]> granicus.if.org Git - clang/blob - lib/CodeGen/CGObjCGNU.cpp
Fix indentation
[clang] / lib / CodeGen / CGObjCGNU.cpp
1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides Objective-C code generation targeting the GNU runtime.  The
11 // class in this file generates structures used by the GNU Objective-C runtime
12 // library.  These structures are defined in objc/objc.h and objc/objc-api.h in
13 // the GNU runtime distribution.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "CGObjCRuntime.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Basic/FileManager.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringMap.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Compiler.h"
36 #include <cstdarg>
37
38
39 using namespace clang;
40 using namespace CodeGen;
41
42
43 namespace {
44 /// Class that lazily initialises the runtime function.  Avoids inserting the
45 /// types and the function declaration into a module if they're not used, and
46 /// avoids constructing the type more than once if it's used more than once.
47 class LazyRuntimeFunction {
48   CodeGenModule *CGM;
49   std::vector<llvm::Type*> ArgTys;
50   const char *FunctionName;
51   llvm::Constant *Function;
52
53 public:
54   /// Constructor leaves this class uninitialized, because it is intended to
55   /// be used as a field in another class and not all of the types that are
56   /// used as arguments will necessarily be available at construction time.
57   LazyRuntimeFunction()
58       : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
59
60   /// Initialises the lazy function with the name, return type, and the types
61   /// of the arguments.
62   LLVM_END_WITH_NULL
63   void init(CodeGenModule *Mod, const char *name, llvm::Type *RetTy, ...) {
64     CGM = Mod;
65     FunctionName = name;
66     Function = nullptr;
67     ArgTys.clear();
68     va_list Args;
69     va_start(Args, RetTy);
70     while (llvm::Type *ArgTy = va_arg(Args, llvm::Type *))
71       ArgTys.push_back(ArgTy);
72     va_end(Args);
73     // Push the return type on at the end so we can pop it off easily
74     ArgTys.push_back(RetTy);
75   }
76   /// Overloaded cast operator, allows the class to be implicitly cast to an
77   /// LLVM constant.
78   operator llvm::Constant *() {
79     if (!Function) {
80       if (!FunctionName)
81         return nullptr;
82       // We put the return type on the end of the vector, so pop it back off
83       llvm::Type *RetTy = ArgTys.back();
84       ArgTys.pop_back();
85       llvm::FunctionType *FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
86       Function =
87           cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName));
88       // We won't need to use the types again, so we may as well clean up the
89       // vector now
90       ArgTys.resize(0);
91     }
92     return Function;
93   }
94   operator llvm::Function *() {
95     return cast<llvm::Function>((llvm::Constant *)*this);
96   }
97 };
98
99
100 /// GNU Objective-C runtime code generation.  This class implements the parts of
101 /// Objective-C support that are specific to the GNU family of runtimes (GCC,
102 /// GNUstep and ObjFW).
103 class CGObjCGNU : public CGObjCRuntime {
104 protected:
105   /// The LLVM module into which output is inserted
106   llvm::Module &TheModule;
107   /// strut objc_super.  Used for sending messages to super.  This structure
108   /// contains the receiver (object) and the expected class.
109   llvm::StructType *ObjCSuperTy;
110   /// struct objc_super*.  The type of the argument to the superclass message
111   /// lookup functions.  
112   llvm::PointerType *PtrToObjCSuperTy;
113   /// LLVM type for selectors.  Opaque pointer (i8*) unless a header declaring
114   /// SEL is included in a header somewhere, in which case it will be whatever
115   /// type is declared in that header, most likely {i8*, i8*}.
116   llvm::PointerType *SelectorTy;
117   /// LLVM i8 type.  Cached here to avoid repeatedly getting it in all of the
118   /// places where it's used
119   llvm::IntegerType *Int8Ty;
120   /// Pointer to i8 - LLVM type of char*, for all of the places where the
121   /// runtime needs to deal with C strings.
122   llvm::PointerType *PtrToInt8Ty;
123   /// Instance Method Pointer type.  This is a pointer to a function that takes,
124   /// at a minimum, an object and a selector, and is the generic type for
125   /// Objective-C methods.  Due to differences between variadic / non-variadic
126   /// calling conventions, it must always be cast to the correct type before
127   /// actually being used.
128   llvm::PointerType *IMPTy;
129   /// Type of an untyped Objective-C object.  Clang treats id as a built-in type
130   /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
131   /// but if the runtime header declaring it is included then it may be a
132   /// pointer to a structure.
133   llvm::PointerType *IdTy;
134   /// Pointer to a pointer to an Objective-C object.  Used in the new ABI
135   /// message lookup function and some GC-related functions.
136   llvm::PointerType *PtrToIdTy;
137   /// The clang type of id.  Used when using the clang CGCall infrastructure to
138   /// call Objective-C methods.
139   CanQualType ASTIdTy;
140   /// LLVM type for C int type.
141   llvm::IntegerType *IntTy;
142   /// LLVM type for an opaque pointer.  This is identical to PtrToInt8Ty, but is
143   /// used in the code to document the difference between i8* meaning a pointer
144   /// to a C string and i8* meaning a pointer to some opaque type.
145   llvm::PointerType *PtrTy;
146   /// LLVM type for C long type.  The runtime uses this in a lot of places where
147   /// it should be using intptr_t, but we can't fix this without breaking
148   /// compatibility with GCC...
149   llvm::IntegerType *LongTy;
150   /// LLVM type for C size_t.  Used in various runtime data structures.
151   llvm::IntegerType *SizeTy;
152   /// LLVM type for C intptr_t.  
