, VK_RValue);
2217         StructuredList->updateInit(Context, i, Init);
2218       }
2219     } else {
2220       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2221       std::string Str;
2222       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2223
2224       // Get the length of the string.
2225       uint64_t StrLen = Str.size();
2226       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2227         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2228       StructuredList->resizeInits(Context, StrLen);
2229
2230       // Build a literal for each character in the string, and put them into
2231       // the init list.
2232       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2233         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2234         Expr *Init = new (Context) IntegerLiteral(
2235             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2236         if (CharTy != PromotedCharTy)
2237           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2238                                           Init, nullptr, VK_RValue);
2239         StructuredList->updateInit(Context, i, Init);
2240       }
2241     }
2242   }
2243
2244   // Make sure that our non-designated initializer list has space
2245   // for a subobject corresponding to this array element.
2246   if (!VerifyOnly &&
2247       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2248     StructuredList->resizeInits(SemaRef.Context,
2249                                 DesignatedEndIndex.getZExtValue() + 1);
2250
2251   // Repeatedly perform subobject initializations in the range
2252   // [DesignatedStartIndex, DesignatedEndIndex].
2253
2254   // Move to the next designator
2255   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2256   unsigned OldIndex = Index;
2257
2258   InitializedEntity ElementEntity =
2259     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2260
2261   while (DesignatedStartIndex <= DesignatedEndIndex) {
2262     // Recurse to check later designated subobjects.
2263     QualType ElementType = AT->getElementType();
2264     Index = OldIndex;
2265
2266     ElementEntity.setElementIndex(ElementIndex);
2267     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2268                                    ElementType, nullptr, nullptr, Index,
2269                                    StructuredList, ElementIndex,
2270                                    (DesignatedStartIndex == DesignatedEndIndex),
2271                                    false))
2272       return true;
2273
2274     // Move to the next index in the array that we'll be initializing.
2275     ++DesignatedStartIndex;
2276     ElementIndex = DesignatedStartIndex.getZExtValue();
2277   }
2278
2279   // If this the first designator, our caller will continue checking
2280   // the rest of this array subobject.
2281   if (IsFirstDesignator) {
2282     if (NextElementIndex)
2283       *NextElementIndex = DesignatedStartIndex;
2284     StructuredIndex = ElementIndex;
2285     return false;
2286   }
2287
2288   if (!FinishSubobjectInit)
2289     return false;
2290
2291   // Check the remaining elements within this array subobject.
2292   bool prevHadError = hadError;
2293   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2294                  /*SubobjectIsDesignatorContext=*/false, Index,
2295                  StructuredList, ElementIndex);
2296   return hadError && !prevHadError;
2297 }
2298
2299 // Get the structured initializer list for a subobject of type
2300 // @p CurrentObjectType.
2301 InitListExpr *
2302 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2303                                             QualType CurrentObjectType,
2304                                             InitListExpr *StructuredList,
2305                                             unsigned StructuredIndex,
2306                                             SourceRange InitRange) {
2307   if (VerifyOnly)
2308     return nullptr; // No structured list in verification-only mode.
2309   Expr *ExistingInit = nullptr;
2310   if (!StructuredList)
2311     ExistingInit = SyntacticToSemantic.lookup(IList);
2312   else if (StructuredIndex < StructuredList->getNumInits())
2313     ExistingInit = StructuredList->getInit(StructuredIndex);
2314
2315   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2316     return Result;
2317
2318   if (ExistingInit) {
2319     // We are creating an initializer list that initializes the
2320     // subobjects of the current object, but there was already an
2321     // initialization that completely initialized the current
2322     // subobject, e.g., by a compound literal:
2323     //
2324     // struct X { int a, b; };
2325     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2326     //
2327     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2328     // designated initializer re-initializes the whole
2329     // subobject [0], overwriting previous initializers.
2330     SemaRef.Diag(InitRange.getBegin(),
2331                  diag::warn_subobject_initializer_overrides)
2332       << InitRange;
2333     SemaRef.Diag(ExistingInit->getLocStart(),
2334                   diag::note_previous_initializer)
2335       << /*FIXME:has side effects=*/0
2336       << ExistingInit->getSourceRange();
2337   }
2338
2339   InitListExpr *Result
2340     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2341                                          InitRange.getBegin(), None,
2342                                          InitRange.getEnd());
2343
2344   QualType ResultType = CurrentObjectType;
2345   if (!ResultType->isArrayType())
2346     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2347   Result->setType(ResultType);
2348
2349   // Pre-allocate storage for the structured initializer list.
2350   unsigned NumElements = 0;
2351   unsigned NumInits = 0;
2352   bool GotNumInits = false;
2353   if (!StructuredList) {
2354     NumInits = IList->getNumInits();
2355     GotNumInits = true;
2356   } else if (Index < IList->getNumInits()) {
2357     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2358       NumInits = SubList->getNumInits();
2359       GotNumInits = true;
2360     }
2361   }
2362
2363   if (const ArrayType *AType
2364       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2365     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2366       NumElements = CAType->getSize().getZExtValue();
2367       // Simple heuristic so that we don't allocate a very large
2368       // initializer with many empty entries at the end.
2369       if (GotNumInits && NumElements > NumInits)
2370         NumElements = 0;
2371     }
2372   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2373     NumElements = VType->getNumElements();
2374   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2375     RecordDecl *RDecl = RType->getDecl();
2376     if (RDecl->isUnion())
2377       NumElements = 1;
2378     else
2379       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2380   }
2381
2382   Result->reserveInits(SemaRef.Context, NumElements);
2383
2384   // Link this new initializer list into the structured initializer
2385   // lists.
2386   if (StructuredList)
2387     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2388   else {
2389     Result->setSyntacticForm(IList);
2390     SyntacticToSemantic[IList] = Result;
2391   }
2392
2393   return Result;
2394 }
2395
2396 /// Update the initializer at index @p StructuredIndex within the
2397 /// structured initializer list to the value @p expr.
2398 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2399                                                   unsigned &StructuredIndex,
2400                                                   Expr *expr) {
2401   // No structured initializer list to update
2402   if (!StructuredList)
2403     return;
2404
2405   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2406                                                   StructuredIndex, expr)) {
2407     // This initializer overwrites a previous initializer. Warn.
2408     SemaRef.Diag(expr->getLocStart(),
2409                   diag::warn_initializer_overrides)
2410       << expr->getSourceRange();
2411     SemaRef.Diag(PrevInit->getLocStart(),
2412                   diag::note_previous_initializer)
2413       << /*FIXME:has side effects=*/0
2414       << PrevInit->getSourceRange();
2415   }
2416
2417   ++StructuredIndex;
2418 }
2419
2420 /// Check that the given Index expression is a valid array designator
2421 /// value. This is essentially just a wrapper around
2422 /// VerifyIntegerConstantExpression that also checks for negative values
2423 /// and produces a reasonable diagnostic if there is a
2424 /// failure. Returns the index expression, possibly with an implicit cast
2425 /// added, on success.  If everything went okay, Value will receive the
2426 /// value of the constant expression.
2427 static ExprResult
2428 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2429   SourceLocation Loc = Index->getLocStart();
2430
2431   // Make sure this is an integer constant expression.
2432   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2433   if (Result.isInvalid())
2434     return Result;
2435
2436   if (Value.isSigned() && Value.isNegative())
2437     return S.Diag(Loc, diag::err_array_designator_negative)
2438       << Value.toString(10) << Index->getSourceRange();
2439
2440   Value.setIsUnsigned(true);
2441   return Result;
2442 }
2443
2444 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2445                                             SourceLocation Loc,
2446                                             bool GNUSyntax,
2447                                             ExprResult Init) {
2448   typedef DesignatedInitExpr::Designator ASTDesignator;
2449
2450   bool Invalid = false;
2451   SmallVector<ASTDesignator, 32> Designators;
2452   SmallVector<Expr *, 32> InitExpressions;
2453
2454   // Build designators and check array designator expressions.
2455   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2456     const Designator &D = Desig.getDesignator(Idx);
2457     switch (D.getKind()) {
2458     case Designator::FieldDesignator:
2459       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2460                                           D.getFieldLoc()));
2461       break;
2462
2463     case Designator::ArrayDesignator: {
2464       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2465       llvm::APSInt IndexValue;
2466       if (!Index->isTypeDependent() && !Index->isValueDependent())
2467         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2468       if (!Index)
2469         Invalid = true;
2470       else {
2471         Designators.push_back(ASTDesignator(InitExpressions.size(),
2472                                             D.getLBracketLoc(),
2473                                             D.getRBracketLoc()));
2474         InitExpressions.push_back(Index);
2475       }
2476       break;
2477     }
2478
2479     case Designator::ArrayRangeDesignator: {
2480       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2481       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2482       llvm::APSInt StartValue;
2483       llvm::APSInt EndValue;
2484       bool StartDependent = StartIndex->isTypeDependent() ||
2485                             StartIndex->isValueDependent();
2486       bool EndDependent = EndIndex->isTypeDependent() ||
2487                           EndIndex->isValueDependent();
2488       if (!StartDependent)
2489         StartIndex =
2490             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2491       if (!EndDependent)
2492         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2493
2494       if (!StartIndex || !EndIndex)
2495         Invalid = true;
2496       else {
2497         // Make sure we're comparing values with the same bit width.
2498         if (StartDependent || EndDependent) {
2499           // Nothing to compute.
2500         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2501           EndValue = EndValue.extend(StartValue.getBitWidth());
2502         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2503           StartValue = StartValue.extend(EndValue.getBitWidth());
2504
2505         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2506           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2507             << StartValue.toString(10) << EndValue.toString(10)
2508             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2509           Invalid = true;
2510         } else {
2511           Designators.push_back(ASTDesignator(InitExpressions.size(),
2512                                               D.getLBracketLoc(),
2513                                               D.getEllipsisLoc(),
2514                                               D.getRBracketLoc()));
2515           InitExpressions.push_back(StartIndex);
2516           InitExpressions.push_back(EndIndex);
2517         }
2518       }
2519       break;
2520     }
2521     }
2522   }
2523
2524   if (Invalid || Init.isInvalid())
2525     return ExprError();
2526
2527   // Clear out the expressions within the designation.
2528   Desig.ClearExprs(*this);
2529
2530   DesignatedInitExpr *DIE
2531     = DesignatedInitExpr::Create(Context,
2532                                  Designators.data(), Designators.size(),
2533                                  InitExpressions, Loc, GNUSyntax,
2534                                  Init.getAs<Expr>());
2535
2536   if (!getLangOpts().C99)
2537     Diag(DIE->getLocStart(), diag::ext_designated_init)
2538       << DIE->getSourceRange();
2539
2540   return DIE;
2541 }
2542
2543 //===----------------------------------------------------------------------===//
2544 // Initialization entity
2545 //===----------------------------------------------------------------------===//
2546
2547 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2548                                      const InitializedEntity &Parent)
2549   : Parent(&Parent), Index(Index)
2550 {
2551   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2552     Kind = EK_ArrayElement;
2553     Type = AT->getElementType();
2554   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2555     Kind = EK_VectorElement;
2556     Type = VT->getElementType();
2557   } else {
2558     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2559     assert(CT && "Unexpected type");
2560     Kind = EK_ComplexElement;
2561     Type = CT->getElementType();
2562   }
2563 }
2564
2565 InitializedEntity
2566 InitializedEntity::InitializeBase(ASTContext &Context,
2567                                   const CXXBaseSpecifier *Base,
2568                                   bool IsInheritedVirtualBase) {
2569   InitializedEntity Result;
2570   Result.Kind = EK_Base;
2571   Result.Parent = nullptr;
2572   Result.Base = reinterpret_cast<uintptr_t>(Base);
2573   if (IsInheritedVirtualBase)
2574     Result.Base |= 0x01;
2575
2576   Result.Type = Base->getType();
2577   return Result;
2578 }
2579
2580 DeclarationName InitializedEntity::getName() const {
2581   switch (getKind()) {
2582   case EK_Parameter:
2583   case EK_Parameter_CF_Audited: {
2584     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2585     return (D ? D->getDeclName() : DeclarationName());
2586   }
2587
2588   case EK_Variable:
2589   case EK_Member:
2590     return VariableOrMember->getDeclName();
2591
2592   case EK_LambdaCapture:
2593     return DeclarationName(Capture.VarID);
2594       
2595   case EK_Result:
2596   case EK_Exception:
2597   case EK_New:
2598   case EK_Temporary:
2599   case EK_Base:
2600   case EK_Delegating:
2601   case EK_ArrayElement:
2602   case EK_VectorElement:
2603   case EK_ComplexElement:
2604   case EK_BlockElement:
2605   case EK_CompoundLiteralInit:
2606   case EK_RelatedResult:
2607     return DeclarationName();
2608   }
2609
2610   llvm_unreachable("Invalid EntityKind!");
2611 }
2612
2613 DeclaratorDecl *InitializedEntity::getDecl() const {
2614   switch (getKind()) {
2615   case EK_Variable:
2616   case EK_Member:
2617     return VariableOrMember;
2618
2619   case EK_Parameter:
2620   case EK_Parameter_CF_Audited:
2621     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2622
2623   case EK_Result:
2624   case EK_Exception:
2625   case EK_New:
2626   case EK_Temporary:
2627   case EK_Base:
2628   case EK_Delegating:
2629   case EK_ArrayElement:
2630   case EK_VectorElement:
2631   case EK_ComplexElement:
2632   case EK_BlockElement:
2633   case EK_LambdaCapture:
2634   case EK_CompoundLiteralInit:
2635   case EK_RelatedResult:
2636     return nullptr;
2637   }
2638
2639   llvm_unreachable("Invalid EntityKind!");
2640 }
2641
2642 bool InitializedEntity::allowsNRVO() const {
2643   switch (getKind()) {
2644   case EK_Result:
2645   case EK_Exception:
2646     return LocAndNRVO.NRVO;
2647
2648   case EK_Variable:
2649   case EK_Parameter:
2650   case EK_Parameter_CF_Audited:
2651   case EK_Member:
2652   case EK_New:
2653   case EK_Temporary:
2654   case EK_CompoundLiteralInit:
2655   case EK_Base:
2656   case EK_Delegating:
2657   case EK_ArrayElement:
2658   case EK_VectorElement:
2659   case EK_ComplexElement:
2660   case EK_BlockElement:
2661   case EK_LambdaCapture:
2662   case EK_RelatedResult:
2663     break;
2664   }
2665
2666   return false;
2667 }
2668
2669 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2670   assert(getParent() != this);
2671   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2672   for (unsigned I = 0; I != Depth; ++I)
2673     OS << "`-";
2674
2675   switch (getKind()) {
2676   case EK_Variable: OS << "Variable"; break;
2677   case EK_Parameter: OS << "Parameter"; break;
2678   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
2679     break;
2680   case EK_Result: OS << "Result"; break;
2681   case EK_Exception: OS << "Exception"; break;
2682   case EK_Member: OS << "Member"; break;
2683   case EK_New: OS << "New"; break;
2684   case EK_Temporary: OS << "Temporary"; break;
2685   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2686   case EK_RelatedResult: OS << "RelatedResult"; break;
2687   case EK_Base: OS << "Base"; break;
2688   case EK_Delegating: OS << "Delegating"; break;
2689   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2690   case EK_VectorElement: OS << "VectorElement " << Index; break;
2691   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2692   case EK_BlockElement: OS << "Block"; break;
2693   case EK_LambdaCapture:
2694     OS << "LambdaCapture ";
2695     OS << DeclarationName(Capture.VarID);
2696     break;
2697   }
2698
2699   if (Decl *D = getDecl()) {
2700     OS << " ";
2701     cast<NamedDecl>(D)->printQualifiedName(OS);
2702   }
2703
2704   OS << " '" << getType().getAsString() << "'\n";
2705
2706   return Depth + 1;
2707 }
2708
2709 void InitializedEntity::dump() const {
2710   dumpImpl(llvm::errs());
2711 }
2712
2713 //===----------------------------------------------------------------------===//
2714 // Initialization sequence
2715 //===----------------------------------------------------------------------===//
2716
2717 void InitializationSequence::Step::Destroy() {
2718   switch (Kind) {
2719   case SK_ResolveAddressOfOverloadedFunction:
2720   case SK_CastDerivedToBaseRValue:
2721   case SK_CastDerivedToBaseXValue:
2722   case SK_CastDerivedToBaseLValue:
2723   case SK_BindReference:
2724   case SK_BindReferenceToTemporary:
2725   case SK_ExtraneousCopyToTemporary:
2726   case SK_UserConversion:
2727   case SK_QualificationConversionRValue:
2728   case SK_QualificationConversionXValue:
2729   case SK_QualificationConversionLValue:
2730   case SK_AtomicConversion:
2731   case SK_LValueToRValue:
2732   case SK_ListInitialization:
2733   case SK_UnwrapInitList:
2734   case SK_RewrapInitList:
2735   case SK_ConstructorInitialization:
2736   case SK_ConstructorInitializationFromList:
2737   case SK_ZeroInitialization:
2738   case SK_CAssignment:
2739   case SK_StringInit:
2740   case SK_ObjCObjectConversion:
2741   case SK_ArrayInit:
2742   case SK_ParenthesizedArrayInit:
2743   case SK_PassByIndirectCopyRestore:
2744   case SK_PassByIndirectRestore:
2745   case SK_ProduceObjCObject:
2746   case SK_StdInitializerList:
2747   case SK_StdInitializerListConstructorCall:
2748   case SK_OCLSamplerInit:
2749   case SK_OCLZeroEvent:
2750     break;
2751
2752   case SK_ConversionSequence:
2753   case SK_ConversionSequenceNoNarrowing:
2754     delete ICS;
2755   }
2756 }
2757
2758 bool InitializationSequence::isDirectReferenceBinding() const {
2759   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2760 }
2761
2762 bool InitializationSequence::isAmbiguous() const {
2763   if (!Failed())
2764     return false;
2765
2766   switch (getFailureKind()) {
2767   case FK_TooManyInitsForReference:
2768   case FK_ArrayNeedsInitList:
2769   case FK_ArrayNeedsInitListOrStringLiteral:
2770   case FK_ArrayNeedsInitListOrWideStringLiteral:
2771   case FK_NarrowStringIntoWideCharArray:
2772   case FK_WideStringIntoCharArray:
2773   case FK_IncompatWideStringIntoWideChar:
2774   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2775   case FK_NonConstLValueReferenceBindingToTemporary:
2776   case FK_NonConstLValueReferenceBindingToUnrelated:
2777   case FK_RValueReferenceBindingToLValue:
2778   case FK_ReferenceInitDropsQualifiers:
2779   case FK_ReferenceInitFailed:
2780   case FK_ConversionFailed:
2781   case FK_ConversionFromPropertyFailed:
2782   case FK_TooManyInitsForScalar:
2783   case FK_ReferenceBindingToInitList:
2784   case FK_InitListBadDestinationType:
2785   case FK_DefaultInitOfConst:
2786   case FK_Incomplete:
2787   case FK_ArrayTypeMismatch:
2788   case FK_NonConstantArrayInit:
2789   case FK_ListInitializationFailed:
2790   case FK_VariableLengthArrayHasInitializer:
2791   case FK_PlaceholderType:
2792   case FK_ExplicitConstructor:
2793     return false;
2794
2795   case FK_ReferenceInitOverloadFailed:
2796   case FK_UserConversionOverloadFailed:
2797   case FK_ConstructorOverloadFailed:
2798   case FK_ListConstructorOverloadFailed:
2799     return FailedOverloadResult == OR_Ambiguous;
2800   }
2801
2802   llvm_unreachable("Invalid EntityKind!");
2803 }
2804
2805 bool InitializationSequence::isConstructorInitialization() const {
2806   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2807 }
2808
2809 void
2810 InitializationSequence
2811 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2812                                    DeclAccessPair Found,
2813                                    bool HadMultipleCandidates) {
2814   Step S;
2815   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2816   S.Type = Function->getType();
2817   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2818   S.Function.Function = Function;
2819   S.Function.FoundDecl = Found;
2820   Steps.push_back(S);
2821 }
2822
2823 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2824                                                       ExprValueKind VK) {
2825   Step S;
2826   switch (VK) {
2827   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2828   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2829   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2830   }
2831   S.Type = BaseType;
2832   Steps.push_back(S);
2833 }
2834
2835 void InitializationSequence::AddReferenceBindingStep(QualType T,
2836                                                      bool BindingTemporary) {
2837   Step S;
2838   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2839   S.Type = T;
2840   Steps.push_back(S);
2841 }
2842
2843 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2844   Step S;
2845   S.Kind = SK_ExtraneousCopyToTemporary;
2846   S.Type = T;
2847   Steps.push_back(S);
2848 }
2849
2850 void
2851 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2852                                               DeclAccessPair FoundDecl,
2853                                               QualType T,
2854                                               bool HadMultipleCandidates) {
2855   Step S;
2856   S.Kind = SK_UserConversion;
2857   S.Type = T;
2858   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2859   S.Function.Function = Function;
2860   S.Function.FoundDecl = FoundDecl;
2861   Steps.push_back(S);
2862 }
2863
2864 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2865                                                             ExprValueKind VK) {
2866   Step S;
2867   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2868   switch (VK) {
2869   case VK_RValue:
2870     S.Kind = SK_QualificationConversionRValue;
2871     break;
2872   case VK_XValue:
2873     S.Kind = SK_QualificationConversionXValue;
2874     break;
2875   case VK_LValue:
2876     S.Kind = SK_QualificationConversionLValue;
2877     break;
2878   }
2879   S.Type = Ty;
2880   Steps.push_back(S);
2881 }
2882
2883 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
2884   Step S;
2885   S.Kind = SK_AtomicConversion;
2886   S.Type = Ty;
2887   Steps.push_back(S);
2888 }
2889
2890 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2891   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2892
2893   Step S;
2894   S.Kind = SK_LValueToRValue;
2895   S.Type = Ty;
2896   Steps.push_back(S);
2897 }
2898
2899 void InitializationSequence::AddConversionSequenceStep(
2900     const ImplicitConversionSequence &ICS, QualType T,
2901     bool TopLevelOfInitList) {
2902   Step S;
2903   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
2904                               : SK_ConversionSequence;
2905   S.Type = T;
2906   S.ICS = new ImplicitConversionSequence(ICS);
2907   Steps.push_back(S);
2908 }
2909
2910 void InitializationSequence::AddListInitializationStep(QualType T) {
2911   Step S;
2912   S.Kind = SK_ListInitialization;
2913   S.Type = T;
2914   Steps.push_back(S);
2915 }
2916
2917 void
2918 InitializationSequence
2919 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2920                                    AccessSpecifier Access,
2921                                    QualType T,
2922                                    bool HadMultipleCandidates,
2923                                    bool FromInitList, bool AsInitList) {
2924   Step S;
2925   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
2926                                      : SK_ConstructorInitializationFromList
2927                         : SK_ConstructorInitialization;
2928   S.Type = T;
2929   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2930   S.Function.Function = Constructor;
2931   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2932   Steps.push_back(S);
2933 }
2934
2935 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2936   Step S;
2937   S.Kind = SK_ZeroInitialization;
2938   S.Type = T;
2939   Steps.push_back(S);
2940 }
2941
2942 void InitializationSequence::AddCAssignmentStep(QualType T) {
2943   Step S;
2944   S.Kind = SK_CAssignment;
2945   S.Type = T;
2946   Steps.push_back(S);
2947 }
2948
2949 void InitializationSequence::AddStringInitStep(QualType T) {
2950   Step S;
2951   S.Kind = SK_StringInit;
2952   S.Type = T;
2953   Steps.push_back(S);
2954 }
2955
2956 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2957   Step S;
2958   S.Kind = SK_ObjCObjectConversion;
2959   S.Type = T;
2960   Steps.push_back(S);
2961 }
2962
2963 void InitializationSequence::AddArrayInitStep(QualType T) {
2964   Step S;
2965   S.Kind = SK_ArrayInit;
2966   S.Type = T;
2967   Steps.push_back(S);
2968 }
2969
2970 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2971   Step S;
2972   S.Kind = SK_ParenthesizedArrayInit;
2973   S.Type = T;
2974   Steps.push_back(S);
2975 }
2976
2977 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2978                                                               bool shouldCopy) {
2979   Step s;
2980   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2981                        : SK_PassByIndirectRestore);
2982   s.Type = type;
2983   Steps.push_back(s);
2984 }
2985
2986 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2987   Step S;
2988   S.Kind = SK_ProduceObjCObject;
2989   S.Type = T;
2990   Steps.push_back(S);
2991 }
2992
2993 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2994   Step S;
2995   S.Kind = SK_StdInitializerList;
2996   S.Type = T;
2997   Steps.push_back(S);
2998 }
2999
3000 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3001   Step S;
3002   S.Kind = SK_OCLSamplerInit;
3003   S.Type = T;
3004   Steps.push_back(S);
3005 }
3006
3007 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3008   Step S;
3009   S.Kind = SK_OCLZeroEvent;
3010   S.Type = T;
3011   Steps.push_back(S);
3012 }
3013
3014 void InitializationSequence::RewrapReferenceInitList(QualType T,
3015                                                      InitListExpr *Syntactic) {
3016   assert(Syntactic->getNumInits() == 1 &&
3017          "Can only rewrap trivial init lists.");
3018   Step S;
3019   S.Kind = SK_UnwrapInitList;
3020   S.Type = Syntactic->getInit(0)->getType();
3021   Steps.insert(Steps.begin(), S);
3022
3023   S.Kind = SK_RewrapInitList;
3024   S.Type = T;
3025   S.WrappingSyntacticList = Syntactic;
3026   Steps.push_back(S);
3027 }
3028
3029 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3030                                                 OverloadingResult Result) {
3031   setSequenceKind(FailedSequence);
3032   this->Failure = Failure;
3033   this->FailedOverloadResult = Result;
3034 }
3035
3036 //===----------------------------------------------------------------------===//
3037 // Attempt initialization
3038 //===----------------------------------------------------------------------===//
3039
3040 static void MaybeProduceObjCObject(Sema &S,
3041                                    InitializationSequence &Sequence,
3042                                    const InitializedEntity &Entity) {
3043   if (!S.getLangOpts().ObjCAutoRefCount) return;
3044
3045   /// When initializing a parameter, produce the value if it's marked
3046   /// __attribute__((ns_consumed)).
3047   if (Entity.isParameterKind()) {
3048     if (!Entity.isParameterConsumed())
3049       return;
3050
3051     assert(Entity.getType()->isObjCRetainableType() &&
3052            "consuming an object of unretainable type?");
3053     Sequence.AddProduceObjCObjectStep(Entity.getType());
3054
3055   /// When initializing a return value, if the return type is a
3056   /// retainable type, then returns need to immediately retain the
3057   /// object.  If an autorelease is required, it will be done at the
3058   /// last instant.
3059   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3060     if (!Entity.getType()->isObjCRetainableType())
3061       return;
3062
3063     Sequence.AddProduceObjCObjectStep(Entity.getType());
3064   }
3065 }
3066
3067 static void TryListInitialization(Sema &S,
3068                                   const InitializedEntity &Entity,
3069                                   const InitializationKind &Kind,
3070                                   InitListExpr *InitList,
3071                                   InitializationSequence &Sequence);
3072
3073 /// \brief When initializing from init list via constructor, handle
3074 /// initialization of an object of type std::initializer_list<T>.
3075 ///
3076 /// \return true if we have handled initialization of an object of type
3077 /// std::initializer_list<T>, false otherwise.
3078 static bool TryInitializerListConstruction(Sema &S,
3079                                            InitListExpr *List,
3080                                            QualType DestType,
3081                                            InitializationSequence &Sequence) {
3082   QualType E;
3083   if (!S.isStdInitializerList(DestType, &E))
3084     return false;
3085
3086   if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
3087     Sequence.setIncompleteTypeFailure(E);
3088     return true;
3089   }
3090
3091   // Try initializing a temporary array from the init list.
3092   QualType ArrayType = S.Context.getConstantArrayType(
3093       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3094                                  List->getNumInits()),
3095       clang::ArrayType::Normal, 0);
3096   InitializedEntity HiddenArray =
3097       InitializedEntity::InitializeTemporary(ArrayType);
3098   InitializationKind Kind =
3099       InitializationKind::CreateDirectList(List->getExprLoc());
3100   TryListInitialization(S, HiddenArray, Kind, List, Sequence);
3101   if (Sequence)
3102     Sequence.AddStdInitializerListConstructionStep(DestType);
3103   return true;
3104 }
3105
3106 static OverloadingResult
3107 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3108                            MultiExprArg Args,
3109                            OverloadCandidateSet &CandidateSet,
3110                            ArrayRef<NamedDecl *> Ctors,
3111                            OverloadCandidateSet::iterator &Best,
3112                            bool CopyInitializing, bool AllowExplicit,
3113                            bool OnlyListConstructors, bool InitListSyntax) {
3114   CandidateSet.clear();
3115
3116   for (ArrayRef<NamedDecl *>::iterator
3117          Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
3118     NamedDecl *D = *Con;
3119     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3120     bool SuppressUserConversions = false;
3121
3122     // Find the constructor (which may be a template).
3123     CXXConstructorDecl *Constructor = nullptr;
3124     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3125     if (ConstructorTmpl)
3126       Constructor = cast<CXXConstructorDecl>(
3127                                            ConstructorTmpl->getTemplatedDecl());
3128     else {
3129       Constructor = cast<CXXConstructorDecl>(D);
3130
3131       // C++11 [over.best.ics]p4:
3132       //   However, when considering the argument of a constructor or
3133       //   user-defined conversion function that is a candidate:
3134       //    -- by 13.3.1.3 when invoked for the copying/moving of a temporary
3135       //       in the second step of a class copy-initialization,
3136       //    -- by 13.3.1.7 when passing the initializer list as a single
3137       //       argument or when the initializer list has exactly one elementand
3138       //       a conversion to some class X or reference to (possibly
3139       //       cv-qualified) X is considered for the first parameter of a
3140       //       constructor of X, or
3141       //    -- by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases,
3142       //   only standard conversion sequences and ellipsis conversion sequences
3143       //   are considered.
3144       if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
3145           Constructor->isCopyOrMoveConstructor())
3146         SuppressUserConversions = true;
3147     }
3148
3149     if (!Constructor->isInvalidDecl() &&
3150         (AllowExplicit || !Constructor->isExplicit()) &&
3151         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3152       if (ConstructorTmpl)
3153         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3154                                        /*ExplicitArgs*/ nullptr, Args,
3155                                        CandidateSet, SuppressUserConversions);
3156       else {
3157         // C++ [over.match.copy]p1:
3158         //   - When initializing a temporary to be bound to the first parameter 
3159         //     of a constructor that takes a reference to possibly cv-qualified 
3160         //     T as its first argument, called with a single argument in the 
3161         //     context of direct-initialization, explicit conversion functions
3162         //     are also considered.
3163         bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 
3164                                  Args.size() == 1 &&
3165                                  Constructor->isCopyOrMoveConstructor();
3166         S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3167                                SuppressUserConversions,
3168                                /*PartialOverloading=*/false,
3169                                /*AllowExplicit=*/AllowExplicitConv);
3170       }
3171     }
3172   }
3173
3174   // Perform overload resolution and return the result.
3175   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3176 }
3177
3178 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3179 /// enumerates the constructors of the initialized entity and performs overload
3180 /// resolution to select the best.
3181 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
3182 /// class type.
3183 static void TryConstructorInitialization(Sema &S,
3184                                          const InitializedEntity &Entity,
3185                                          const InitializationKind &Kind,
3186                                          MultiExprArg Args, QualType DestType,
3187                                          InitializationSequence &Sequence,
3188                                          bool InitListSyntax = false) {
3189   assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3190          "InitListSyntax must come with a single initializer list argument.");
3191
3192   // The type we're constructing needs to be complete.
3193   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3194     Sequence.setIncompleteTypeFailure(DestType);
3195     return;
3196   }
3197
3198   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3199   assert(DestRecordType && "Constructor initialization requires record type");
3200   CXXRecordDecl *DestRecordDecl
3201     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3202
3203   // Build the candidate set directly in the initialization sequence
3204   // structure, so that it will persist if we fail.
3205   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3206
3207   // Determine whether we are allowed to call explicit constructors or
3208   // explicit conversion operators.
3209   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
3210   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3211
3212   //   - Otherwise, if T is a class type, constructors are considered. The
3213   //     applicable constructors are enumerated, and the best one is chosen
3214   //     through overload resolution.
3215   DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3216   // The container holding the constructors can under certain conditions
3217   // be changed while iterating (e.g. because of deserialization).
3218   // To be safe we copy the lookup results to a new container.
3219   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3220
3221   OverloadingResult Result = OR_No_Viable_Function;
3222   OverloadCandidateSet::iterator Best;
3223   bool AsInitializerList = false;
3224
3225   // C++14 DR 1467 [over.match.list]p1:
3226   //   When objects of non-aggregate type T are list-initialized, such that
3227   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3228   //   according to the rules in this section, overload resolution selects
3229   //   the constructor in two phases:
3230   //
3231   // C++11 [over.match.list]p1:
3232   //   When objects of non-aggregate type T are list-initialized, overload
3233   //   resolution selects the constructor in two phases:
3234   //
3235   //   - Initially, the candidate functions are the initializer-list
3236   //     constructors of the class T and the argument list consists of the
3237   //     initializer list as a single argument.
3238   if (InitListSyntax) {
3239     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3240     AsInitializerList = true;
3241
3242     // If the initializer list has no elements and T has a default constructor,
3243     // the first phase is omitted.
3244     if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3245       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3246                                           CandidateSet, Ctors, Best,
3247                                           CopyInitialization, AllowExplicit,
3248                                           /*OnlyListConstructor=*/true,
3249                                           InitListSyntax);
3250
3251     // Time to unwrap the init list.
3252     Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3253   }
3254
3255   // C++11 [over.match.list]p1:
3256   //   - If no viable initializer-list constructor is found, overload resolution
3257   //     is performed again, where the candidate functions are all the
3258   //     constructors of the class T and the argument list consists of the
3259   //     elements of the initializer list.
3260   if (Result == OR_No_Viable_Function) {
3261     AsInitializerList = false;
3262     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3263                                         CandidateSet, Ctors, Best,
3264                                         CopyInitialization, AllowExplicit,
3265                                         /*OnlyListConstructors=*/false,
3266                                         InitListSyntax);
3267   }
3268   if (Result) {
3269     Sequence.SetOverloadFailure(InitListSyntax ?
3270                       InitializationSequence::FK_ListConstructorOverloadFailed :
3271                       InitializationSequence::FK_ConstructorOverloadFailed,
3272                                 Result);
3273     return;
3274   }
3275
3276   // C++11 [dcl.init]p6:
3277   //   If a program calls for the default initialization of an object
3278   //   of a const-qualified type T, T shall be a class type with a
3279   //   user-provided default constructor.
3280   if (Kind.getKind() == InitializationKind::IK_Default &&
3281       Entity.getType().isConstQualified() &&
3282       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3283     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3284     return;
3285   }
3286
3287   // C++11 [over.match.list]p1:
3288   //   In copy-list-initialization, if an explicit constructor is chosen, the
3289   //   initializer is ill-formed.
3290   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3291   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3292     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3293     return;
3294   }
3295
3296   // Add the constructor initialization step. Any cv-qualification conversion is
3297   // subsumed by the initialization.
3298   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3299   Sequence.AddConstructorInitializationStep(CtorDecl,
3300                                             Best->FoundDecl.getAccess(),
3301                                             DestType, HadMultipleCandidates,
3302                                             InitListSyntax, AsInitializerList);
3303 }
3304
3305 static bool
3306 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3307                                              Expr *Initializer,
3308                                              QualType &SourceType,
3309                                              QualType &UnqualifiedSourceType,
3310                                              QualType UnqualifiedTargetType,
3311                                              InitializationSequence &Sequence) {
3312   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3313         S.Context.OverloadTy) {
3314     DeclAccessPair Found;
3315     bool HadMultipleCandidates = false;
3316     if (FunctionDecl *Fn
3317         = S.ResolveAddressOfOverloadedFunction(Initializer,
3318                                                UnqualifiedTargetType,
3319                                                false, Found,
3320                                                &HadMultipleCandidates)) {
3321       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3322                                                 HadMultipleCandidates);
3323       SourceType = Fn->getType();
3324       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3325     } else if (!UnqualifiedTargetType->isRecordType()) {
3326       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3327       return true;
3328     }
3329   }
3330   return false;
3331 }
3332
3333 static void TryReferenceInitializationCore(Sema &S,
3334                                            const InitializedEntity &Entity,
3335                                            const InitializationKind &Kind,
3336                                            Expr *Initializer,
3337                                            QualType cv1T1, QualType T1,
3338                                            Qualifiers T1Quals,
3339                                            QualType cv2T2, QualType T2,
3340                                            Qualifiers T2Quals,
3341                                            InitializationSequence &Sequence);
3342
3343 static void TryValueInitialization(Sema &S,
3344                                    const InitializedEntity &Entity,
3345                                    const InitializationKind &Kind,
3346                                    InitializationSequence &Sequence,
3347                                    InitListExpr *InitList = nullptr);
3348
3349 /// \brief Attempt list initialization of a reference.
3350 static void TryReferenceListInitialization(Sema &S,
3351                                            const InitializedEntity &Entity,
3352                                            const InitializationKind &Kind,
3353                                            InitListExpr *InitList,
3354                                            InitializationSequence &Sequence) {
3355   // First, catch C++03 where this isn't possible.
3356   if (!S.getLangOpts().CPlusPlus11) {
3357     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3358     return;
3359   }
3360
3361   QualType DestType = Entity.getType();
3362   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3363   Qualifiers T1Quals;
3364   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3365
3366   // Reference initialization via an initializer list works thus:
3367   // If the initializer list consists of a single element that is
3368   // reference-related to the referenced type, bind directly to that element
3369   // (possibly creating temporaries).
3370   // Otherwise, initialize a temporary with the initializer list and
3371   // bind to that.
3372   if (InitList->getNumInits() == 1) {
3373     Expr *Initializer = InitList->getInit(0);
3374     QualType cv2T2 = Initializer->getType();
3375     Qualifiers T2Quals;
3376     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3377
3378     // If this fails, creating a temporary wouldn't work either.
3379     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3380                                                      T1, Sequence))
3381       return;
3382
3383     SourceLocation DeclLoc = Initializer->getLocStart();
3384     bool dummy1, dummy2, dummy3;
3385     Sema::ReferenceCompareResult RefRelationship
3386       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3387                                        dummy2, dummy3);
3388     if (RefRelationship >= Sema::Ref_Related) {
3389       // Try to bind the reference here.
3390       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3391                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3392       if (Sequence)
3393         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3394       return;
3395     }
3396
3397     // Update the initializer if we've resolved an overloaded function.
3398     if (Sequence.step_begin() != Sequence.step_end())
3399       Sequence.RewrapReferenceInitList(cv1T1, InitList);
3400   }
3401
3402   // Not reference-related. Create a temporary and bind to that.
3403   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3404
3405   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3406   if (Sequence) {
3407     if (DestType->isRValueReferenceType() ||
3408         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3409       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3410     else
3411       Sequence.SetFailed(
3412           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3413   }
3414 }
3415
3416 /// \brief Attempt list initialization (C++0x [dcl.init.list])
3417 static void TryListInitialization(Sema &S,
3418                                   const InitializedEntity &Entity,
3419                                   const InitializationKind &Kind,
3420                                   InitListExpr *InitList,
3421                                   InitializationSequence &Sequence) {
3422   QualType DestType = Entity.getType();
3423
3424   // C++ doesn't allow scalar initialization with more than one argument.
3425   // But C99 complex numbers are scalars and it makes sense there.
3426   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3427       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3428     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3429     return;
3430   }
3431   if (DestType->isReferenceType()) {
3432     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3433     return;
3434   }
3435
3436   if (DestType->isRecordType() &&
3437       S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3438     Sequence.setIncompleteTypeFailure(DestType);
3439     return;
3440   }
3441
3442   // C++14 DR1467 [dcl.init.list]p3:
3443   // - If T is a class type and the initializer list has a single element of
3444   //   type cv U, where U is T or a class derived from T, the object is
3445   //   initialized from that element (by copy-initialization for
3446   //   copy-list-initialization, or by direct-initialization for
3447   //   direct-list-initialization).
3448   // - Otherwise, if T is a character array and the initializer list has a
3449   //   single element that is an appropriately-typed string literal
3450   //   (8.5.2 [dcl.init.string]), initialization is performed as described
3451   //   in that section.
3452   // - Otherwise, If T is an aggregate, [...] (continue below).
3453   if (S.getLangOpts().CPlusPlus14 && InitList->getNumInits() == 1) {
3454     if (DestType->isRecordType()) {
3455       QualType InitType = InitList->getInit(0)->getType();
3456       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
3457           S.IsDerivedFrom(InitType, DestType)) {
3458         Expr *InitListAsExpr = InitList;
3459         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3460                                      Sequence, /*InitListSyntax*/true);
3461         return;
3462       }
3463     }
3464     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
3465       Expr *SubInit[1] = {InitList->getInit(0)};
3466       if (!isa<VariableArrayType>(DestAT) &&
3467           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
3468         InitializationKind SubKind =
3469             Kind.getKind() == InitializationKind::IK_DirectList
3470                 ? InitializationKind::CreateDirect(Kind.getLocation(),
3471                                                    InitList->getLBraceLoc(),
3472                                                    InitList->getRBraceLoc())
3473                 : Kind;
3474         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3475                                 /*TopLevelOfInitList*/ true);
3476
3477         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
3478         // the element is not an appropriately-typed string literal, in which
3479         // case we should proceed as in C++11 (below).
3480         if (Sequence) {
3481           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3482           return;
3483         }
3484       }
3485     }
3486   }
3487
3488   // C++11 [dcl.init.list]p3:
3489   //   - If T is an aggregate, aggregate initialization is performed.
3490   if (DestType->isRecordType() && !DestType->isAggregateType()) {
3491     if (S.getLangOpts().CPlusPlus11) {
3492       //   - Otherwise, if the initializer list has no elements and T is a
3493       //     class type with a default constructor, the object is
3494       //     value-initialized.
3495       if (InitList->getNumInits() == 0) {
3496         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3497         if (RD->hasDefaultConstructor()) {
3498           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3499           return;
3500         }
3501       }
3502
3503       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3504       //     an initializer_list object constructed [...]
3505       if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3506         return;
3507
3508       //   - Otherwise, if T is a class type, constructors are considered.
3509       Expr *InitListAsExpr = InitList;
3510       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3511                                    Sequence, /*InitListSyntax*/ true);
3512     } else
3513       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
3514     return;
3515   }
3516
3517   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3518       InitList->getNumInits() == 1 &&
3519       InitList->getInit(0)->getType()->isRecordType()) {
3520     //   - Otherwise, if the initializer list has a single element of type E
3521     //     [...references are handled above...], the object or reference is
3522     //     initialized from that element; if a narrowing conversion is required
3523     //     to convert the element to T, the program is ill-formed.
3524     //
3525     // C++14 DR1467:
3526     //   - Otherwise, if the initializer list has a single element of type E
3527     //     [...references are handled above...], the object or reference is
3528     //     initialized from that element (by copy-initialization for
3529     //     copy-list-initialization, or by direct-initialization for
3530     //     direct-list-initialization); if a narrowing conversion is required
3531     //     to convert the element to T, the program is ill-formed.
3532     //
3533     // Per core-24034, this is direct-initialization if we were performing
3534     // direct-list-initialization and copy-initialization otherwise.
3535     // We can't use InitListChecker for this, because it always performs
3536     // copy-initialization. This only matters if we might use an 'explicit'
3537     // conversion operator, so we only need to handle the cases where the source
3538     // is of record type.
3539     InitializationKind SubKind =
3540         Kind.getKind() == InitializationKind::IK_DirectList
3541             ? InitializationKind::CreateDirect(Kind.getLocation(),
3542                                                InitList->getLBraceLoc(),
3543                                                InitList->getRBraceLoc())
3544             : Kind;
3545     Expr *SubInit[1] = { InitList->getInit(0) };
3546     Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3547                             /*TopLevelOfInitList*/true);
3548     if (Sequence)
3549       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3550     return;
3551   }
3552
3553   InitListChecker CheckInitList(S, Entity, InitList,
3554           DestType, /*VerifyOnly=*/true);
3555   if (CheckInitList.HadError()) {
3556     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3557     return;
3558   }
3559
3560   // Add the list initialization step with the built init list.
3561   Sequence.AddListInitializationStep(DestType);
3562 }
3563
3564 /// \brief Try a reference initialization that involves calling a conversion
3565 /// function.
3566 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3567                                              const InitializedEntity &Entity,
3568                                              const InitializationKind &Kind,
3569                                              Expr *Initializer,
3570                                              bool AllowRValues,
3571                                              InitializationSequence &Sequence) {
3572   QualType DestType = Entity.getType();
3573   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3574   QualType T1 = cv1T1.getUnqualifiedType();
3575   QualType cv2T2 = Initializer->getType();
3576   QualType T2 = cv2T2.getUnqualifiedType();
3577
3578   bool DerivedToBase;
3579   bool ObjCConversion;
3580   bool ObjCLifetimeConversion;
3581   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3582                                          T1, T2, DerivedToBase,
3583                                          ObjCConversion,
3584                                          ObjCLifetimeConversion) &&
3585          "Must have incompatible references when binding via conversion");
3586   (void)DerivedToBase;
3587   (void)ObjCConversion;
3588   (void)ObjCLifetimeConversion;
3589   
3590   // Build the candidate set directly in the initialization sequence
3591   // structure, so that it will persist if we fail.
3592   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3593   CandidateSet.clear();
3594
3595   // Determine whether we are allowed to call explicit constructors or
3596   // explicit conversion operators.
3597   bool AllowExplicit = Kind.AllowExplicit();
3598   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
3599
3600   const RecordType *T1RecordType = nullptr;
3601   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3602       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3603     // The type we're converting to is a class type. Enumerate its constructors
3604     // to see if there is a suitable conversion.
3605     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3606
3607     DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3608     // The container holding the constructors can under certain conditions
3609     // be changed while iterating (e.g. because of deserialization).
3610     // To be safe we copy the lookup results to a new container.
3611     SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3612     for (SmallVectorImpl<NamedDecl *>::iterator
3613            CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3614       NamedDecl *D = *CI;
3615       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3616
3617       // Find the constructor (which may be a template).
3618       CXXConstructorDecl *Constructor = nullptr;
3619       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3620       if (ConstructorTmpl)
3621         Constructor = cast<CXXConstructorDecl>(
3622                                          ConstructorTmpl->getTemplatedDecl());
3623       else
3624         Constructor = cast<CXXConstructorDecl>(D);
3625
3626       if (!Constructor->isInvalidDecl() &&
3627           Constructor->isConvertingConstructor(AllowExplicit)) {
3628         if (ConstructorTmpl)
3629           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3630                                          /*ExplicitArgs*/ nullptr,
3631                                          Initializer, CandidateSet,
3632                                          /*SuppressUserConversions=*/true);
3633         else
3634           S.AddOverloadCandidate(Constructor, FoundDecl,
3635                                  Initializer, CandidateSet,
3636                                  /*SuppressUserConversions=*/true);
3637       }
3638     }
3639   }
3640   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3641     return OR_No_Viable_Function;
3642
3643   const RecordType *T2RecordType = nullptr;
3644   if ((T2RecordType = T2->getAs<RecordType>()) &&
3645       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3646     // The type we're converting from is a class type, enumerate its conversion
3647     // functions.
3648     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3649
3650     std::pair<CXXRecordDecl::conversion_iterator,
3651               CXXRecordDecl::conversion_iterator>
3652       Conversions = T2RecordDecl->getVisibleConversionFunctions();
3653     for (CXXRecordDecl::conversion_iterator
3654            I = Conversions.first, E = Conversions.second; I != E; ++I) {
3655       NamedDecl *D = *I;
3656       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3657       if (isa<UsingShadowDecl>(D))
3658         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3659
3660       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3661       CXXConversionDecl *Conv;
3662       if (ConvTemplate)
3663         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3664       else
3665         Conv = cast<CXXConversionDecl>(D);
3666
3667       // If the conversion function doesn't return a reference type,
3668       // it can't be considered for this conversion unless we're allowed to
3669       // consider rvalues.
3670       // FIXME: Do we need to make sure that we only consider conversion
3671       // candidates with reference-compatible results? That might be needed to
3672       // break recursion.
3673       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3674           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3675         if (ConvTemplate)
3676           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3677                                            ActingDC, Initializer,
3678                                            DestType, CandidateSet,
3679                                            /*AllowObjCConversionOnExplicit=*/
3680                                              false);
3681         else
3682           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3683                                    Initializer, DestType, CandidateSet,
3684                                    /*AllowObjCConversionOnExplicit=*/false);
3685       }
3686     }
3687   }
3688   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3689     return OR_No_Viable_Function;
3690
3691   SourceLocation DeclLoc = Initializer->getLocStart();
3692
3693   // Perform overload resolution. If it fails, return the failed result.
3694   OverloadCandidateSet::iterator Best;
3695   if (OverloadingResult Result
3696         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3697     return Result;
3698
3699   FunctionDecl *Function = Best->Function;
3700   // This is the overload that will be used for this initialization step if we
3701   // use this initialization. Mark it as referenced.
3702   Function->setReferenced();
3703
3704   // Compute the returned type of the conversion.
3705   if (isa<CXXConversionDecl>(Function))
3706     T2 = Function->getReturnType();
3707   else
3708     T2 = cv1T1;
3709
3710   // Add the user-defined conversion step.
3711   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3712   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3713                                  T2.getNonLValueExprType(S.Context),
3714                                  HadMultipleCandidates);
3715
3716   // Determine whether we need to perform derived-to-base or
3717   // cv-qualification adjustments.
3718   ExprValueKind VK = VK_RValue;
3719   if (T2->isLValueReferenceType())
3720     VK = VK_LValue;
3721   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3722     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3723
3724   bool NewDerivedToBase = false;
3725   bool NewObjCConversion = false;
3726   bool NewObjCLifetimeConversion = false;
3727   Sema::ReferenceCompareResult NewRefRelationship
3728     = S.CompareReferenceRelationship(DeclLoc, T1,
3729                                      T2.getNonLValueExprType(S.Context),
3730                                      NewDerivedToBase, NewObjCConversion,
3731                                      NewObjCLifetimeConversion);
3732   if (NewRefRelationship == Sema::Ref_Incompatible) {
3733     // If the type we've converted to is not reference-related to the
3734     // type we're looking for, then there is another conversion step
3735     // we need to perform to produce a temporary of the right type
3736     // that we'll be binding to.
3737     ImplicitConversionSequence ICS;
3738     ICS.setStandard();
3739     ICS.Standard = Best->FinalConversion;
3740     T2 = ICS.Standard.getToType(2);
3741     Sequence.AddConversionSequenceStep(ICS, T2);
3742   } else if (NewDerivedToBase)
3743     Sequence.AddDerivedToBaseCastStep(
3744                                 S.Context.getQualifiedType(T1,
3745                                   T2.getNonReferenceType().getQualifiers()),
3746                                       VK);
3747   else if (NewObjCConversion)
3748     Sequence.AddObjCObjectConversionStep(
3749                                 S.Context.getQualifiedType(T1,
3750                                   T2.getNonReferenceType().getQualifiers()));
3751
3752   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3753     Sequence.AddQualificationConversionStep(cv1T1, VK);
3754
3755   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3756   return OR_Success;
3757 }
3758
3759 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3760                                            const InitializedEntity &Entity,
3761                                            Expr *CurInitExpr);
3762
3763 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3764 static void TryReferenceInitialization(Sema &S,
3765                                        const InitializedEntity &Entity,
3766                                        const InitializationKind &Kind,
3767                                        Expr *Initializer,
3768                                        InitializationSequence &Sequence) {
3769   QualType DestType = Entity.getType();
3770   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3771   Qualifiers T1Quals;
3772   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3773   QualType cv2T2 = Initializer->getType();
3774   Qualifiers T2Quals;
3775   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3776
3777   // If the initializer is the address of an overloaded function, try
3778   // to resolve the overloaded function. If all goes well, T2 is the
3779   // type of the resulting function.
3780   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3781                                                    T1, Sequence))
3782     return;
3783
3784   // Delegate everything else to a subfunction.
3785   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3786                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3787 }
3788
3789 /// Converts the target of reference initialization so that it has the
3790 /// appropriate qualifiers and value kind.
3791 ///
3792 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3793 /// \code
3794 ///   int x;
3795 ///   const int &r = x;
3796 /// \endcode
3797 ///
3798 /// In this case the reference is binding to a bitfield lvalue, which isn't
3799 /// valid. Perform a load to create a lifetime-extended temporary instead.
3800 /// \code
3801 ///   const int &r = someStruct.bitfield;
3802 /// \endcode
3803 static ExprValueKind
3804 convertQualifiersAndValueKindIfNecessary(Sema &S,
3805                                          InitializationSequence &Sequence,
3806                                          Expr *Initializer,
3807                                          QualType cv1T1,
3808                                          Qualifiers T1Quals,
3809                                          Qualifiers T2Quals,
3810                                          bool IsLValueRef) {
3811   bool IsNonAddressableType = Initializer->refersToBitField() ||
3812                               Initializer->refersToVectorElement();
3813
3814   if (IsNonAddressableType) {
3815     // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3816     // lvalue reference to a non-volatile const type, or the reference shall be
3817     // an rvalue reference.
3818     //
3819     // If not, we can't make a temporary and bind to that. Give up and allow the
3820     // error to be diagnosed later.
3821     if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3822       assert(Initializer->isGLValue());
3823       return Initializer->getValueKind();
3824     }
3825
3826     // Force a load so we can materialize a temporary.
3827     Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3828     return VK_RValue;
3829   }
3830
3831   if (T1Quals != T2Quals) {
3832     Sequence.AddQualificationConversionStep(cv1T1,
3833                                             Initializer->getValueKind());
3834   }
3835
3836   return Initializer->getValueKind();
3837 }
3838
3839
3840 /// \brief Reference initialization without resolving overloaded functions.
3841 static void TryReferenceInitializationCore(Sema &S,
3842                                            const InitializedEntity &Entity,
3843                                            const InitializationKind &Kind,
3844                                            Expr *Initializer,
3845                                            QualType cv1T1, QualType T1,
3846                                            Qualifiers T1Quals,
3847                                            QualType cv2T2, QualType T2,
3848                                            Qualifiers T2Quals,
3849                                            InitializationSequence &Sequence) {
3850   QualType DestType = Entity.getType();
3851   SourceLocation DeclLoc = Initializer->getLocStart();
3852   // Compute some basic properties of the types and the initializer.
3853   bool isLValueRef = DestType->isLValueReferenceType();
3854   bool isRValueRef = !isLValueRef;
3855   bool DerivedToBase = false;
3856   bool ObjCConversion = false;
3857   bool ObjCLifetimeConversion = false;
3858   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3859   Sema::ReferenceCompareResult RefRelationship
3860     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3861                                      ObjCConversion, ObjCLifetimeConversion);
3862
3863   // C++0x [dcl.init.ref]p5:
3864   //   A reference to type "cv1 T1" is initialized by an expression of type
3865   //   "cv2 T2" as follows:
3866   //
3867   //     - If the reference is an lvalue reference and the initializer
3868   //       expression
3869   // Note the analogous bullet points for rvalue refs to functions. Because
3870   // there are no function rvalues in C++, rvalue refs to functions are treated
3871   // like lvalue refs.
3872   OverloadingResult ConvOvlResult = OR_Success;
3873   bool T1Function = T1->isFunctionType();
3874   if (isLValueRef || T1Function) {
3875     if (InitCategory.isLValue() &&
3876         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3877          (Kind.isCStyleOrFunctionalCast() &&
3878           RefRelationship == Sema::Ref_Related))) {
3879       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3880       //     reference-compatible with "cv2 T2," or
3881       //
3882       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3883       // bit-field when we're determining whether the reference initialization
3884       // can occur. However, we do pay attention to whether it is a bit-field
3885       // to decide whether we're actually binding to a temporary created from
3886       // the bit-field.
3887       if (DerivedToBase)
3888         Sequence.AddDerivedToBaseCastStep(
3889                          S.Context.getQualifiedType(T1, T2Quals),
3890                          VK_LValue);
3891       else if (ObjCConversion)
3892         Sequence.AddObjCObjectConversionStep(
3893                                      S.Context.getQualifiedType(T1, T2Quals));
3894
3895       ExprValueKind ValueKind =
3896         convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3897                                                  cv1T1, T1Quals, T2Quals,
3898                                                  isLValueRef);
3899       Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3900       return;
3901     }
3902
3903     //     - has a class type (i.e., T2 is a class type), where T1 is not
3904     //       reference-related to T2, and can be implicitly converted to an
3905     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3906     //       with "cv3 T3" (this conversion is selected by enumerating the
3907     //       applicable conversion functions (13.3.1.6) and choosing the best
3908     //       one through overload resolution (13.3)),
3909     // If we have an rvalue ref to function type here, the rhs must be
3910     // an rvalue. DR1287 removed the "implicitly" here.
3911     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3912         (isLValueRef || InitCategory.isRValue())) {
3913       ConvOvlResult = TryRefInitWithConversionFunction(
3914           S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence);
3915       if (ConvOvlResult == OR_Success)
3916         return;
3917       if (ConvOvlResult != OR_No_Viable_Function)
3918         Sequence.SetOverloadFailure(
3919             InitializationSequence::FK_ReferenceInitOverloadFailed,
3920             ConvOvlResult);
3921     }
3922   }
3923
3924   //     - Otherwise, the reference shall be an lvalue reference to a
3925   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3926   //       shall be an rvalue reference.
3927   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3928     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3929       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3930     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3931       Sequence.SetOverloadFailure(
3932                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3933                                   ConvOvlResult);
3934     else
3935       Sequence.SetFailed(InitCategory.isLValue()
3936         ? (RefRelationship == Sema::Ref_Related
3937              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3938              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3939         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3940
3941     return;
3942   }
3943
3944   //    - If the initializer expression
3945   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3946   //        "cv1 T1" is reference-compatible with "cv2 T2"
3947   // Note: functions are handled below.
3948   if (!T1Function &&
3949       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3950        (Kind.isCStyleOrFunctionalCast() &&
3951         RefRelationship == Sema::Ref_Related)) &&
3952       (InitCategory.isXValue() ||
3953        (InitCategory.isPRValue() && T2->isRecordType()) ||
3954        (InitCategory.isPRValue() && T2->isArrayType()))) {
3955     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3956     if (InitCategory.isPRValue() && T2->isRecordType()) {
3957       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3958       // compiler the freedom to perform a copy here or bind to the
3959       // object, while C++0x requires that we bind directly to the
3960       // object. Hence, we always bind to the object without making an
3961       // extra copy. However, in C++03 requires that we check for the
3962       // presence of a suitable copy constructor:
3963       //
3964       //   The constructor that would be used to make the copy shall
3965       //   be callable whether or not the copy is actually done.
3966       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3967         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3968       else if (S.getLangOpts().CPlusPlus11)
3969         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3970     }
3971
3972     if (DerivedToBase)
3973       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3974                                         ValueKind);
3975     else if (ObjCConversion)
3976       Sequence.AddObjCObjectConversionStep(
3977                                        S.Context.getQualifiedType(T1, T2Quals));
3978
3979     ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3980                                                          Initializer, cv1T1,
3981                                                          T1Quals, T2Quals,
3982                                                          isLValueRef);
3983
3984     Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3985     return;
3986   }
3987
3988   //       - has a class type (i.e., T2 is a class type), where T1 is not
3989   //         reference-related to T2, and can be implicitly converted to an
3990   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3991   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3992   //
3993   // DR1287 removes the "implicitly" here.
3994   if (T2->isRecordType()) {
3995     if (RefRelationship == Sema::Ref_Incompatible) {
3996       ConvOvlResult = TryRefInitWithConversionFunction(
3997           S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence);
3998       if (ConvOvlResult)
3999         Sequence.SetOverloadFailure(
4000             InitializationSequence::FK_ReferenceInitOverloadFailed,
4001             ConvOvlResult);
4002
4003       return;
4004     }
4005
4006     if ((RefRelationship == Sema::Ref_Compatible ||
4007          RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
4008         isRValueRef && InitCategory.isLValue()) {
4009       Sequence.SetFailed(
4010         InitializationSequence::FK_RValueReferenceBindingToLValue);
4011       return;
4012     }
4013
4014     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4015     return;
4016   }
4017
4018   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4019   //        from the initializer expression using the rules for a non-reference
4020   //        copy-initialization (8.5). The reference is then bound to the
4021   //        temporary. [...]
4022
4023   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4024
4025   // FIXME: Why do we use an implicit conversion here rather than trying
4026   // copy-initialization?
4027   ImplicitConversionSequence ICS
4028     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4029                               /*SuppressUserConversions=*/false,
4030                               /*AllowExplicit=*/false,
4031                               /*FIXME:InOverloadResolution=*/false,
4032                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4033                               /*AllowObjCWritebackConversion=*/false);
4034   
4035   if (ICS.isBad()) {
4036     // FIXME: Use the conversion function set stored in ICS to turn
4037     // this into an overloading ambiguity diagnostic. However, we need
4038     // to keep that set as an OverloadCandidateSet rather than as some
4039     // other kind of set.
4040     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4041       Sequence.SetOverloadFailure(
4042                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4043                                   ConvOvlResult);
4044     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4045       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4046     else
4047       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4048     return;
4049   } else {
4050     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4051   }
4052
4053   //        [...] If T1 is reference-related to T2, cv1 must be the
4054   //        same cv-qualification as, or greater cv-qualification
4055   //        than, cv2; otherwise, the program is ill-formed.
4056   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4057   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4058   if (RefRelationship == Sema::Ref_Related &&
4059       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4060     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4061     return;
4062   }
4063
4064   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4065   //   reference, the initializer expression shall not be an lvalue.
4066   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4067       InitCategory.isLValue()) {
4068     Sequence.SetFailed(
4069                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4070     return;
4071   }
4072
4073   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4074   return;
4075 }
4076
4077 /// \brief Attempt character array initialization from a string literal
4078 /// (C++ [dcl.init.string], C99 6.7.8).
4079 static void TryStringLiteralInitialization(Sema &S,
4080                                            const InitializedEntity &Entity,
4081                                            const InitializationKind &Kind,
4082                                            Expr *Initializer,
4083                                        InitializationSequence &Sequence) {
4084   Sequence.AddStringInitStep(Entity.getType());
4085 }
4086
4087 /// \brief Attempt value initialization (C++ [dcl.init]p7).
4088 static void TryValueInitialization(Sema &S,
4089                                    const InitializedEntity &Entity,
4090                                    const InitializationKind &Kind,
4091                                    InitializationSequence &Sequence,
4092                                    InitListExpr *InitList) {
4093   assert((!InitList || InitList->getNumInits() == 0) &&
4094          "Shouldn't use value-init for non-empty init lists");
4095
4096   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4097   //
4098   //   To value-initialize an object of type T means:
4099   QualType T = Entity.getType();
4100
4101   //     -- if T is an array type, then each element is value-initialized;
4102   T = S.Context.getBaseElementType(T);
4103
4104   if (const RecordType *RT = T->getAs<RecordType>()) {
4105     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4106       bool NeedZeroInitialization = true;
4107       if (!S.getLangOpts().CPlusPlus11) {
4108         // C++98:
4109         // -- if T is a class type (clause 9) with a user-declared constructor
4110         //    (12.1), then the default constructor for T is called (and the
4111         //    initialization is ill-formed if T has no accessible default
4112         //    constructor);
4113         if (ClassDecl->hasUserDeclaredConstructor())
4114           NeedZeroInitialization = false;
4115       } else {
4116         // C++11:
4117         // -- if T is a class type (clause 9) with either no default constructor
4118         //    (12.1 [class.ctor]) or a default constructor that is user-provided
4119         //    or deleted, then the object is default-initialized;
4120         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4121         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4122           NeedZeroInitialization = false;
4123       }
4124
4125       // -- if T is a (possibly cv-qualified) non-union class type without a
4126       //    user-provided or deleted default constructor, then the object is
4127       //    zero-initialized and, if T has a non-trivial default constructor,
4128       //    default-initialized;
4129       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4130       // constructor' part was removed by DR1507.
4131       if (NeedZeroInitialization)
4132         Sequence.AddZeroInitializationStep(Entity.getType());
4133
4134       // C++03:
4135       // -- if T is a non-union class type without a user-declared constructor,
4136       //    then every non-static data member and base class component of T is
4137       //    value-initialized;
4138       // [...] A program that calls for [...] value-initialization of an
4139       // entity of reference type is ill-formed.
4140       //
4141       // C++11 doesn't need this handling, because value-initialization does not
4142       // occur recursively there, and the implicit default constructor is
4143       // defined as deleted in the problematic cases.
4144       if (!S.getLangOpts().CPlusPlus11 &&
4145           ClassDecl->hasUninitializedReferenceMember()) {
4146         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4147         return;
4148       }
4149
4150       // If this is list-value-initialization, pass the empty init list on when
4151       // building the constructor call. This affects the semantics of a few
4152       // things (such as whether an explicit default constructor can be called).
4153       Expr *InitListAsExpr = InitList;
4154       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4155       bool InitListSyntax = InitList;
4156
4157       return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
4158                                           InitListSyntax);
4159     }
4160   }
4161
4162   Sequence.AddZeroInitializationStep(Entity.getType());
4163 }
4164
4165 /// \brief Attempt default initialization (C++ [dcl.init]p6).
4166 static void TryDefaultInitialization(Sema &S,
4167                                      const InitializedEntity &Entity,
4168                                      const InitializationKind &Kind,
4169                                      InitializationSequence &Sequence) {
4170   assert(Kind.getKind() == InitializationKind::IK_Default);
4171
4172   // C++ [dcl.init]p6:
4173   //   To default-initialize an object of type T means:
4174   //     - if T is an array type, each element is default-initialized;
4175   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4176          
4177   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4178   //       constructor for T is called (and the initialization is ill-formed if
4179   //       T has no accessible default constructor);
4180   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4181     TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
4182     return;
4183   }
4184
4185   //     - otherwise, no initialization is performed.
4186
4187   //   If a program calls for the default initialization of an object of
4188   //   a const-qualified type T, T shall be a class type with a user-provided
4189   //   default constructor.
4190   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4191     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4192     return;
4193   }
4194
4195   // If the destination type has a lifetime property, zero-initialize it.
4196   if (DestType.getQualifiers().hasObjCLifetime()) {
4197     Sequence.AddZeroInitializationStep(Entity.getType());
4198     return;
4199   }
4200 }
4201
4202 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4203 /// which enumerates all conversion functions and performs overload resolution
4204 /// to select the best.
4205 static void TryUserDefinedConversion(Sema &S,
4206                                      QualType DestType,
4207                                      const InitializationKind &Kind,
4208                                      Expr *Initializer,
4209                                      InitializationSequence &Sequence,
4210                                      bool TopLevelOfInitList) {
4211   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4212   QualType SourceType = Initializer->getType();
4213   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4214          "Must have a class type to perform a user-defined conversion");
4215
4216   // Build the candidate set directly in the initialization sequence
4217   // structure, so that it will persist if we fail.
4218   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4219   CandidateSet.clear();
4220
4221   // Determine whether we are allowed to call explicit constructors or
4222   // explicit conversion operators.
4223   bool AllowExplicit = Kind.AllowExplicit();
4224
4225   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4226     // The type we're converting to is a class type. Enumerate its constructors
4227     // to see if there is a suitable conversion.
4228     CXXRecordDecl *DestRecordDecl
4229       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4230
4231     // Try to complete the type we're converting to.
4232     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4233       DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4234       // The container holding the constructors can under certain conditions
4235       // be changed while iterating. To be safe we copy the lookup results
4236       // to a new container.
4237       SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4238       for (SmallVectorImpl<NamedDecl *>::iterator
4239              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4240            Con != ConEnd; ++Con) {
4241         NamedDecl *D = *Con;
4242         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4243
4244         // Find the constructor (which may be a template).
4245         CXXConstructorDecl *Constructor = nullptr;
4246         FunctionTemplateDecl *ConstructorTmpl
4247           = dyn_cast<FunctionTemplateDecl>(D);
4248         if (ConstructorTmpl)
4249           Constructor = cast<CXXConstructorDecl>(
4250                                            ConstructorTmpl->getTemplatedDecl());
4251         else
4252           Constructor = cast<CXXConstructorDecl>(D);
4253
4254         if (!Constructor->isInvalidDecl() &&
4255             Constructor->isConvertingConstructor(AllowExplicit)) {
4256           if (ConstructorTmpl)
4257             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4258                                            /*ExplicitArgs*/ nullptr,
4259                                            Initializer, CandidateSet,
4260                                            /*SuppressUserConversions=*/true);
4261           else
4262             S.AddOverloadCandidate(Constructor, FoundDecl,
4263                                    Initializer, CandidateSet,
4264                                    /*SuppressUserConversions=*/true);
4265         }
4266       }
4267     }
4268   }
4269
4270   SourceLocation DeclLoc = Initializer->getLocStart();
4271
4272   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4273     // The type we're converting from is a class type, enumerate its conversion
4274     // functions.
4275
4276     // We can only enumerate the conversion functions for a complete type; if
4277     // the type isn't complete, simply skip this step.
4278     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4279       CXXRecordDecl *SourceRecordDecl
4280         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4281
4282       std::pair<CXXRecordDecl::conversion_iterator,
4283                 CXXRecordDecl::conversion_iterator>
4284         Conversions = SourceRecordDecl->getVisibleConversionFunctions();
4285       for (CXXRecordDecl::conversion_iterator
4286              I = Conversions.first, E = Conversions.second; I != E; ++I) {
4287         NamedDecl *D = *I;
4288         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4289         if (isa<UsingShadowDecl>(D))
4290           D = cast<UsingShadowDecl>(D)->getTargetDecl();
4291
4292         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4293         CXXConversionDecl *Conv;
4294         if (ConvTemplate)
4295           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4296         else
4297           Conv = cast<CXXConversionDecl>(D);
4298
4299         if (AllowExplicit || !Conv->isExplicit()) {
4300           if (ConvTemplate)
4301             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4302                                              ActingDC, Initializer, DestType,
4303                                              CandidateSet, AllowExplicit);
4304           else
4305             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4306                                      Initializer, DestType, CandidateSet,
4307                                      AllowExplicit);
4308         }
4309       }
4310     }
4311   }
4312
4313   // Perform overload resolution. If it fails, return the failed result.
4314   OverloadCandidateSet::iterator Best;
4315   if (OverloadingResult Result
4316         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4317     Sequence.SetOverloadFailure(
4318                         InitializationSequence::FK_UserConversionOverloadFailed,
4319                                 Result);
4320     return;
4321   }
4322
4323   FunctionDecl *Function = Best->Function;
4324   Function->setReferenced();
4325   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4326
4327   if (isa<CXXConstructorDecl>(Function)) {
4328     // Add the user-defined conversion step. Any cv-qualification conversion is
4329     // subsumed by the initialization. Per DR5, the created temporary is of the
4330     // cv-unqualified type of the destination.
4331     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4332                                    DestType.getUnqualifiedType(),
4333                                    HadMultipleCandidates);
4334     return;
4335   }
4336
4337   // Add the user-defined conversion step that calls the conversion function.
4338   QualType ConvType = Function->getCallResultType();
4339   if (ConvType->getAs<RecordType>()) {
4340     // If we're converting to a class type, there may be an copy of
4341     // the resulting temporary object (possible to create an object of
4342     // a base class type). That copy is not a separate conversion, so
4343     // we just make a note of the actual destination type (possibly a
4344     // base class of the type returned by the conversion function) and
4345     // let the user-defined conversion step handle the conversion.
4346     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4347                                    HadMultipleCandidates);
4348     return;
4349   }
4350
4351   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4352                                  HadMultipleCandidates);
4353
4354   // If the conversion following the call to the conversion function
4355   // is interesting, add it as a separate step.
4356   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4357       Best->FinalConversion.Third) {
4358     ImplicitConversionSequence ICS;
4359     ICS.setStandard();
4360     ICS.Standard = Best->FinalConversion;
4361     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4362   }
4363 }
4364
4365 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4366 /// a function with a pointer return type contains a 'return false;' statement.
4367 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
4368 /// code using that header.
4369 ///
4370 /// Work around this by treating 'return false;' as zero-initializing the result
4371 /// if it's used in a pointer-returning function in a system header.
4372 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4373                                               const InitializedEntity &Entity,
4374                                               const Expr *Init) {
4375   return S.getLangOpts().CPlusPlus11 &&
4376          Entity.getKind() == InitializedEntity::EK_Result &&
4377          Entity.getType()->isPointerType() &&
4378          isa<CXXBoolLiteralExpr>(Init) &&
4379          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4380          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4381 }
4382
4383 /// The non-zero enum values here are indexes into diagnostic alternatives.
4384 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4385
4386 /// Determines whether this expression is an acceptable ICR source.
4387 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4388                                          bool isAddressOf, bool &isWeakAccess) {
4389   // Skip parens.
4390   e = e->IgnoreParens();
4391
4392   // Skip address-of nodes.
4393   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4394     if (op->getOpcode() == UO_AddrOf)
4395       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4396                                 isWeakAccess);
4397
4398   // Skip certain casts.
4399   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4400     switch (ce->getCastKind()) {
4401     case CK_Dependent:
4402     case CK_BitCast:
4403     case CK_LValueBitCast:
4404     case CK_NoOp:
4405       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4406
4407     case CK_ArrayToPointerDecay:
4408       return IIK_nonscalar;
4409
4410     case CK_NullToPointer:
4411       return IIK_okay;
4412
4413     default:
4414       break;
4415     }
4416
4417   // If we have a declaration reference, it had better be a local variable.
4418   } else if (isa<DeclRefExpr>(e)) {
4419     // set isWeakAccess to true, to mean that there will be an implicit 
4420     // load which requires a cleanup.
4421     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4422       isWeakAccess = true;
4423     
4424     if (!isAddressOf) return IIK_nonlocal;
4425
4426     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4427     if (!var) return IIK_nonlocal;
4428
4429     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4430
4431   // If we have a conditional operator, check both sides.
4432   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4433     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4434                                                 isWeakAccess))
4435       return iik;
4436
4437     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4438
4439   // These are never scalar.
4440   } else if (isa<ArraySubscriptExpr>(e)) {
4441     return IIK_nonscalar;
4442
4443   // Otherwise, it needs to be a null pointer constant.
4444   } else {
4445     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4446             ? IIK_okay : IIK_nonlocal);
4447   }
4448
4449   return IIK_nonlocal;
4450 }
4451
4452 /// Check whether the given expression is a valid operand for an
4453 /// indirect copy/restore.
4454 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4455   assert(src->isRValue());
4456   bool isWeakAccess = false;
4457   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4458   // If isWeakAccess to true, there will be an implicit 
4459   // load which requires a cleanup.
4460   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4461     S.ExprNeedsCleanups = true;
4462   
4463   if (iik == IIK_okay) return;
4464
4465   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4466     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4467     << src->getSourceRange();
4468 }
4469
4470 /// \brief Determine whether we have compatible array types for the
4471 /// purposes of GNU by-copy array initialization.
4472 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
4473                                     const ArrayType *Source) {
4474   // If the source and destination array types are equivalent, we're
4475   // done.
4476   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4477     return true;
4478
4479   // Make sure that the element types are the same.
4480   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4481     return false;
4482
4483   // The only mismatch we allow is when the destination is an
4484   // incomplete array type and the source is a constant array type.
4485   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4486 }
4487
4488 static bool tryObjCWritebackConversion(Sema &S,
4489                                        InitializationSequence &Sequence,
4490                                        const InitializedEntity &Entity,
4491                                        Expr *Initializer) {
4492   bool ArrayDecay = false;
4493   QualType ArgType = Initializer->getType();
4494   QualType ArgPointee;
4495   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4496     ArrayDecay = true;
4497     ArgPointee = ArgArrayType->getElementType();
4498     ArgType = S.Context.getPointerType(ArgPointee);
4499   }
4500       
4501   // Handle write-back conversion.
4502   QualType ConvertedArgType;
4503   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4504                                    ConvertedArgType))
4505     return false;
4506
4507   // We should copy unless we're passing to an argument explicitly
4508   // marked 'out'.
4509   bool ShouldCopy = true;
4510   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4511     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4512
4513   // Do we need an lvalue conversion?
4514   if (ArrayDecay || Initializer->isGLValue()) {
4515     ImplicitConversionSequence ICS;
4516     ICS.setStandard();
4517     ICS.Standard.setAsIdentityConversion();
4518
4519     QualType ResultType;
4520     if (ArrayDecay) {
4521       ICS.Standard.First = ICK_Array_To_Pointer;
4522       ResultType = S.Context.getPointerType(ArgPointee);
4523     } else {
4524       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4525       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4526     }
4527           
4528     Sequence.AddConversionSequenceStep(ICS, ResultType);
4529   }
4530         
4531   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4532   return true;
4533 }
4534
4535 static bool TryOCLSamplerInitialization(Sema &S,
4536                                         InitializationSequence &Sequence,
4537                                         QualType DestType,
4538                                         Expr *Initializer) {
4539   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4540     !Initializer->isIntegerConstantExpr(S.getASTContext()))
4541     return false;
4542
4543   Sequence.AddOCLSamplerInitStep(DestType);
4544   return true;
4545 }
4546
4547 //
4548 // OpenCL 1.2 spec, s6.12.10
4549 //
4550 // The event argument can also be used to associate the
4551 // async_work_group_copy with a previous async copy allowing
4552 // an event to be shared by multiple async copies; otherwise
4553 // event should be zero.
4554 //
4555 static bool TryOCLZeroEventInitialization(Sema &S,
4556                                           InitializationSequence &Sequence,
4557                                           QualType DestType,
4558                                           Expr *Initializer) {
4559   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4560       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4561       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4562     return false;
4563
4564   Sequence.AddOCLZeroEventStep(DestType);
4565   return true;
4566 }
4567
4568 InitializationSequence::InitializationSequence(Sema &S,
4569                                                const InitializedEntity &Entity,
4570                                                const InitializationKind &Kind,
4571                                                MultiExprArg Args,
4572                                                bool TopLevelOfInitList)
4573     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
4574   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList);
4575 }
4576
4577 void InitializationSequence::InitializeFrom(Sema &S,
4578                                             const InitializedEntity &Entity,
4579                                             const InitializationKind &Kind,
4580                                             MultiExprArg Args,
4581                                             bool TopLevelOfInitList) {
4582   ASTContext &Context = S.Context;
4583
4584   // Eliminate non-overload placeholder types in the arguments.  We
4585   // need to do this before checking whether types are dependent
4586   // because lowering a pseudo-object expression might well give us
4587   // something of dependent type.
4588   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4589     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4590       // FIXME: should we be doing this here?
4591       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4592       if (result.isInvalid()) {
4593         SetFailed(FK_PlaceholderType);
4594         return;
4595       }
4596       Args[I] = result.get();
4597     }
4598
4599   // C++0x [dcl.init]p16:
4600   //   The semantics of initializers are as follows. The destination type is
4601   //   the type of the object or reference being initialized and the source
4602   //   type is the type of the initializer expression. The source type is not
4603   //   defined when the initializer is a braced-init-list or when it is a
4604   //   parenthesized list of expressions.
4605   QualType DestType = Entity.getType();
4606
4607   if (DestType->isDependentType() ||
4608       Expr::hasAnyTypeDependentArguments(Args)) {
4609     SequenceKind = DependentSequence;
4610     return;
4611   }
4612
4613   // Almost everything is a normal sequence.
4614   setSequenceKind(NormalSequence);
4615
4616   QualType SourceType;
4617   Expr *Initializer = nullptr;
4618   if (Args.size() == 1) {
4619     Initializer = Args[0];
4620     if (S.getLangOpts().ObjC1) {
4621       if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
4622                                               DestType, Initializer->getType(),
4623                                               Initializer) ||
4624           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
4625         Args[0] = Initializer;
4626     }
4627     if (!isa<InitListExpr>(Initializer))
4628       SourceType = Initializer->getType();
4629   }
4630
4631   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4632   //       object is list-initialized (8.5.4).
4633   if (Kind.getKind() != InitializationKind::IK_Direct) {
4634     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4635       TryListInitialization(S, Entity, Kind, InitList, *this);
4636       return;
4637     }
4638   }
4639
4640   //     - If the destination type is a reference type, see 8.5.3.
4641   if (DestType->isReferenceType()) {
4642     // C++0x [dcl.init.ref]p1:
4643     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4644     //   (8.3.2), shall be initialized by an object, or function, of type T or
4645     //   by an object that can be converted into a T.
4646     // (Therefore, multiple arguments are not permitted.)
4647     if (Args.size() != 1)
4648       SetFailed(FK_TooManyInitsForReference);
4649     else
4650       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4651     return;
4652   }
4653
4654   //     - If the initializer is (), the object is value-initialized.
4655   if (Kind.getKind() == InitializationKind::IK_Value ||
4656       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4657     TryValueInitialization(S, Entity, Kind, *this);
4658     return;
4659   }
4660
4661   // Handle default initialization.
4662   if (Kind.getKind() == InitializationKind::IK_Default) {
4663     TryDefaultInitialization(S, Entity, Kind, *this);
4664     return;
4665   }
4666
4667   //     - If the destination type is an array of characters, an array of
4668   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4669   //       initializer is a string literal, see 8.5.2.
4670   //     - Otherwise, if the destination type is an array, the program is
4671   //       ill-formed.
4672   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4673     if (Initializer && isa<VariableArrayType>(DestAT)) {
4674       SetFailed(FK_VariableLengthArrayHasInitializer);
4675       return;
4676     }
4677
4678     if (Initializer) {
4679       switch (IsStringInit(Initializer, DestAT, Context)) {
4680       case SIF_None:
4681         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4682         return;
4683       case SIF_NarrowStringIntoWideChar:
4684         SetFailed(FK_NarrowStringIntoWideCharArray);
4685         return;
4686       case SIF_WideStringIntoChar:
4687         SetFailed(FK_WideStringIntoCharArray);
4688         return;
4689       case SIF_IncompatWideStringIntoWideChar:
4690         SetFailed(FK_IncompatWideStringIntoWideChar);
4691         return;
4692       case SIF_Other:
4693         break;
4694       }
4695     }
4696
4697     // Note: as an GNU C extension, we allow initialization of an
4698     // array from a compound literal that creates an array of the same
4699     // type, so long as the initializer has no side effects.
4700     if (!S.getLangOpts().CPlusPlus && Initializer &&
4701         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4702         Initializer->getType()->isArrayType()) {
4703       const ArrayType *SourceAT
4704         = Context.getAsArrayType(Initializer->getType());
4705       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4706         SetFailed(FK_ArrayTypeMismatch);
4707       else if (Initializer->HasSideEffects(S.Context))
4708         SetFailed(FK_NonConstantArrayInit);
4709       else {
4710         AddArrayInitStep(DestType);
4711       }
4712     }
4713     // Note: as a GNU C++ extension, we allow list-initialization of a
4714     // class member of array type from a parenthesized initializer list.
4715     else if (S.getLangOpts().CPlusPlus &&
4716              Entity.getKind() == InitializedEntity::EK_Member &&
4717              Initializer && isa<InitListExpr>(Initializer)) {
4718       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4719                             *this);
4720       AddParenthesizedArrayInitStep(DestType);
4721     } else if (DestAT->getElementType()->isCharType())
4722       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4723     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4724       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4725     else
4726       SetFailed(FK_ArrayNeedsInitList);
4727
4728     return;
4729   }
4730
4731   // Determine whether we should consider writeback conversions for
4732   // Objective-C ARC.
4733   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4734          Entity.isParameterKind();
4735
4736   // We're at the end of the line for C: it's either a write-back conversion
4737   // or it's a C assignment. There's no need to check anything else.
4738   if (!S.getLangOpts().CPlusPlus) {
4739     // If allowed, check whether this is an Objective-C writeback conversion.
4740     if (allowObjCWritebackConversion &&
4741         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4742       return;
4743     }
4744
4745     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4746       return;
4747
4748     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4749       return;
4750
4751     // Handle initialization in C
4752     AddCAssignmentStep(DestType);
4753     MaybeProduceObjCObject(S, *this, Entity);
4754     return;
4755   }
4756
4757   assert(S.getLangOpts().CPlusPlus);
4758       
4759   //     - If the destination type is a (possibly cv-qualified) class type:
4760   if (DestType->isRecordType()) {
4761     //     - If the initialization is direct-initialization, or if it is
4762     //       copy-initialization where the cv-unqualified version of the
4763     //       source type is the same class as, or a derived class of, the
4764     //       class of the destination, constructors are considered. [...]
4765     if (Kind.getKind() == InitializationKind::IK_Direct ||
4766         (Kind.getKind() == InitializationKind::IK_Copy &&
4767          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4768           S.IsDerivedFrom(SourceType, DestType))))
4769       TryConstructorInitialization(S, Entity, Kind, Args,
4770                                    DestType, *this);
4771     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4772     //       user-defined conversion sequences that can convert from the source
4773     //       type to the destination type or (when a conversion function is
4774     //       used) to a derived class thereof are enumerated as described in
4775     //       13.3.1.4, and the best one is chosen through overload resolution
4776     //       (13.3).
4777     else
4778       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
4779                                TopLevelOfInitList);
4780     return;
4781   }
4782
4783   if (Args.size() > 1) {
4784     SetFailed(FK_TooManyInitsForScalar);
4785     return;
4786   }
4787   assert(Args.size() == 1 && "Zero-argument case handled above");
4788
4789   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4790   //      type, conversion functions are considered.
4791   if (!SourceType.isNull() && SourceType->isRecordType()) {
4792     // For a conversion to _Atomic(T) from either T or a class type derived
4793     // from T, initialize the T object then convert to _Atomic type.
4794     bool NeedAtomicConversion = false;
4795     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
4796       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
4797           S.IsDerivedFrom(SourceType, Atomic->getValueType())) {
4798         DestType = Atomic->getValueType();
4799         NeedAtomicConversion = true;
4800       }
4801     }
4802
4803     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
4804                              TopLevelOfInitList);
4805     MaybeProduceObjCObject(S, *this, Entity);
4806     if (!Failed() && NeedAtomicConversion)
4807       AddAtomicConversionStep(Entity.getType());
4808     return;
4809   }
4810
4811   //    - Otherwise, the initial value of the object being initialized is the
4812   //      (possibly converted) value of the initializer expression. Standard
4813   //      conversions (Clause 4) will be used, if necessary, to convert the
4814   //      initializer expression to the cv-unqualified version of the
4815   //      destination type; no user-defined conversions are considered.
4816
4817   ImplicitConversionSequence ICS
4818     = S.TryImplicitConversion(Initializer, DestType,
4819                               /*SuppressUserConversions*/true,
4820                               /*AllowExplicitConversions*/ false,
4821                               /*InOverloadResolution*/ false,
4822                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4823                               allowObjCWritebackConversion);
4824
4825   if (ICS.isStandard() &&
4826       ICS.Standard.Second == ICK_Writeback_Conversion) {
4827     // Objective-C ARC writeback conversion.
4828     
4829     // We should copy unless we're passing to an argument explicitly
4830     // marked 'out'.
4831     bool ShouldCopy = true;
4832     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4833       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4834     
4835     // If there was an lvalue adjustment, add it as a separate conversion.
4836     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4837         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4838       ImplicitConversionSequence LvalueICS;
4839       LvalueICS.setStandard();
4840       LvalueICS.Standard.setAsIdentityConversion();
4841       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4842       LvalueICS.Standard.First = ICS.Standard.First;
4843       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4844     }
4845     
4846     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
4847   } else if (ICS.isBad()) {
4848     DeclAccessPair dap;
4849     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
4850       AddZeroInitializationStep(Entity.getType());
4851     } else if (Initializer->getType() == Context.OverloadTy &&
4852                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
4853                                                      false, dap))
4854       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4855     else
4856       SetFailed(InitializationSequence::FK_ConversionFailed);
4857   } else {
4858     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4859
4860     MaybeProduceObjCObject(S, *this, Entity);
4861   }
4862 }
4863
4864 InitializationSequence::~InitializationSequence() {
4865   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4866                                           StepEnd = Steps.end();
4867        Step != StepEnd; ++Step)
4868     Step->Destroy();
4869 }
4870
4871 //===----------------------------------------------------------------------===//
4872 // Perform initialization
4873 //===----------------------------------------------------------------------===//
4874 static Sema::AssignmentAction
4875 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
4876   switch(Entity.getKind()) {
4877   case InitializedEntity::EK_Variable:
4878   case InitializedEntity::EK_New:
4879   case InitializedEntity::EK_Exception:
4880   case InitializedEntity::EK_Base:
4881   case InitializedEntity::EK_Delegating:
4882     return Sema::AA_Initializing;
4883
4884   case InitializedEntity::EK_Parameter:
4885     if (Entity.getDecl() &&
4886         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4887       return Sema::AA_Sending;
4888
4889     return Sema::AA_Passing;
4890
4891   case InitializedEntity::EK_Parameter_CF_Audited:
4892     if (Entity.getDecl() &&
4893       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4894       return Sema::AA_Sending;
4895       
4896     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
4897       
4898   case InitializedEntity::EK_Result:
4899     return Sema::AA_Returning;
4900
4901   case InitializedEntity::EK_Temporary:
4902   case InitializedEntity::EK_RelatedResult:
4903     // FIXME: Can we tell apart casting vs. converting?
4904     return Sema::AA_Casting;
4905
4906   case InitializedEntity::EK_Member:
4907   case InitializedEntity::EK_ArrayElement:
4908   case InitializedEntity::EK_VectorElement:
4909   case InitializedEntity::EK_ComplexElement:
4910   case InitializedEntity::EK_BlockElement:
4911   case InitializedEntity::EK_LambdaCapture:
4912   case InitializedEntity::EK_CompoundLiteralInit:
4913     return Sema::AA_Initializing;
4914   }
4915
4916   llvm_unreachable("Invalid EntityKind!");
4917 }
4918
4919 /// \brief Whether we should bind a created object as a temporary when
4920 /// initializing the given entity.
4921 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4922   switch (Entity.getKind()) {
4923   case InitializedEntity::EK_ArrayElement:
4924   case InitializedEntity::EK_Member:
4925   case InitializedEntity::EK_Result:
4926   case InitializedEntity::EK_New:
4927   case InitializedEntity::EK_Variable:
4928   case InitializedEntity::EK_Base:
4929   case InitializedEntity::EK_Delegating:
4930   case InitializedEntity::EK_VectorElement:
4931   case InitializedEntity::EK_ComplexElement:
4932   case InitializedEntity::EK_Exception:
4933   case InitializedEntity::EK_BlockElement:
4934   case InitializedEntity::EK_LambdaCapture:
4935   case InitializedEntity::EK_CompoundLiteralInit:
4936     return false;
4937
4938   case InitializedEntity::EK_Parameter:
4939   case InitializedEntity::EK_Parameter_CF_Audited:
4940   case InitializedEntity::EK_Temporary:
4941   case InitializedEntity::EK_RelatedResult:
4942     return true;
4943   }
4944
4945   llvm_unreachable("missed an InitializedEntity kind?");
4946 }
4947
4948 /// \brief Whether the given entity, when initialized with an object
4949 /// created for that initialization, requires destruction.
4950 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4951   switch (Entity.getKind()) {
4952     case InitializedEntity::EK_Result:
4953     case InitializedEntity::EK_New:
4954     case InitializedEntity::EK_Base:
4955     case InitializedEntity::EK_Delegating:
4956     case InitializedEntity::EK_VectorElement:
4957     case InitializedEntity::EK_ComplexElement:
4958     case InitializedEntity::EK_BlockElement:
4959     case InitializedEntity::EK_LambdaCapture:
4960       return false;
4961
4962     case InitializedEntity::EK_Member:
4963     case InitializedEntity::EK_Variable:
4964     case InitializedEntity::EK_Parameter:
4965     case InitializedEntity::EK_Parameter_CF_Audited:
4966     case InitializedEntity::EK_Temporary:
4967     case InitializedEntity::EK_ArrayElement:
4968     case InitializedEntity::EK_Exception:
4969     case InitializedEntity::EK_CompoundLiteralInit:
4970     case InitializedEntity::EK_RelatedResult:
4971       return true;
4972   }
4973
4974   llvm_unreachable("missed an InitializedEntity kind?");
4975 }
4976
4977 /// \brief Look for copy and move constructors and constructor templates, for
4978 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4979 static void LookupCopyAndMoveConstructors(Sema &S,
4980                                           OverloadCandidateSet &CandidateSet,
4981                                           CXXRecordDecl *Class,
4982                                           Expr *CurInitExpr) {
4983   DeclContext::lookup_result R = S.LookupConstructors(Class);
4984   // The container holding the constructors can under certain conditions
4985   // be changed while iterating (e.g. because of deserialization).
4986   // To be safe we copy the lookup results to a new container.
4987   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4988   for (SmallVectorImpl<NamedDecl *>::iterator
4989          CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4990     NamedDecl *D = *CI;
4991     CXXConstructorDecl *Constructor = nullptr;
4992
4993     if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4994       // Handle copy/moveconstructors, only.
4995       if (!Constructor || Constructor->isInvalidDecl() ||
4996           !Constructor->isCopyOrMoveConstructor() ||
4997           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4998         continue;
4999
5000       DeclAccessPair FoundDecl
5001         = DeclAccessPair::make(Constructor, Constructor->getAccess());
5002       S.AddOverloadCandidate(Constructor, FoundDecl,
5003                              CurInitExpr, CandidateSet);
5004       continue;
5005     }
5006
5007     // Handle constructor templates.
5008     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
5009     if (ConstructorTmpl->isInvalidDecl())
5010       continue;
5011
5012     Constructor = cast<CXXConstructorDecl>(
5013                                          ConstructorTmpl->getTemplatedDecl());
5014     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
5015       continue;
5016
5017     // FIXME: Do we need to limit this to copy-constructor-like
5018     // candidates?
5019     DeclAccessPair FoundDecl
5020       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
5021     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr,
5022                                    CurInitExpr, CandidateSet, true);
5023   }
5024 }
5025
5026 /// \brief Get the location at which initialization diagnostics should appear.
5027 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5028                                            Expr *Initializer) {
5029   switch (Entity.getKind()) {
5030   case InitializedEntity::EK_Result:
5031     return Entity.getReturnLoc();
5032
5033   case InitializedEntity::EK_Exception:
5034     return Entity.getThrowLoc();
5035
5036   case InitializedEntity::EK_Variable:
5037     return Entity.getDecl()->getLocation();
5038
5039   case InitializedEntity::EK_LambdaCapture:
5040     return Entity.getCaptureLoc();
5041       
5042   case InitializedEntity::EK_ArrayElement:
5043   case InitializedEntity::EK_Member:
5044   case InitializedEntity::EK_Parameter:
5045   case InitializedEntity::EK_Parameter_CF_Audited:
5046   case InitializedEntity::EK_Temporary:
5047   case InitializedEntity::EK_New:
5048   case InitializedEntity::EK_Base:
5049   case InitializedEntity::EK_Delegating:
5050   case InitializedEntity::EK_VectorElement:
5051   case InitializedEntity::EK_ComplexElement:
5052   case InitializedEntity::EK_BlockElement:
5053   case InitializedEntity::EK_CompoundLiteralInit:
5054   case InitializedEntity::EK_RelatedResult:
5055     return Initializer->getLocStart();
5056   }
5057   llvm_unreachable("missed an InitializedEntity kind?");
5058 }
5059
5060 /// \brief Make a (potentially elidable) temporary copy of the object
5061 /// provided by the given initializer by calling the appropriate copy
5062 /// constructor.
5063 ///
5064 /// \param S The Sema object used for type-checking.
5065 ///
5066 /// \param T The type of the temporary object, which must either be
5067 /// the type of the initializer expression or a superclass thereof.
5068 ///
5069 /// \param Entity The entity being initialized.
5070 ///
5071 /// \param CurInit The initializer expression.
5072 ///
5073 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5074 /// is permitted in C++03 (but not C++0x) when binding a reference to
5075 /// an rvalue.
5076 ///
5077 /// \returns An expression that copies the initializer expression into
5078 /// a temporary object, or an error expression if a copy could not be
5079 /// created.
5080 static ExprResult CopyObject(Sema &S,
5081                              QualType T,
5082                              const InitializedEntity &Entity,
5083                              ExprResult CurInit,
5084                              bool IsExtraneousCopy) {
5085   // Determine which class type we're copying to.
5086   Expr *CurInitExpr = (Expr *)CurInit.get();
5087   CXXRecordDecl *Class = nullptr;
5088   if (const RecordType *Record = T->getAs<RecordType>())
5089     Class = cast<CXXRecordDecl>(Record->getDecl());
5090   if (!Class)
5091     return CurInit;
5092
5093   // C++0x [class.copy]p32:
5094   //   When certain criteria are met, an implementation is allowed to
5095   //   omit the copy/move construction of a class object, even if the
5096   //   copy/move constructor and/or destructor for the object have
5097   //   side effects. [...]
5098   //     - when a temporary class object that has not been bound to a
5099   //       reference (12.2) would be copied/moved to a class object
5100   //       with the same cv-unqualified type, the copy/move operation
5101   //       can be omitted by constructing the temporary object
5102   //       directly into the target of the omitted copy/move
5103   //
5104   // Note that the other three bullets are handled elsewhere. Copy
5105   // elision for return statements and throw expressions are handled as part
5106   // of constructor initialization, while copy elision for exception handlers
5107   // is handled by the run-time.
5108   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
5109   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5110
5111   // Make sure that the type we are copying is complete.
5112   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5113     return CurInit;
5114
5115   // Perform overload resolution using the class's copy/move constructors.
5116   // Only consider constructors and constructor templates. Per
5117   // C++0x [dcl.init]p16, second bullet to class types, this initialization
5118   // is direct-initialization.
5119   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5120   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
5121
5122   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5123
5124   OverloadCandidateSet::iterator Best;
5125   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
5126   case OR_Success:
5127     break;
5128
5129   case OR_No_Viable_Function:
5130     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5131            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5132            : diag::err_temp_copy_no_viable)
5133       << (int)Entity.getKind() << CurInitExpr->getType()
5134       << CurInitExpr->getSourceRange();
5135     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5136     if (!IsExtraneousCopy || S.isSFINAEContext())
5137       return ExprError();
5138     return CurInit;
5139
5140   case OR_Ambiguous:
5141     S.Diag(Loc, diag::err_temp_copy_ambiguous)
5142       << (int)Entity.getKind() << CurInitExpr->getType()
5143       << CurInitExpr->getSourceRange();
5144     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5145     return ExprError();
5146
5147   case OR_Deleted:
5148     S.Diag(Loc, diag::err_temp_copy_deleted)
5149       << (int)Entity.getKind() << CurInitExpr->getType()
5150       << CurInitExpr->getSourceRange();
5151     S.NoteDeletedFunction(Best->Function);
5152     return ExprError();
5153   }
5154
5155   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5156   SmallVector<Expr*, 8> ConstructorArgs;
5157   CurInit.get(); // Ownership transferred into MultiExprArg, below.
5158
5159   S.CheckConstructorAccess(Loc, Constructor, Entity,
5160                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
5161
5162   if (IsExtraneousCopy) {
5163     // If this is a totally extraneous copy for C++03 reference
5164     // binding purposes, just return the original initialization
5165     // expression. We don't generate an (elided) copy operation here
5166     // because doing so would require us to pass down a flag to avoid
5167     // infinite recursion, where each step adds another extraneous,
5168     // elidable copy.
5169
5170     // Instantiate the default arguments of any extra parameters in
5171     // the selected copy constructor, as if we were going to create a
5172     // proper call to the copy constructor.
5173     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5174       ParmVarDecl *Parm = Constructor->getParamDecl(I);
5175       if (S.RequireCompleteType(Loc, Parm->getType(),
5176                                 diag::err_call_incomplete_argument))
5177         break;
5178
5179       // Build the default argument expression; we don't actually care
5180       // if this succeeds or not, because this routine will complain
5181       // if there was a problem.
5182       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5183     }
5184
5185     return CurInitExpr;
5186   }
5187
5188   // Determine the arguments required to actually perform the
5189   // constructor call (we might have derived-to-base conversions, or
5190   // the copy constructor may have default arguments).
5191   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5192     return ExprError();
5193
5194   // Actually perform the constructor call.
5195   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
5196                                     ConstructorArgs,
5197                                     HadMultipleCandidates,
5198                                     /*ListInit*/ false,
5199                                     /*StdInitListInit*/ false,
5200                                     /*ZeroInit*/ false,
5201                                     CXXConstructExpr::CK_Complete,
5202                                     SourceRange());
5203
5204   // If we're supposed to bind temporaries, do so.
5205   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5206     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5207   return CurInit;
5208 }
5209
5210 /// \brief Check whether elidable copy construction for binding a reference to
5211 /// a temporary would have succeeded if we were building in C++98 mode, for
5212 /// -Wc++98-compat.
5213 static void CheckCXX98CompatAccessibleCopy(Sema &S,
5214                                            const InitializedEntity &Entity,
5215                                            Expr *CurInitExpr) {
5216   assert(S.getLangOpts().CPlusPlus11);
5217
5218   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5219   if (!Record)
5220     return;
5221
5222   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5223   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5224     return;
5225
5226   // Find constructors which would have been considered.
5227   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5228   LookupCopyAndMoveConstructors(
5229       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
5230
5231   // Perform overload resolution.
5232   OverloadCandidateSet::iterator Best;
5233   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
5234
5235   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5236     << OR << (int)Entity.getKind() << CurInitExpr->getType()
5237     << CurInitExpr->getSourceRange();
5238
5239   switch (OR) {
5240   case OR_Success:
5241     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5242                              Entity, Best->FoundDecl.getAccess(), Diag);
5243     // FIXME: Check default arguments as far as that's possible.
5244     break;
5245
5246   case OR_No_Viable_Function:
5247     S.Diag(Loc, Diag);
5248     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5249     break;
5250
5251   case OR_Ambiguous:
5252     S.Diag(Loc, Diag);
5253     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5254     break;
5255
5256   case OR_Deleted:
5257     S.Diag(Loc, Diag);
5258     S.NoteDeletedFunction(Best->Function);
5259     break;
5260   }
5261 }
5262
5263 void InitializationSequence::PrintInitLocationNote(Sema &S,
5264                                               const InitializedEntity &Entity) {
5265   if (Entity.isParameterKind() && Entity.getDecl()) {
5266     if (Entity.getDecl()->getLocation().isInvalid())
5267       return;
5268
5269     if (Entity.getDecl()->getDeclName())
5270       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5271         << Entity.getDecl()->getDeclName();
5272     else
5273       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5274   }
5275   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5276            Entity.getMethodDecl())
5277     S.Diag(Entity.getMethodDecl()->getLocation(),
5278            diag::note_method_return_type_change)
5279       << Entity.getMethodDecl()->getDeclName();
5280 }
5281
5282 static bool isReferenceBinding(const InitializationSequence::Step &s) {
5283   return s.Kind == InitializationSequence::SK_BindReference ||
5284          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5285 }
5286
5287 /// Returns true if the parameters describe a constructor initialization of
5288 /// an explicit temporary object, e.g. "Point(x, y)".
5289 static bool isExplicitTemporary(const InitializedEntity &Entity,
5290                                 const InitializationKind &Kind,
5291                                 unsigned NumArgs) {
5292   switch (Entity.getKind()) {
5293   case InitializedEntity::EK_Temporary:
5294   case InitializedEntity::EK_CompoundLiteralInit:
5295   case InitializedEntity::EK_RelatedResult:
5296     break;
5297   default:
5298     return false;
5299   }
5300
5301   switch (Kind.getKind()) {
5302   case InitializationKind::IK_DirectList:
5303     return true;
5304   // FIXME: Hack to work around cast weirdness.
5305   case InitializationKind::IK_Direct:
5306   case InitializationKind::IK_Value:
5307     return NumArgs != 1;
5308   default:
5309     return false;
5310   }
5311 }
5312
5313 static ExprResult
5314 PerformConstructorInitialization(Sema &S,
5315                                  const InitializedEntity &Entity,
5316                                  const InitializationKind &Kind,
5317                                  MultiExprArg Args,
5318                                  const InitializationSequence::Step& Step,
5319                                  bool &ConstructorInitRequiresZeroInit,
5320                                  bool IsListInitialization,
5321                                  bool IsStdInitListInitialization,
5322                                  SourceLocation LBraceLoc,
5323                                  SourceLocation RBraceLoc) {
5324   unsigned NumArgs = Args.size();
5325   CXXConstructorDecl *Constructor
5326     = cast<CXXConstructorDecl>(Step.Function.Function);
5327   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5328
5329   // Build a call to the selected constructor.
5330   SmallVector<Expr*, 8> ConstructorArgs;
5331   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5332                          ? Kind.getEqualLoc()
5333                          : Kind.getLocation();
5334
5335   if (Kind.getKind() == InitializationKind::IK_Default) {
5336     // Force even a trivial, implicit default constructor to be
5337     // semantically checked. We do this explicitly because we don't build
5338     // the definition for completely trivial constructors.
5339     assert(Constructor->getParent() && "No parent class for constructor.");
5340     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5341         Constructor->isTrivial() && !Constructor->isUsed(false))
5342       S.DefineImplicitDefaultConstructor(Loc, Constructor);
5343   }
5344
5345   ExprResult CurInit((Expr *)nullptr);
5346
5347   // C++ [over.match.copy]p1:
5348   //   - When initializing a temporary to be bound to the first parameter 
5349   //     of a constructor that takes a reference to possibly cv-qualified 
5350   //     T as its first argument, called with a single argument in the 
5351   //     context of direct-initialization, explicit conversion functions
5352   //     are also considered.
5353   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5354                            Args.size() == 1 && 
5355                            Constructor->isCopyOrMoveConstructor();
5356
5357   // Determine the arguments required to actually perform the constructor
5358   // call.
5359   if (S.CompleteConstructorCall(Constructor, Args,
5360                                 Loc, ConstructorArgs,
5361                                 AllowExplicitConv,
5362                                 IsListInitialization))
5363     return ExprError();
5364
5365
5366   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5367     // An explicitly-constructed temporary, e.g., X(1, 2).
5368     S.MarkFunctionReferenced(Loc, Constructor);
5369     if (S.DiagnoseUseOfDecl(Constructor, Loc))
5370       return ExprError();
5371
5372     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5373     if (!TSInfo)
5374       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5375     SourceRange ParenOrBraceRange =
5376       (Kind.getKind() == InitializationKind::IK_DirectList)
5377       ? SourceRange(LBraceLoc, RBraceLoc)
5378       : Kind.getParenRange();
5379
5380     CurInit = new (S.Context) CXXTemporaryObjectExpr(
5381         S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange,
5382         HadMultipleCandidates, IsListInitialization,
5383         IsStdInitListInitialization, ConstructorInitRequiresZeroInit);
5384   } else {
5385     CXXConstructExpr::ConstructionKind ConstructKind =
5386       CXXConstructExpr::CK_Complete;
5387
5388     if (Entity.getKind() == InitializedEntity::EK_Base) {
5389       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5390         CXXConstructExpr::CK_VirtualBase :
5391         CXXConstructExpr::CK_NonVirtualBase;
5392     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5393       ConstructKind = CXXConstructExpr::CK_Delegating;
5394     }
5395
5396     // Only get the parenthesis or brace range if it is a list initialization or
5397     // direct construction.
5398     SourceRange ParenOrBraceRange;
5399     if (IsListInitialization)
5400       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5401     else if (Kind.getKind() == InitializationKind::IK_Direct)
5402       ParenOrBraceRange = Kind.getParenRange();
5403
5404     // If the entity allows NRVO, mark the construction as elidable
5405     // unconditionally.
5406     if (Entity.allowsNRVO())
5407       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5408                                         Constructor, /*Elidable=*/true,
5409                                         ConstructorArgs,
5410                                         HadMultipleCandidates,
5411                                         IsListInitialization,
5412                                         IsStdInitListInitialization,
5413                                         ConstructorInitRequiresZeroInit,
5414                                         ConstructKind,
5415                                         ParenOrBraceRange);
5416     else
5417       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5418                                         Constructor,
5419                                         ConstructorArgs,
5420                                         HadMultipleCandidates,
5421                                         IsListInitialization,
5422                                         IsStdInitListInitialization,
5423                                         ConstructorInitRequiresZeroInit,
5424                                         ConstructKind,
5425                                         ParenOrBraceRange);
5426   }
5427   if (CurInit.isInvalid())
5428     return ExprError();
5429
5430   // Only check access if all of that succeeded.
5431   S.CheckConstructorAccess(Loc, Constructor, Entity,
5432                            Step.Function.FoundDecl.getAccess());
5433   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5434     return ExprError();
5435
5436   if (shouldBindAsTemporary(Entity))
5437     CurInit = S.MaybeBindToTemporary(CurInit.get());
5438
5439   return CurInit;
5440 }
5441
5442 /// Determine whether the specified InitializedEntity definitely has a lifetime
5443 /// longer than the current full-expression. Conservatively returns false if
5444 /// it's unclear.
5445 static bool
5446 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5447   const InitializedEntity *Top = &Entity;
5448   while (Top->getParent())
5449     Top = Top->getParent();
5450
5451   switch (Top->getKind()) {
5452   case InitializedEntity::EK_Variable:
5453   case InitializedEntity::EK_Result:
5454   case InitializedEntity::EK_Exception:
5455   case InitializedEntity::EK_Member:
5456   case InitializedEntity::EK_New:
5457   case InitializedEntity::EK_Base:
5458   case InitializedEntity::EK_Delegating:
5459     return true;
5460
5461   case InitializedEntity::EK_ArrayElement:
5462   case InitializedEntity::EK_VectorElement:
5463   case InitializedEntity::EK_BlockElement:
5464   case InitializedEntity::EK_ComplexElement:
5465     // Could not determine what the full initialization is. Assume it might not
5466     // outlive the full-expression.
5467     return false;
5468
5469   case InitializedEntity::EK_Parameter:
5470   case InitializedEntity::EK_Parameter_CF_Audited:
5471   case InitializedEntity::EK_Temporary:
5472   case InitializedEntity::EK_LambdaCapture:
5473   case InitializedEntity::EK_CompoundLiteralInit:
5474   case InitializedEntity::EK_RelatedResult:
5475     // The entity being initialized might not outlive the full-expression.
5476     return false;
5477   }
5478
5479   llvm_unreachable("unknown entity kind");
5480 }
5481
5482 /// Determine the declaration which an initialized entity ultimately refers to,
5483 /// for the purpose of lifetime-extending a temporary bound to a reference in
5484 /// the initialization of \p Entity.
5485 static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
5486     const InitializedEntity *Entity,
5487     const InitializedEntity *FallbackDecl = nullptr) {
5488   // C++11 [class.temporary]p5:
5489   switch (Entity->getKind()) {
5490   case InitializedEntity::EK_Variable:
5491     //   The temporary [...] persists for the lifetime of the reference
5492     return Entity;
5493
5494   case InitializedEntity::EK_Member:
5495     // For subobjects, we look at the complete object.
5496     if (Entity->getParent())
5497       return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5498                                                     Entity);
5499
5500     //   except:
5501     //   -- A temporary bound to a reference member in a constructor's
5502     //      ctor-initializer persists until the constructor exits.
5503     return Entity;
5504
5505   case InitializedEntity::EK_Parameter:
5506   case InitializedEntity::EK_Parameter_CF_Audited:
5507     //   -- A temporary bound to a reference parameter in a function call
5508     //      persists until the completion of the full-expression containing
5509     //      the call.
5510   case InitializedEntity::EK_Result:
5511     //   -- The lifetime of a temporary bound to the returned value in a
5512     //      function return statement is not extended; the temporary is
5513     //      destroyed at the end of the full-expression in the return statement.
5514   case InitializedEntity::EK_New:
5515     //   -- A temporary bound to a reference in a new-initializer persists
5516     //      until the completion of the full-expression containing the
5517     //      new-initializer.
5518     return nullptr;
5519
5520   case InitializedEntity::EK_Temporary:
5521   case InitializedEntity::EK_CompoundLiteralInit:
5522   case InitializedEntity::EK_RelatedResult:
5523     // We don't yet know the storage duration of the surrounding temporary.
5524     // Assume it's got full-expression duration for now, it will patch up our
5525     // storage duration if that's not correct.
5526     return nullptr;
5527
5528   case InitializedEntity::EK_ArrayElement:
5529     // For subobjects, we look at the complete object.
5530     return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5531                                                   FallbackDecl);
5532
5533   case InitializedEntity::EK_Base:
5534   case InitializedEntity::EK_Delegating:
5535     // We can reach this case for aggregate initialization in a constructor:
5536     //   struct A { int &&r; };
5537     //   struct B : A { B() : A{0} {} };
5538     // In this case, use the innermost field decl as the context.
5539     return FallbackDecl;
5540
5541   case InitializedEntity::EK_BlockElement:
5542   case InitializedEntity::EK_LambdaCapture:
5543   case InitializedEntity::EK_Exception:
5544   case InitializedEntity::EK_VectorElement:
5545   case InitializedEntity::EK_ComplexElement:
5546     return nullptr;
5547   }
5548   llvm_unreachable("unknown entity kind");
5549 }
5550
5551 static void performLifetimeExtension(Expr *Init,
5552                                      const InitializedEntity *ExtendingEntity);
5553
5554 /// Update a glvalue expression that is used as the initializer of a reference
5555 /// to note that its lifetime is extended.
5556 /// \return \c true if any temporary had its lifetime extended.
5557 static bool
5558 performReferenceExtension(Expr *Init,
5559                           const InitializedEntity *ExtendingEntity) {
5560   // Walk past any constructs which we can lifetime-extend across.
5561   Expr *Old;
5562   do {
5563     Old = Init;
5564
5565     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5566       if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5567         // This is just redundant braces around an initializer. Step over it.
5568         Init = ILE->getInit(0);
5569       }
5570     }
5571
5572     // Step over any subobject adjustments; we may have a materialized
5573     // temporary inside them.
5574     SmallVector<const Expr *, 2> CommaLHSs;
5575     SmallVector<SubobjectAdjustment, 2> Adjustments;
5576     Init = const_cast<Expr *>(
5577         Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5578
5579     // Per current approach for DR1376, look through casts to reference type
5580     // when performing lifetime extension.
5581     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5582       if (CE->getSubExpr()->isGLValue())
5583         Init = CE->getSubExpr();
5584
5585     // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5586     // It's unclear if binding a reference to that xvalue extends the array
5587     // temporary.
5588   } while (Init != Old);
5589
5590   if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5591     // Update the storage duration of the materialized temporary.
5592     // FIXME: Rebuild the expression instead of mutating it.
5593     ME->setExtendingDecl(ExtendingEntity->getDecl(),
5594                          ExtendingEntity->allocateManglingNumber());
5595     performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
5596     return true;
5597   }
5598
5599   return false;
5600 }
5601
5602 /// Update a prvalue expression that is going to be materialized as a
5603 /// lifetime-extended temporary.
5604 static void performLifetimeExtension(Expr *Init,
5605                                      const InitializedEntity *ExtendingEntity) {
5606   // Dig out the expression which constructs the extended temporary.
5607   SmallVector<const Expr *, 2> CommaLHSs;
5608   SmallVector<SubobjectAdjustment, 2> Adjustments;
5609   Init = const_cast<Expr *>(
5610       Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5611
5612   if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5613     Init = BTE->getSubExpr();
5614
5615   if (CXXStdInitializerListExpr *ILE =
5616           dyn_cast<CXXStdInitializerListExpr>(Init)) {
5617     performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
5618     return;
5619   }
5620
5621   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5622     if (ILE->getType()->isArrayType()) {
5623       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5624         performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
5625       return;
5626     }
5627
5628     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5629       assert(RD->isAggregate() && "aggregate init on non-aggregate");
5630
5631       // If we lifetime-extend a braced initializer which is initializing an
5632       // aggregate, and that aggregate contains reference members which are
5633       // bound to temporaries, those temporaries are also lifetime-extended.
5634       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5635           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5636         performReferenceExtension(ILE->getInit(0), ExtendingEntity);
5637       else {
5638         unsigned Index = 0;
5639         for (const auto *I : RD->fields()) {
5640           if (Index >= ILE->getNumInits())
5641             break;
5642           if (I->isUnnamedBitfield())
5643             continue;
5644           Expr *SubInit = ILE->getInit(Index);
5645           if (I->getType()->isReferenceType())
5646             performReferenceExtension(SubInit, ExtendingEntity);
5647           else if (isa<InitListExpr>(SubInit) ||
5648                    isa<CXXStdInitializerListExpr>(SubInit))
5649             // This may be either aggregate-initialization of a member or
5650             // initialization of a std::initializer_list object. Either way,
5651             // we should recursively lifetime-extend that initializer.
5652             performLifetimeExtension(SubInit, ExtendingEntity);
5653           ++Index;
5654         }
5655       }
5656     }
5657   }
5658 }
5659
5660 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5661                                     const Expr *Init, bool IsInitializerList,
5662                                     const ValueDecl *ExtendingDecl) {
5663   // Warn if a field lifetime-extends a temporary.
5664   if (isa<FieldDecl>(ExtendingDecl)) {
5665     if (IsInitializerList) {
5666       S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5667         << /*at end of constructor*/true;
5668       return;
5669     }
5670
5671     bool IsSubobjectMember = false;
5672     for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5673          Ent = Ent->getParent()) {
5674       if (Ent->getKind() != InitializedEntity::EK_Base) {
5675         IsSubobjectMember = true;
5676         break;
5677       }
5678     }
5679     S.Diag(Init->getExprLoc(),
5680            diag::warn_bind_ref_member_to_temporary)
5681       << ExtendingDecl << Init->getSourceRange()
5682       << IsSubobjectMember << IsInitializerList;
5683     if (IsSubobjectMember)
5684       S.Diag(ExtendingDecl->getLocation(),
5685              diag::note_ref_subobject_of_member_declared_here);
5686     else
5687       S.Diag(ExtendingDecl->getLocation(),
5688              diag::note_ref_or_ptr_member_declared_here)
5689         << /*is pointer*/false;
5690   }
5691 }
5692
5693 static void DiagnoseNarrowingInInitList(Sema &S,
5694                                         const ImplicitConversionSequence &ICS,
5695                                         QualType PreNarrowingType,
5696                                         QualType EntityType,
5697                                         const Expr *PostInit);
5698
5699 ExprResult
5700 InitializationSequence::Perform(Sema &S,
5701                                 const InitializedEntity &Entity,
5702                                 const InitializationKind &Kind,
5703                                 MultiExprArg Args,
5704                                 QualType *ResultType) {
5705   if (Failed()) {
5706     Diagnose(S, Entity, Kind, Args);
5707     return ExprError();
5708   }
5709
5710   if (getKind() == DependentSequence) {
5711     // If the declaration is a non-dependent, incomplete array type
5712     // that has an initializer, then its type will be completed once
5713     // the initializer is instantiated.
5714     if (ResultType && !Entity.getType()->isDependentType() &&
5715         Args.size() == 1) {
5716       QualType DeclType = Entity.getType();
5717       if (const IncompleteArrayType *ArrayT
5718                            = S.Context.getAsIncompleteArrayType(DeclType)) {
5719         // FIXME: We don't currently have the ability to accurately
5720         // compute the length of an initializer list without
5721         // performing full type-checking of the initializer list
5722         // (since we have to determine where braces are implicitly
5723         // introduced and such).  So, we fall back to making the array
5724         // type a dependently-sized array type with no specified
5725         // bound.
5726         if (isa<InitListExpr>((Expr *)Args[0])) {
5727           SourceRange Brackets;
5728
5729           // Scavange the location of the brackets from the entity, if we can.
5730           if (DeclaratorDecl *DD = Entity.getDecl()) {
5731             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5732               TypeLoc TL = TInfo->getTypeLoc();
5733               if (IncompleteArrayTypeLoc ArrayLoc =
5734                       TL.getAs<IncompleteArrayTypeLoc>())
5735                 Brackets = ArrayLoc.getBracketsRange();
5736             }
5737           }
5738
5739           *ResultType
5740             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5741                                                    /*NumElts=*/nullptr,
5742                                                    ArrayT->getSizeModifier(),
5743                                        ArrayT->getIndexTypeCVRQualifiers(),
5744                                                    Brackets);
5745         }
5746
5747       }
5748     }
5749     if (Kind.getKind() == InitializationKind::IK_Direct &&
5750         !Kind.isExplicitCast()) {
5751       // Rebuild the ParenListExpr.
5752       SourceRange ParenRange = Kind.getParenRange();
5753       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5754                                   Args);
5755     }
5756     assert(Kind.getKind() == InitializationKind::IK_Copy ||
5757            Kind.isExplicitCast() || 
5758            Kind.getKind() == InitializationKind::IK_DirectList);
5759     return ExprResult(Args[0]);
5760   }
5761
5762   // No steps means no initialization.
5763   if (Steps.empty())
5764     return ExprResult((Expr *)nullptr);
5765
5766   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5767       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5768       !Entity.isParameterKind()) {
5769     // Produce a C++98 compatibility warning if we are initializing a reference
5770     // from an initializer list. For parameters, we produce a better warning
5771     // elsewhere.
5772     Expr *Init = Args[0];
5773     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5774       << Init->getSourceRange();
5775   }
5776
5777   // Diagnose cases where we initialize a pointer to an array temporary, and the
5778   // pointer obviously outlives the temporary.
5779   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5780       Entity.getType()->isPointerType() &&
5781       InitializedEntityOutlivesFullExpression(Entity)) {
5782     Expr *Init = Args[0];
5783     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5784     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5785       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5786         << Init->getSourceRange();
5787   }
5788
5789   QualType DestType = Entity.getType().getNonReferenceType();
5790   // FIXME: Ugly hack around the fact that Entity.getType() is not
5791   // the same as Entity.getDecl()->getType() in cases involving type merging,
5792   //  and we want latter when it makes sense.
5793   if (ResultType)
5794     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5795                                      Entity.getType();
5796
5797   ExprResult CurInit((Expr *)nullptr);
5798
5799   // For initialization steps that start with a single initializer,
5800   // grab the only argument out the Args and place it into the "current"
5801   // initializer.
5802   switch (Steps.front().Kind) {
5803   case SK_ResolveAddressOfOverloadedFunction:
5804   case SK_CastDerivedToBaseRValue:
5805   case SK_CastDerivedToBaseXValue:
5806   case SK_CastDerivedToBaseLValue:
5807   case SK_BindReference:
5808   case SK_BindReferenceToTemporary:
5809   case SK_ExtraneousCopyToTemporary:
5810   case SK_UserConversion:
5811   case SK_QualificationConversionLValue:
5812   case SK_QualificationConversionXValue:
5813   case SK_QualificationConversionRValue:
5814   case SK_AtomicConversion:
5815   case SK_LValueToRValue:
5816   case SK_ConversionSequence:
5817   case SK_ConversionSequenceNoNarrowing:
5818   case SK_ListInitialization:
5819   case SK_UnwrapInitList:
5820   case SK_RewrapInitList:
5821   case SK_CAssignment:
5822   case SK_StringInit:
5823   case SK_ObjCObjectConversion:
5824   case SK_ArrayInit:
5825   case SK_ParenthesizedArrayInit:
5826   case SK_PassByIndirectCopyRestore:
5827   case SK_PassByIndirectRestore:
5828   case SK_ProduceObjCObject:
5829   case SK_StdInitializerList:
5830   case SK_OCLSamplerInit:
5831   case SK_OCLZeroEvent: {
5832     assert(Args.size() == 1);
5833     CurInit = Args[0];
5834     if (!CurInit.get()) return ExprError();
5835     break;
5836   }
5837
5838   case SK_ConstructorInitialization:
5839   case SK_ConstructorInitializationFromList:
5840   case SK_StdInitializerListConstructorCall:
5841   case SK_ZeroInitialization:
5842     break;
5843   }
5844
5845   // Walk through the computed steps for the initialization sequence,
5846   // performing the specified conversions along the way.
5847   bool ConstructorInitRequiresZeroInit = false;
5848   for (step_iterator Step = step_begin(), StepEnd = step_end();
5849        Step != StepEnd; ++Step) {
5850     if (CurInit.isInvalid())
5851       return ExprError();
5852
5853     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5854
5855     switch (Step->Kind) {
5856     case SK_ResolveAddressOfOverloadedFunction:
5857       // Overload resolution determined which function invoke; update the
5858       // initializer to reflect that choice.
5859       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5860       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
5861         return ExprError();
5862       CurInit = S.FixOverloadedFunctionReference(CurInit,
5863                                                  Step->Function.FoundDecl,
5864                                                  Step->Function.Function);
5865       break;
5866
5867     case SK_CastDerivedToBaseRValue:
5868     case SK_CastDerivedToBaseXValue:
5869     case SK_CastDerivedToBaseLValue: {
5870       // We have a derived-to-base cast that produces either an rvalue or an
5871       // lvalue. Perform that cast.
5872
5873       CXXCastPath BasePath;
5874
5875       // Casts to inaccessible base classes are allowed with C-style casts.
5876       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5877       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5878                                          CurInit.get()->getLocStart(),
5879                                          CurInit.get()->getSourceRange(),
5880                                          &BasePath, IgnoreBaseAccess))
5881         return ExprError();
5882
5883       ExprValueKind VK =
5884           Step->Kind == SK_CastDerivedToBaseLValue ?
5885               VK_LValue :
5886               (Step->Kind == SK_CastDerivedToBaseXValue ?
5887                    VK_XValue :
5888                    VK_RValue);
5889       CurInit =
5890           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
5891                                    CurInit.get(), &BasePath, VK);
5892       break;
5893     }
5894
5895     case SK_BindReference:
5896       // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
5897       if (CurInit.get()->refersToBitField()) {
5898         // We don't necessarily have an unambiguous source bit-field.
5899         FieldDecl *BitField = CurInit.get()->getSourceBitField();
5900         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5901           << Entity.getType().isVolatileQualified()
5902           << (BitField ? BitField->getDeclName() : DeclarationName())
5903           << (BitField != nullptr)
5904           << CurInit.get()->getSourceRange();
5905         if (BitField)
5906           S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5907
5908         return ExprError();
5909       }
5910
5911       if (CurInit.get()->refersToVectorElement()) {
5912         // References cannot bind to vector elements.
5913         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5914           << Entity.getType().isVolatileQualified()
5915           << CurInit.get()->getSourceRange();
5916         PrintInitLocationNote(S, Entity);
5917         return ExprError();
5918       }
5919
5920       // Reference binding does not have any corresponding ASTs.
5921
5922       // Check exception specifications
5923       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5924         return ExprError();
5925
5926       // Even though we didn't materialize a temporary, the binding may still
5927       // extend the lifetime of a temporary. This happens if we bind a reference
5928       // to the result of a cast to reference type.
5929       if (const InitializedEntity *ExtendingEntity =
5930               getEntityForTemporaryLifetimeExtension(&Entity))
5931         if (performReferenceExtension(CurInit.get(), ExtendingEntity))
5932           warnOnLifetimeExtension(S, Entity, CurInit.get(),
5933                                   /*IsInitializerList=*/false,
5934                                   ExtendingEntity->getDecl());
5935
5936       break;
5937
5938     case SK_BindReferenceToTemporary: {
5939       // Make sure the "temporary" is actually an rvalue.
5940       assert(CurInit.get()->isRValue() && "not a temporary");
5941
5942       // Check exception specifications
5943       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5944         return ExprError();
5945
5946       // Materialize the temporary into memory.
5947       MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
5948           Entity.getType().getNonReferenceType(), CurInit.get(),
5949           Entity.getType()->isLValueReferenceType());
5950
5951       // Maybe lifetime-extend the temporary's subobjects to match the
5952       // entity's lifetime.
5953       if (const InitializedEntity *ExtendingEntity =
5954               getEntityForTemporaryLifetimeExtension(&Entity))
5955         if (performReferenceExtension(MTE, ExtendingEntity))
5956           warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false,
5957                                   ExtendingEntity->getDecl());
5958
5959       // If we're binding to an Objective-C object that has lifetime, we
5960       // need cleanups. Likewise if we're extending this temporary to automatic
5961       // storage duration -- we need to register its cleanup during the
5962       // full-expression's cleanups.
5963       if ((S.getLangOpts().ObjCAutoRefCount &&
5964            MTE->getType()->isObjCLifetimeType()) ||
5965           (MTE->getStorageDuration() == SD_Automatic &&
5966            MTE->getType().isDestructedType()))
5967         S.ExprNeedsCleanups = true;
5968
5969       CurInit = MTE;
5970       break;
5971     }
5972
5973     case SK_ExtraneousCopyToTemporary:
5974       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5975                            /*IsExtraneousCopy=*/true);
5976       break;
5977
5978     case SK_UserConversion: {
5979       // We have a user-defined conversion that invokes either a constructor
5980       // or a conversion function.
5981       CastKind CastKind;
5982       bool IsCopy = false;
5983       FunctionDecl *Fn = Step->Function.Function;
5984       DeclAccessPair FoundFn = Step->Function.FoundDecl;
5985       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5986       bool CreatedObject = false;
5987       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5988         // Build a call to the selected constructor.
5989         SmallVector<Expr*, 8> ConstructorArgs;
5990         SourceLocation Loc = CurInit.get()->getLocStart();
5991         CurInit.get(); // Ownership transferred into MultiExprArg, below.
5992
5993         // Determine the arguments required to actually perform the constructor
5994         // call.
5995         Expr *Arg = CurInit.get();
5996         if (S.CompleteConstructorCall(Constructor,
5997                                       MultiExprArg(&Arg, 1),
5998                                       Loc, ConstructorArgs))
5999           return ExprError();
6000
6001         // Build an expression that constructs a temporary.
6002         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
6003                                           ConstructorArgs,
6004                                           HadMultipleCandidates,
6005                                           /*ListInit*/ false,
6006                                           /*StdInitListInit*/ false,
6007                                           /*ZeroInit*/ false,
6008                                           CXXConstructExpr::CK_Complete,
6009                                           SourceRange());
6010         if (CurInit.isInvalid())
6011           return ExprError();
6012
6013         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
6014                                  FoundFn.getAccess());
6015         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6016           return ExprError();
6017
6018         CastKind = CK_ConstructorConversion;
6019         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
6020         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
6021             S.IsDerivedFrom(SourceType, Class))
6022           IsCopy = true;
6023
6024         CreatedObject = true;
6025       } else {
6026         // Build a call to the conversion function.
6027         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
6028         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
6029                                     FoundFn);
6030         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6031           return ExprError();
6032
6033         // FIXME: Should we move this initialization into a separate
6034         // derived-to-base conversion? I believe the answer is "no", because
6035         // we don't want to turn off access control here for c-style casts.
6036         ExprResult CurInitExprRes =
6037           S.PerformObjectArgumentInitialization(CurInit.get(),
6038                                                 /*Qualifier=*/nullptr,
6039                                                 FoundFn, Conversion);
6040         if(CurInitExprRes.isInvalid())
6041           return ExprError();
6042         CurInit = CurInitExprRes;
6043
6044         // Build the actual call to the conversion function.
6045         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
6046                                            HadMultipleCandidates);
6047         if (CurInit.isInvalid() || !CurInit.get())
6048           return ExprError();
6049
6050         CastKind = CK_UserDefinedConversion;
6051
6052         CreatedObject = Conversion->getReturnType()->isRecordType();
6053       }
6054
6055       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
6056       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
6057
6058       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
6059         QualType T = CurInit.get()->getType();
6060         if (const RecordType *Record = T->getAs<RecordType>()) {
6061           CXXDestructorDecl *Destructor
6062             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6063           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6064                                   S.PDiag(diag::err_access_dtor_temp) << T);
6065           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6066           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6067             return ExprError();
6068         }
6069       }
6070
6071       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6072                                          CastKind, CurInit.get(), nullptr,
6073                                          CurInit.get()->getValueKind());
6074       if (MaybeBindToTemp)
6075         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6076       if (RequiresCopy)
6077         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
6078                              CurInit, /*IsExtraneousCopy=*/false);
6079       break;
6080     }
6081
6082     case SK_QualificationConversionLValue:
6083     case SK_QualificationConversionXValue:
6084     case SK_QualificationConversionRValue: {
6085       // Perform a qualification conversion; these can never go wrong.
6086       ExprValueKind VK =
6087           Step->Kind == SK_QualificationConversionLValue ?
6088               VK_LValue :
6089               (Step->Kind == SK_QualificationConversionXValue ?
6090                    VK_XValue :
6091                    VK_RValue);
6092       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
6093       break;
6094     }
6095
6096     case SK_AtomicConversion: {
6097       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
6098       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6099                                     CK_NonAtomicToAtomic, VK_RValue);
6100       break;
6101     }
6102
6103     case SK_LValueToRValue: {
6104       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
6105       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
6106                                          CK_LValueToRValue, CurInit.get(),
6107                                          /*BasePath=*/nullptr, VK_RValue);
6108       break;
6109     }
6110
6111     case SK_ConversionSequence:
6112     case SK_ConversionSequenceNoNarrowing: {
6113       Sema::CheckedConversionKind CCK
6114         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
6115         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
6116         : Kind.isExplicitCast()? Sema::CCK_OtherCast
6117         : Sema::CCK_ImplicitConversion;
6118       ExprResult CurInitExprRes =
6119         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
6120                                     getAssignmentAction(Entity), CCK);
6121       if (CurInitExprRes.isInvalid())
6122         return ExprError();
6123       CurInit = CurInitExprRes;
6124
6125       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
6126           S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent())
6127         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
6128                                     CurInit.get());
6129       break;
6130     }
6131
6132     case SK_ListInitialization: {
6133       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
6134       // If we're not initializing the top-level entity, we need to create an
6135       // InitializeTemporary entity for our target type.
6136       QualType Ty = Step->Type;
6137       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
6138       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
6139       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
6140       InitListChecker PerformInitList(S, InitEntity,
6141           InitList, Ty, /*VerifyOnly=*/false);
6142       if (PerformInitList.HadError())
6143         return ExprError();
6144
6145       // Hack: We must update *ResultType if available in order to set the
6146       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
6147       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
6148       if (ResultType &&
6149           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
6150         if ((*ResultType)->isRValueReferenceType())
6151           Ty = S.Context.getRValueReferenceType(Ty);
6152         else if ((*ResultType)->isLValueReferenceType())
6153           Ty = S.Context.getLValueReferenceType(Ty,
6154             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
6155         *ResultType = Ty;
6156       }
6157
6158       InitListExpr *StructuredInitList =
6159           PerformInitList.getFullyStructuredList();
6160       CurInit.get();
6161       CurInit = shouldBindAsTemporary(InitEntity)
6162           ? S.MaybeBindToTemporary(StructuredInitList)
6163           : StructuredInitList;
6164       break;
6165     }
6166
6167     case SK_ConstructorInitializationFromList: {
6168       // When an initializer list is passed for a parameter of type "reference
6169       // to object", we don't get an EK_Temporary entity, but instead an
6170       // EK_Parameter entity with reference type.
6171       // FIXME: This is a hack. What we really should do is create a user
6172       // conversion step for this case, but this makes it considerably more
6173       // complicated. For now, this will do.
6174       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6175                                         Entity.getType().getNonReferenceType());
6176       bool UseTemporary = Entity.getType()->isReferenceType();
6177       assert(Args.size() == 1 && "expected a single argument for list init");
6178       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6179       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6180         << InitList->getSourceRange();
6181       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6182       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6183                                                                    Entity,
6184                                                  Kind, Arg, *Step,
6185                                                ConstructorInitRequiresZeroInit,
6186                                                /*IsListInitialization*/true,
6187                                                /*IsStdInitListInit*/false,
6188                                                InitList->getLBraceLoc(),
6189                                                InitList->getRBraceLoc());
6190       break;
6191     }
6192
6193     case SK_UnwrapInitList:
6194       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
6195       break;
6196
6197     case SK_RewrapInitList: {
6198       Expr *E = CurInit.get();
6199       InitListExpr *Syntactic = Step->WrappingSyntacticList;
6200       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6201           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6202       ILE->setSyntacticForm(Syntactic);
6203       ILE->setType(E->getType());
6204       ILE->setValueKind(E->getValueKind());
6205       CurInit = ILE;
6206       break;
6207     }
6208
6209     case SK_ConstructorInitialization:
6210     case SK_StdInitializerListConstructorCall: {
6211       // When an initializer list is passed for a parameter of type "reference
6212       // to object", we don't get an EK_Temporary entity, but instead an
6213       // EK_Parameter entity with reference type.
6214       // FIXME: This is a hack. What we really should do is create a user
6215       // conversion step for this case, but this makes it considerably more
6216       // complicated. For now, this will do.
6217       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6218                                         Entity.getType().getNonReferenceType());
6219       bool UseTemporary = Entity.getType()->isReferenceType();
6220       bool IsStdInitListInit =
6221           Step->Kind == SK_StdInitializerListConstructorCall;
6222       CurInit = PerformConstructorInitialization(
6223           S, UseTemporary ? TempEntity : Entity, Kind, Args, *Step,
6224           ConstructorInitRequiresZeroInit,
6225           /*IsListInitialization*/IsStdInitListInit,
6226           /*IsStdInitListInitialization*/IsStdInitListInit,
6227           /*LBraceLoc*/SourceLocation(),
6228           /*RBraceLoc*/SourceLocation());
6229       break;
6230     }
6231
6232     case SK_ZeroInitialization: {
6233       step_iterator NextStep = Step;
6234       ++NextStep;
6235       if (NextStep != StepEnd &&
6236           (NextStep->Kind == SK_ConstructorInitialization ||
6237            NextStep->Kind == SK_ConstructorInitializationFromList)) {
6238         // The need for zero-initialization is recorded directly into
6239         // the call to the object's constructor within the next step.
6240         ConstructorInitRequiresZeroInit = true;
6241       } else if (Kind.getKind() == InitializationKind::IK_Value &&
6242                  S.getLangOpts().CPlusPlus &&
6243                  !Kind.isImplicitValueInit()) {
6244         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6245         if (!TSInfo)
6246           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6247                                                     Kind.getRange().getBegin());
6248
6249         CurInit = new (S.Context) CXXScalarValueInitExpr(
6250             TSInfo->getType().getNonLValueExprType(S.Context), TSInfo,
6251             Kind.getRange().getEnd());
6252       } else {
6253         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
6254       }
6255       break;
6256     }
6257
6258     case SK_CAssignment: {
6259       QualType SourceType = CurInit.get()->getType();
6260       ExprResult Result = CurInit;
6261       Sema::AssignConvertType ConvTy =
6262         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
6263             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
6264       if (Result.isInvalid())
6265         return ExprError();
6266       CurInit = Result;
6267
6268       // If this is a call, allow conversion to a transparent union.
6269       ExprResult CurInitExprRes = CurInit;
6270       if (ConvTy != Sema::Compatible &&
6271           Entity.isParameterKind() &&
6272           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
6273             == Sema::Compatible)
6274         ConvTy = Sema::Compatible;
6275       if (CurInitExprRes.isInvalid())
6276         return ExprError();
6277       CurInit = CurInitExprRes;
6278
6279       bool Complained;
6280       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
6281                                      Step->Type, SourceType,
6282                                      CurInit.get(),
6283                                      getAssignmentAction(Entity, true),
6284                                      &Complained)) {
6285         PrintInitLocationNote(S, Entity);
6286         return ExprError();
6287       } else if (Complained)
6288         PrintInitLocationNote(S, Entity);
6289       break;
6290     }
6291
6292     case SK_StringInit: {
6293       QualType Ty = Step->Type;
6294       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6295                       S.Context.getAsArrayType(Ty), S);
6296       break;
6297     }
6298
6299     case SK_ObjCObjectConversion:
6300       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6301                           CK_ObjCObjectLValueCast,
6302                           CurInit.get()->getValueKind());
6303       break;
6304
6305     case SK_ArrayInit:
6306       // Okay: we checked everything before creating this step. Note that
6307       // this is a GNU extension.
6308       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6309         << Step->Type << CurInit.get()->getType()
6310         << CurInit.get()->getSourceRange();
6311
6312       // If the destination type is an incomplete array type, update the
6313       // type accordingly.
6314       if (ResultType) {
6315         if (const IncompleteArrayType *IncompleteDest
6316                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
6317           if (const ConstantArrayType *ConstantSource
6318                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6319             *ResultType = S.Context.getConstantArrayType(
6320                                              IncompleteDest->getElementType(),
6321                                              ConstantSource->getSize(),
6322                                              ArrayType::Normal, 0);
6323           }
6324         }
6325       }
6326       break;
6327
6328     case SK_ParenthesizedArrayInit:
6329       // Okay: we checked everything before creating this step. Note that
6330       // this is a GNU extension.
6331       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6332         << CurInit.get()->getSourceRange();
6333       break;
6334
6335     case SK_PassByIndirectCopyRestore:
6336     case SK_PassByIndirectRestore:
6337       checkIndirectCopyRestoreSource(S, CurInit.get());
6338       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
6339           CurInit.get(), Step->Type,
6340           Step->Kind == SK_PassByIndirectCopyRestore);
6341       break;
6342
6343     case SK_ProduceObjCObject:
6344       CurInit =
6345           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
6346                                    CurInit.get(), nullptr, VK_RValue);
6347       break;
6348
6349     case SK_StdInitializerList: {
6350       S.Diag(CurInit.get()->getExprLoc(),
6351              diag::warn_cxx98_compat_initializer_list_init)
6352         << CurInit.get()->getSourceRange();
6353
6354       // Materialize the temporary into memory.
6355       MaterializeTemporaryExpr *MTE = new (S.Context)
6356           MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6357                                    /*BoundToLvalueReference=*/false);
6358
6359       // Maybe lifetime-extend the array temporary's subobjects to match the
6360       // entity's lifetime.
6361       if (const InitializedEntity *ExtendingEntity =
6362               getEntityForTemporaryLifetimeExtension(&Entity))
6363         if (performReferenceExtension(MTE, ExtendingEntity))
6364           warnOnLifetimeExtension(S, Entity, CurInit.get(),
6365                                   /*IsInitializerList=*/true,
6366                                   ExtendingEntity->getDecl());
6367
6368       // Wrap it in a construction of a std::initializer_list<T>.
6369       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
6370
6371       // Bind the result, in case the library has given initializer_list a
6372       // non-trivial destructor.
6373       if (shouldBindAsTemporary(Entity))
6374         CurInit = S.MaybeBindToTemporary(CurInit.get());
6375       break;
6376     }
6377
6378     case SK_OCLSamplerInit: {
6379       assert(Step->Type->isSamplerT() && 
6380              "Sampler initialization on non-sampler type.");
6381
6382       QualType SourceType = CurInit.get()->getType();
6383
6384       if (Entity.isParameterKind()) {
6385         if (!SourceType->isSamplerT())
6386           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6387             << SourceType;
6388       } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
6389         llvm_unreachable("Invalid EntityKind!");
6390       }
6391
6392       break;
6393     }
6394     case SK_OCLZeroEvent: {
6395       assert(Step->Type->isEventT() && 
6396              "Event initialization on non-event type.");
6397
6398       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6399                                     CK_ZeroToOCLEvent,
6400                                     CurInit.get()->getValueKind());
6401       break;
6402     }
6403     }
6404   }
6405
6406   // Diagnose non-fatal problems with the completed initialization.
6407   if (Entity.getKind() == InitializedEntity::EK_Member &&
6408       cast<FieldDecl>(Entity.getDecl())->isBitField())
6409     S.CheckBitFieldInitialization(Kind.getLocation(),
6410                                   cast<FieldDecl>(Entity.getDecl()),
6411                                   CurInit.get());
6412
6413   return CurInit;
6414 }
6415
6416 /// Somewhere within T there is an uninitialized reference subobject.
6417 /// Dig it out and diagnose it.
6418 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6419                                            QualType T) {
6420   if (T->isReferenceType()) {
6421     S.Diag(Loc, diag::err_reference_without_init)
6422       << T.getNonReferenceType();
6423     return true;
6424   }
6425
6426   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6427   if (!RD || !RD->hasUninitializedReferenceMember())
6428     return false;
6429
6430   for (const auto *FI : RD->fields()) {
6431     if (FI->isUnnamedBitfield())
6432       continue;
6433
6434     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6435       S.Diag(Loc, diag::note_value_initialization_here) << RD;
6436       return true;
6437     }
6438   }
6439
6440   for (const auto &BI : RD->bases()) {
6441     if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
6442       S.Diag(Loc, diag::note_value_initialization_here) << RD;
6443       return true;
6444     }
6445   }
6446
6447   return false;
6448 }
6449
6450
6451 //===----------------------------------------------------------------------===//
6452 // Diagnose initialization failures
6453 //===----------------------------------------------------------------------===//
6454
6455 /// Emit notes associated with an initialization that failed due to a
6456 /// "simple" conversion failure.
6457 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6458                                    Expr *op) {
6459   QualType destType = entity.getType();
6460   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6461       op->getType()->isObjCObjectPointerType()) {
6462
6463     // Emit a possible note about the conversion failing because the
6464     // operand is a message send with a related result type.
6465     S.EmitRelatedResultTypeNote(op);
6466
6467     // Emit a possible note about a return failing because we're
6468     // expecting a related result type.
6469     if (entity.getKind() == InitializedEntity::EK_Result)
6470       S.EmitRelatedResultTypeNoteForReturn(destType);
6471   }
6472 }
6473
6474 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
6475                              InitListExpr *InitList) {
6476   QualType DestType = Entity.getType();
6477
6478   QualType E;
6479   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
6480     QualType ArrayType = S.Context.getConstantArrayType(
6481         E.withConst(),
6482         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
6483                     InitList->getNumInits()),
6484         clang::ArrayType::Normal, 0);
6485     InitializedEntity HiddenArray =
6486         InitializedEntity::InitializeTemporary(ArrayType);
6487     return diagnoseListInit(S, HiddenArray, InitList);
6488   }
6489
6490   if (DestType->isReferenceType()) {
6491     // A list-initialization failure for a reference means that we tried to
6492     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
6493     // inner initialization failed.
6494     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
6495     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
6496     SourceLocation Loc = InitList->getLocStart();
6497     if (auto *D = Entity.getDecl())
6498       Loc = D->getLocation();
6499     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
6500     return;
6501   }
6502
6503   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
6504                                    /*VerifyOnly=*/false);
6505   assert(DiagnoseInitList.HadError() &&
6506          "Inconsistent init list check result.");
6507 }
6508
6509 /// Prints a fixit for adding a null initializer for |Entity|. Call this only
6510 /// right after emitting a diagnostic.
6511 static void maybeEmitZeroInitializationFixit(Sema &S,
6512                                              InitializationSequence &Sequence,
6513                                              const InitializedEntity &Entity) {
6514   if (Entity.getKind() != InitializedEntity::EK_Variable)
6515     return;
6516
6517   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
6518   if (VD->getInit() || VD->getLocEnd().isMacroID())
6519     return;
6520
6521   QualType VariableTy = VD->getType().getCanonicalType();
6522   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
6523   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
6524
6525   S.Diag(Loc, diag::note_add_initializer)
6526       << VD << FixItHint::CreateInsertion(Loc, Init);
6527 }
6528
6529 bool InitializationSequence::Diagnose(Sema &S,
6530                                       const InitializedEntity &Entity,
6531                                       const InitializationKind &Kind,
6532                                       ArrayRef<Expr *> Args) {
6533   if (!Failed())
6534     return false;
6535
6536   QualType DestType = Entity.getType();
6537   switch (Failure) {
6538   case FK_TooManyInitsForReference:
6539     // FIXME: Customize for the initialized entity?
6540     if (Args.empty()) {
6541       // Dig out the reference subobject which is uninitialized and diagnose it.
6542       // If this is value-initialization, this could be nested some way within
6543       // the target type.
6544       assert(Kind.getKind() == InitializationKind::IK_Value ||
6545              DestType->isReferenceType());
6546       bool Diagnosed =
6547         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6548       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6549       (void)Diagnosed;
6550     } else  // FIXME: diagnostic below could be better!
6551       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6552         << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6553     break;
6554
6555   case FK_ArrayNeedsInitList:
6556     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6557     break;
6558   case FK_ArrayNeedsInitListOrStringLiteral:
6559     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6560     break;
6561   case FK_ArrayNeedsInitListOrWideStringLiteral:
6562     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6563     break;
6564   case FK_NarrowStringIntoWideCharArray:
6565     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6566     break;
6567   case FK_WideStringIntoCharArray:
6568     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6569     break;
6570   case FK_IncompatWideStringIntoWideChar:
6571     S.Diag(Kind.getLocation(),
6572            diag::err_array_init_incompat_wide_string_into_wchar);
6573     break;
6574   case FK_ArrayTypeMismatch:
6575   case FK_NonConstantArrayInit:
6576     S.Diag(Kind.getLocation(),
6577            (Failure == FK_ArrayTypeMismatch
6578               ? diag::err_array_init_different_type
6579               : diag::err_array_init_non_constant_array))
6580       << DestType.getNonReferenceType()
6581       << Args[0]->getType()
6582       << Args[0]->getSourceRange();
6583     break;
6584
6585   case FK_VariableLengthArrayHasInitializer:
6586     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6587       << Args[0]->getSourceRange();
6588     break;
6589
6590   case FK_AddressOfOverloadFailed: {
6591     DeclAccessPair Found;
6592     S.ResolveAddressOfOverloadedFunction(Args[0],
6593                                          DestType.getNonReferenceType(),
6594                                          true,
6595                                          Found);
6596     break;
6597   }
6598
6599   case FK_ReferenceInitOverloadFailed:
6600   case FK_UserConversionOverloadFailed:
6601     switch (FailedOverloadResult) {
6602     case OR_Ambiguous:
6603       if (Failure == FK_UserConversionOverloadFailed)
6604         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6605           << Args[0]->getType() << DestType
6606           << Args[0]->getSourceRange();
6607       else
6608         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6609           << DestType << Args[0]->getType()
6610           << Args[0]->getSourceRange();
6611
6612       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6613       break;
6614
6615     case OR_No_Viable_Function:
6616       if (!S.RequireCompleteType(Kind.getLocation(),
6617                                  DestType.getNonReferenceType(),
6618                           diag::err_typecheck_nonviable_condition_incomplete,
6619                                Args[0]->getType(), Args[0]->getSourceRange()))
6620         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6621           << Args[0]->getType() << Args[0]->getSourceRange()
6622           << DestType.getNonReferenceType();
6623
6624       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6625       break;
6626
6627     case OR_Deleted: {
6628       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6629         << Args[0]->getType() << DestType.getNonReferenceType()
6630         << Args[0]->getSourceRange();
6631       OverloadCandidateSet::iterator Best;
6632       OverloadingResult Ovl
6633         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6634                                                 true);
6635       if (Ovl == OR_Deleted) {
6636         S.NoteDeletedFunction(Best->Function);
6637       } else {
6638         llvm_unreachable("Inconsistent overload resolution?");
6639       }
6640       break;
6641     }
6642
6643     case OR_Success:
6644       llvm_unreachable("Conversion did not fail!");
6645     }
6646     break;
6647
6648   case FK_NonConstLValueReferenceBindingToTemporary:
6649     if (isa<InitListExpr>(Args[0])) {
6650       S.Diag(Kind.getLocation(),
6651              diag::err_lvalue_reference_bind_to_initlist)
6652       << DestType.getNonReferenceType().isVolatileQualified()
6653       << DestType.getNonReferenceType()
6654       << Args[0]->getSourceRange();
6655       break;
6656     }
6657     // Intentional fallthrough
6658
6659   case FK_NonConstLValueReferenceBindingToUnrelated:
6660     S.Diag(Kind.getLocation(),
6661            Failure == FK_NonConstLValueReferenceBindingToTemporary
6662              ? diag::err_lvalue_reference_bind_to_temporary
6663              : diag::err_lvalue_reference_bind_to_unrelated)
6664       << DestType.getNonReferenceType().isVolatileQualified()
6665       << DestType.getNonReferenceType()
6666       << Args[0]->getType()
6667       << Args[0]->getSourceRange();
6668     break;
6669
6670   case FK_RValueReferenceBindingToLValue:
6671     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
6672       << DestType.getNonReferenceType() << Args[0]->getType()
6673       << Args[0]->getSourceRange();
6674     break;
6675
6676   case FK_ReferenceInitDropsQualifiers:
6677     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
6678       << DestType.getNonReferenceType()
6679       << Args[0]->getType()
6680       << Args[0]->getSourceRange();
6681     break;
6682
6683   case FK_ReferenceInitFailed:
6684     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
6685       << DestType.getNonReferenceType()
6686       << Args[0]->isLValue()
6687       << Args[0]->getType()
6688       << Args[0]->getSourceRange();
6689     emitBadConversionNotes(S, Entity, Args[0]);
6690     break;
6691
6692   case FK_ConversionFailed: {
6693     QualType FromType = Args[0]->getType();
6694     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
6695       << (int)Entity.getKind()
6696       << DestType
6697       << Args[0]->isLValue()
6698       << FromType
6699       << Args[0]->getSourceRange();
6700     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
6701     S.Diag(Kind.getLocation(), PDiag);
6702     emitBadConversionNotes(S, Entity, Args[0]);
6703     break;
6704   }
6705
6706   case FK_ConversionFromPropertyFailed:
6707     // No-op. This error has already been reported.
6708     break;
6709
6710   case FK_TooManyInitsForScalar: {
6711     SourceRange R;
6712
6713     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
6714       R = SourceRange(InitList->getInit(0)->getLocEnd(),
6715                       InitList->getLocEnd());
6716     else
6717       R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
6718
6719     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
6720     if (Kind.isCStyleOrFunctionalCast())
6721       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
6722         << R;
6723     else
6724       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
6725         << /*scalar=*/2 << R;
6726     break;
6727   }
6728
6729   case FK_ReferenceBindingToInitList:
6730     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
6731       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
6732     break;
6733
6734   case FK_InitListBadDestinationType:
6735     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
6736       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
6737     break;
6738
6739   case FK_ListConstructorOverloadFailed:
6740   case FK_ConstructorOverloadFailed: {
6741     SourceRange ArgsRange;
6742     if (Args.size())
6743       ArgsRange = SourceRange(Args.front()->getLocStart(),
6744                               Args.back()->getLocEnd());
6745
6746     if (Failure == FK_ListConstructorOverloadFailed) {
6747       assert(Args.size() == 1 &&
6748              "List construction from other than 1 argument.");
6749       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6750       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
6751     }
6752
6753     // FIXME: Using "DestType" for the entity we're printing is probably
6754     // bad.
6755     switch (FailedOverloadResult) {
6756       case OR_Ambiguous:
6757         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
6758           << DestType << ArgsRange;
6759         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6760         break;
6761
6762       case OR_No_Viable_Function:
6763         if (Kind.getKind() == InitializationKind::IK_Default &&
6764             (Entity.getKind() == InitializedEntity::EK_Base ||
6765              Entity.getKind() == InitializedEntity::EK_Member) &&
6766             isa<CXXConstructorDecl>(S.CurContext)) {
6767           // This is implicit default initialization of a member or
6768           // base within a constructor. If no viable function was
6769           // found, notify the user that she needs to explicitly
6770           // initialize this base/member.
6771           CXXConstructorDecl *Constructor
6772             = cast<CXXConstructorDecl>(S.CurContext);
6773           if (Entity.getKind() == InitializedEntity::EK_Base) {
6774             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6775               << (Constructor->getInheritedConstructor() ? 2 :
6776                   Constructor->isImplicit() ? 1 : 0)
6777               << S.Context.getTypeDeclType(Constructor->getParent())
6778               << /*base=*/0
6779               << Entity.getType();
6780
6781             RecordDecl *BaseDecl
6782               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
6783                                                                   ->getDecl();
6784             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
6785               << S.Context.getTagDeclType(BaseDecl);
6786           } else {
6787             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6788               << (Constructor->getInheritedConstructor() ? 2 :
6789                   Constructor->isImplicit() ? 1 : 0)
6790               << S.Context.getTypeDeclType(Constructor->getParent())
6791               << /*member=*/1
6792               << Entity.getName();
6793             S.Diag(Entity.getDecl()->getLocation(),
6794                    diag::note_member_declared_at);
6795
6796             if (const RecordType *Record
6797                                  = Entity.getType()->getAs<RecordType>())
6798               S.Diag(Record->getDecl()->getLocation(),
6799                      diag::note_previous_decl)
6800                 << S.Context.getTagDeclType(Record->getDecl());
6801           }
6802           break;
6803         }
6804
6805         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
6806           << DestType << ArgsRange;
6807         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6808         break;
6809
6810       case OR_Deleted: {
6811         OverloadCandidateSet::iterator Best;
6812         OverloadingResult Ovl
6813           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6814         if (Ovl != OR_Deleted) {
6815           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6816             << true << DestType << ArgsRange;
6817           llvm_unreachable("Inconsistent overload resolution?");
6818           break;
6819         }
6820        
6821         // If this is a defaulted or implicitly-declared function, then
6822         // it was implicitly deleted. Make it clear that the deletion was
6823         // implicit.
6824         if (S.isImplicitlyDeleted(Best->Function))
6825           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6826             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6827             << DestType << ArgsRange;
6828         else
6829           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6830             << true << DestType << ArgsRange;
6831
6832         S.NoteDeletedFunction(Best->Function);
6833         break;
6834       }
6835
6836       case OR_Success:
6837         llvm_unreachable("Conversion did not fail!");
6838     }
6839   }
6840   break;
6841
6842   case FK_DefaultInitOfConst:
6843     if (Entity.getKind() == InitializedEntity::EK_Member &&
6844         isa<CXXConstructorDecl>(S.CurContext)) {
6845       // This is implicit default-initialization of a const member in
6846       // a constructor. Complain that it needs to be explicitly
6847       // initialized.
6848       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6849       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6850         << (Constructor->getInheritedConstructor() ? 2 :
6851             Constructor->isImplicit() ? 1 : 0)
6852         << S.Context.getTypeDeclType(Constructor->getParent())
6853         << /*const=*/1
6854         << Entity.getName();
6855       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6856         << Entity.getName();
6857     } else {
6858       S.Diag(Kind.getLocation(), diag::err_default_init_const)
6859           << DestType << (bool)DestType->getAs<RecordType>();
6860       maybeEmitZeroInitializationFixit(S, *this, Entity);
6861     }
6862     break;
6863
6864   case FK_Incomplete:
6865     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6866                           diag::err_init_incomplete_type);
6867     break;
6868
6869   case FK_ListInitializationFailed: {
6870     // Run the init list checker again to emit diagnostics.
6871     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6872     diagnoseListInit(S, Entity, InitList);
6873     break;
6874   }
6875
6876   case FK_PlaceholderType: {
6877     // FIXME: Already diagnosed!
6878     break;
6879   }
6880
6881   case FK_ExplicitConstructor: {
6882     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6883       << Args[0]->getSourceRange();
6884     OverloadCandidateSet::iterator Best;
6885     OverloadingResult Ovl
6886       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6887     (void)Ovl;
6888     assert(Ovl == OR_Success && "Inconsistent overload resolution");
6889     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6890     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6891     break;
6892   }
6893   }
6894
6895   PrintInitLocationNote(S, Entity);
6896   return true;
6897 }
6898
6899 void InitializationSequence::dump(raw_ostream &OS) const {
6900   switch (SequenceKind) {
6901   case FailedSequence: {
6902     OS << "Failed sequence: ";
6903     switch (Failure) {
6904     case FK_TooManyInitsForReference:
6905       OS << "too many initializers for reference";
6906       break;
6907
6908     case FK_ArrayNeedsInitList:
6909       OS << "array requires initializer list";
6910       break;
6911
6912     case FK_ArrayNeedsInitListOrStringLiteral:
6913       OS << "array requires initializer list or string literal";
6914       break;
6915
6916     case FK_ArrayNeedsInitListOrWideStringLiteral:
6917       OS << "array requires initializer list or wide string literal";
6918       break;
6919
6920     case FK_NarrowStringIntoWideCharArray:
6921       OS << "narrow string into wide char array";
6922       break;
6923
6924     case FK_WideStringIntoCharArray:
6925       OS << "wide string into char array";
6926       break;
6927
6928     case FK_IncompatWideStringIntoWideChar:
6929       OS << "incompatible wide string into wide char array";
6930       break;
6931
6932     case FK_ArrayTypeMismatch:
6933       OS << "array type mismatch";
6934       break;
6935
6936     case FK_NonConstantArrayInit:
6937       OS << "non-constant array initializer";
6938       break;
6939
6940     case FK_AddressOfOverloadFailed:
6941       OS << "address of overloaded function failed";
6942       break;
6943
6944     case FK_ReferenceInitOverloadFailed:
6945       OS << "overload resolution for reference initialization failed";
6946       break;
6947
6948     case FK_NonConstLValueReferenceBindingToTemporary:
6949       OS << "non-const lvalue reference bound to temporary";
6950       break;
6951
6952     case FK_NonConstLValueReferenceBindingToUnrelated:
6953       OS << "non-const lvalue reference bound to unrelated type";
6954       break;
6955
6956     case FK_RValueReferenceBindingToLValue:
6957       OS << "rvalue reference bound to an lvalue";
6958       break;
6959
6960     case FK_ReferenceInitDropsQualifiers:
6961       OS << "reference initialization drops qualifiers";
6962       break;
6963
6964     case FK_ReferenceInitFailed:
6965       OS << "reference initialization failed";
6966       break;
6967
6968     case FK_ConversionFailed:
6969       OS << "conversion failed";
6970       break;
6971
6972     case FK_ConversionFromPropertyFailed:
6973       OS << "conversion from property failed";
6974       break;
6975
6976     case FK_TooManyInitsForScalar:
6977       OS << "too many initializers for scalar";
6978       break;
6979
6980     case FK_ReferenceBindingToInitList:
6981       OS << "referencing binding to initializer list";
6982       break;
6983
6984     case FK_InitListBadDestinationType:
6985       OS << "initializer list for non-aggregate, non-scalar type";
6986       break;
6987
6988     case FK_UserConversionOverloadFailed:
6989       OS << "overloading failed for user-defined conversion";
6990       break;
6991
6992     case FK_ConstructorOverloadFailed:
6993       OS << "constructor overloading failed";
6994       break;
6995
6996     case FK_DefaultInitOfConst:
6997       OS << "default initialization of a const variable";
6998       break;
6999
7000     case FK_Incomplete:
7001       OS << "initialization of incomplete type";
7002       break;
7003
7004     case FK_ListInitializationFailed:
7005       OS << "list initialization checker failure";
7006       break;
7007
7008     case FK_VariableLengthArrayHasInitializer:
7009       OS << "variable length array has an initializer";
7010       break;
7011
7012     case FK_PlaceholderType:
7013       OS << "initializer expression isn't contextually valid";
7014       break;
7015
7016     case FK_ListConstructorOverloadFailed:
7017       OS << "list constructor overloading failed";
7018       break;
7019
7020     case FK_ExplicitConstructor:
7021       OS << "list copy initialization chose explicit constructor";
7022       break;
7023     }
7024     OS << '\n';
7025     return;
7026   }
7027
7028   case DependentSequence:
7029     OS << "Dependent sequence\n";
7030     return;
7031
7032   case NormalSequence:
7033     OS << "Normal sequence: ";
7034     break;
7035   }
7036
7037   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
7038     if (S != step_begin()) {
7039       OS << " -> ";
7040     }
7041
7042     switch (S->Kind) {
7043     case SK_ResolveAddressOfOverloadedFunction:
7044       OS << "resolve address of overloaded function";
7045       break;
7046
7047     case SK_CastDerivedToBaseRValue:
7048       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
7049       break;
7050
7051     case SK_CastDerivedToBaseXValue:
7052       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
7053       break;
7054
7055     case SK_CastDerivedToBaseLValue:
7056       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
7057       break;
7058
7059     case SK_BindReference:
7060       OS << "bind reference to lvalue";
7061       break;
7062
7063     case SK_BindReferenceToTemporary:
7064       OS << "bind reference to a temporary";
7065       break;
7066
7067     case SK_ExtraneousCopyToTemporary:
7068       OS << "extraneous C++03 copy to temporary";
7069       break;
7070
7071     case SK_UserConversion:
7072       OS << "user-defined conversion via " << *S->Function.Function;
7073       break;
7074
7075     case SK_QualificationConversionRValue:
7076       OS << "qualification conversion (rvalue)";
7077       break;
7078
7079     case SK_QualificationConversionXValue:
7080       OS << "qualification conversion (xvalue)";
7081       break;
7082
7083     case SK_QualificationConversionLValue:
7084       OS << "qualification conversion (lvalue)";
7085       break;
7086
7087     case SK_AtomicConversion:
7088       OS << "non-atomic-to-atomic conversion";
7089       break;
7090
7091     case SK_LValueToRValue:
7092       OS << "load (lvalue to rvalue)";
7093       break;
7094
7095     case SK_ConversionSequence:
7096       OS << "implicit conversion sequence (";
7097       S->ICS->dump(); // FIXME: use OS
7098       OS << ")";
7099       break;
7100
7101     case SK_ConversionSequenceNoNarrowing:
7102       OS << "implicit conversion sequence with narrowing prohibited (";
7103       S->ICS->dump(); // FIXME: use OS
7104       OS << ")";
7105       break;
7106
7107     case SK_ListInitialization:
7108       OS << "list aggregate initialization";
7109       break;
7110
7111     case SK_UnwrapInitList:
7112       OS << "unwrap reference initializer list";
7113       break;
7114
7115     case SK_RewrapInitList:
7116       OS << "rewrap reference initializer list";
7117       break;
7118
7119     case SK_ConstructorInitialization:
7120       OS << "constructor initialization";
7121       break;
7122
7123     case SK_ConstructorInitializationFromList:
7124       OS << "list initialization via constructor";
7125       break;
7126
7127     case SK_ZeroInitialization:
7128       OS << "zero initialization";
7129       break;
7130
7131     case SK_CAssignment:
7132       OS << "C assignment";
7133       break;
7134
7135     case SK_StringInit:
7136       OS << "string initialization";
7137       break;
7138
7139     case SK_ObjCObjectConversion:
7140       OS << "Objective-C object conversion";
7141       break;
7142
7143     case SK_ArrayInit:
7144       OS << "array initialization";
7145       break;
7146
7147     case SK_ParenthesizedArrayInit:
7148       OS << "parenthesized array initialization";
7149       break;
7150
7151     case SK_PassByIndirectCopyRestore:
7152       OS << "pass by indirect copy and restore";
7153       break;
7154
7155     case SK_PassByIndirectRestore:
7156       OS << "pass by indirect restore";
7157       break;
7158
7159     case SK_ProduceObjCObject:
7160       OS << "Objective-C object retension";
7161       break;
7162
7163     case SK_StdInitializerList:
7164       OS << "std::initializer_list from initializer list";
7165       break;
7166
7167     case SK_StdInitializerListConstructorCall:
7168       OS << "list initialization from std::initializer_list";
7169       break;
7170
7171     case SK_OCLSamplerInit:
7172       OS << "OpenCL sampler_t from integer constant";
7173       break;
7174
7175     case SK_OCLZeroEvent:
7176       OS << "OpenCL event_t from zero";
7177       break;
7178     }
7179
7180     OS << " [" << S->Type.getAsString() << ']';
7181   }
7182
7183   OS << '\n';
7184 }
7185
7186 void InitializationSequence::dump() const {
7187   dump(llvm::errs());
7188 }
7189
7190 static void DiagnoseNarrowingInInitList(Sema &S,
7191                                         const ImplicitConversionSequence &ICS,
7192                                         QualType PreNarrowingType,
7193                                         QualType EntityType,
7194                                         const Expr *PostInit) {
7195   const StandardConversionSequence *SCS = nullptr;
7196   switch (ICS.getKind()) {
7197   case ImplicitConversionSequence::StandardConversion:
7198     SCS = &ICS.Standard;
7199     break;
7200   case ImplicitConversionSequence::UserDefinedConversion:
7201     SCS = &ICS.UserDefined.After;
7202     break;
7203   case ImplicitConversionSequence::AmbiguousConversion:
7204   case ImplicitConversionSequence::EllipsisConversion:
7205   case ImplicitConversionSequence::BadConversion:
7206     return;
7207   }
7208
7209   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
7210   APValue ConstantValue;
7211   QualType ConstantType;
7212   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
7213                                 ConstantType)) {
7214   case NK_Not_Narrowing:
7215     // No narrowing occurred.
7216     return;
7217
7218   case NK_Type_Narrowing:
7219     // This was a floating-to-integer conversion, which is always considered a
7220     // narrowing conversion even if the value is a constant and can be
7221     // represented exactly as an integer.
7222     S.Diag(PostInit->getLocStart(),
7223            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7224                ? diag::warn_init_list_type_narrowing
7225                : diag::ext_init_list_type_narrowing)
7226       << PostInit->getSourceRange()
7227       << PreNarrowingType.getLocalUnqualifiedType()
7228       << EntityType.getLocalUnqualifiedType();
7229     break;
7230
7231   case NK_Constant_Narrowing:
7232     // A constant value was narrowed.
7233     S.Diag(PostInit->getLocStart(),
7234            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7235                ? diag::warn_init_list_constant_narrowing
7236                : diag::ext_init_list_constant_narrowing)
7237       << PostInit->getSourceRange()
7238       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
7239       << EntityType.getLocalUnqualifiedType();
7240     break;
7241
7242   case NK_Variable_Narrowing:
7243     // A variable's value may have been narrowed.
7244     S.Diag(PostInit->getLocStart(),
7245            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7246                ? diag::warn_init_list_variable_narrowing
7247                : diag::ext_init_list_variable_narrowing)
7248       << PostInit->getSourceRange()
7249       << PreNarrowingType.getLocalUnqualifiedType()
7250       << EntityType.getLocalUnqualifiedType();
7251     break;
7252   }
7253
7254   SmallString<128> StaticCast;
7255   llvm::raw_svector_ostream OS(StaticCast);
7256   OS << "static_cast<";
7257   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
7258     // It's important to use the typedef's name if there is one so that the
7259     // fixit doesn't break code using types like int64_t.
7260     //
7261     // FIXME: This will break if the typedef requires qualification.  But
7262     // getQualifiedNameAsString() includes non-machine-parsable components.
7263     OS << *TT->getDecl();
7264   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
7265     OS << BT->getName(S.getLangOpts());
7266   else {
7267     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
7268     // with a broken cast.
7269     return;
7270   }
7271   OS << ">(";
7272   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
7273       << PostInit->getSourceRange()
7274       << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
7275       << FixItHint::CreateInsertion(
7276              S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
7277 }
7278
7279 //===----------------------------------------------------------------------===//
7280 // Initialization helper functions
7281 //===----------------------------------------------------------------------===//
7282 bool
7283 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
7284                                    ExprResult Init) {
7285   if (Init.isInvalid())
7286     return false;
7287
7288   Expr *InitE = Init.get();
7289   assert(InitE && "No initialization expression");
7290
7291   InitializationKind Kind
7292     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
7293   InitializationSequence Seq(*this, Entity, Kind, InitE);
7294   return !Seq.Failed();
7295 }
7296
7297 ExprResult
7298 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
7299                                 SourceLocation EqualLoc,
7300                                 ExprResult Init,
7301                                 bool TopLevelOfInitList,
7302                                 bool AllowExplicit) {
7303   if (Init.isInvalid())
7304     return ExprError();
7305
7306   Expr *InitE = Init.get();
7307   assert(InitE && "No initialization expression?");
7308
7309   if (EqualLoc.isInvalid())
7310     EqualLoc = InitE->getLocStart();
7311
7312   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
7313                                                            EqualLoc,
7314                                                            AllowExplicit);
7315   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
7316   Init.get();
7317
7318   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
7319
7320   return Result;
7321 }