153   llvm::IntegerType *IntPtrTy;
154   /// LLVM type for C ptrdiff_t.  Mainly used in property accessor functions.
155   llvm::IntegerType *PtrDiffTy;
156   /// LLVM type for C int*.  Used for GCC-ABI-compatible non-fragile instance
157   /// variables.
158   llvm::PointerType *PtrToIntTy;
159   /// LLVM type for Objective-C BOOL type.
160   llvm::Type *BoolTy;
161   /// 32-bit integer type, to save us needing to look it up every time it's used.
162   llvm::IntegerType *Int32Ty;
163   /// 64-bit integer type, to save us needing to look it up every time it's used.
164   llvm::IntegerType *Int64Ty;
165   /// Metadata kind used to tie method lookups to message sends.  The GNUstep
166   /// runtime provides some LLVM passes that can use this to do things like
167   /// automatic IMP caching and speculative inlining.
168   unsigned msgSendMDKind;
169   /// Helper function that generates a constant string and returns a pointer to
170   /// the start of the string.  The result of this function can be used anywhere
171   /// where the C code specifies const char*.  
172   llvm::Constant *MakeConstantString(const std::string &Str,
173                                      const std::string &Name="") {
174     auto *ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
175     return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
176                                                 ConstStr, Zeros);
177   }
178   /// Emits a linkonce_odr string, whose name is the prefix followed by the
179   /// string value.  This allows the linker to combine the strings between
180   /// different modules.  Used for EH typeinfo names, selector strings, and a
181   /// few other things.
182   llvm::Constant *ExportUniqueString(const std::string &Str,
183                                      const std::string prefix) {
184     std::string name = prefix + Str;
185     auto *ConstStr = TheModule.getGlobalVariable(name);
186     if (!ConstStr) {
187       llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
188       ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true,
189               llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str);
190     }
191     return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
192                                                 ConstStr, Zeros);
193   }
194   /// Generates a global structure, initialized by the elements in the vector.
195   /// The element types must match the types of the structure elements in the
196   /// first argument.
197   llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty,
198                                    ArrayRef<llvm::Constant *> V,
199                                    StringRef Name="",
200                                    llvm::GlobalValue::LinkageTypes linkage
201                                          =llvm::GlobalValue::InternalLinkage) {
202     llvm::Constant *C = llvm::ConstantStruct::get(Ty, V);
203     return new llvm::GlobalVariable(TheModule, Ty, false,
204         linkage, C, Name);
205   }
206   /// Generates a global array.  The vector must contain the same number of
207   /// elements that the array type declares, of the type specified as the array
208   /// element type.
209   llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty,
210                                    ArrayRef<llvm::Constant *> V,
211                                    StringRef Name="",
212                                    llvm::GlobalValue::LinkageTypes linkage
213                                          =llvm::GlobalValue::InternalLinkage) {
214     llvm::Constant *C = llvm::ConstantArray::get(Ty, V);
215     return new llvm::GlobalVariable(TheModule, Ty, false,
216                                     linkage, C, Name);
217   }
218   /// Generates a global array, inferring the array type from the specified
219   /// element type and the size of the initialiser.  
220   llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty,
221                                         ArrayRef<llvm::Constant *> V,
222                                         StringRef Name="",
223                                         llvm::GlobalValue::LinkageTypes linkage
224                                          =llvm::GlobalValue::InternalLinkage) {
225     llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size());
226     return MakeGlobal(ArrayTy, V, Name, linkage);
227   }
228   /// Returns a property name and encoding string.
229   llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
230                                              const Decl *Container) {
231     const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
232     if ((R.getKind() == ObjCRuntime::GNUstep) &&
233         (R.getVersion() >= VersionTuple(1, 6))) {
234       std::string NameAndAttributes;
235       std::string TypeStr;
236       CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
237       NameAndAttributes += '\0';
238       NameAndAttributes += TypeStr.length() + 3;
239       NameAndAttributes += TypeStr;
240       NameAndAttributes += '\0';
241       NameAndAttributes += PD->getNameAsString();
242       auto *ConstStr = CGM.GetAddrOfConstantCString(NameAndAttributes);
243       return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
244                                                   ConstStr, Zeros);
245     }
246     return MakeConstantString(PD->getNameAsString());
247   }
248   /// Push the property attributes into two structure fields. 
249   void PushPropertyAttributes(std::vector<llvm::Constant*> &Fields,
250       ObjCPropertyDecl *property, bool isSynthesized=true, bool
251       isDynamic=true) {
252     int attrs = property->getPropertyAttributes();
253     // For read-only properties, clear the copy and retain flags
254     if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
255       attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
256       attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
257       attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
258       attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
259     }
260     // The first flags field has the same attribute values as clang uses internally
261     Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
262     attrs >>= 8;
263     attrs <<= 2;
264     // For protocol properties, synthesized and dynamic have no meaning, so we
265     // reuse these flags to indicate that this is a protocol property (both set
266     // has no meaning, as a property can't be both synthesized and dynamic)
267     attrs |= isSynthesized ? (1<<0) : 0;
268     attrs |= isDynamic ? (1<<1) : 0;
269     // The second field is the next four fields left shifted by two, with the
270     // low bit set to indicate whether the field is synthesized or dynamic.
271     Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
272     // Two padding fields
273     Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
274     Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
275   }
276   /// Ensures that the value has the required type, by inserting a bitcast if
277   /// required.  This function lets us avoid inserting bitcasts that are
278   /// redundant.
279   llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
280     if (V->getType() == Ty) return V;
281     return B.CreateBitCast(V, Ty);
282   }
283   // Some zeros used for GEPs in lots of places.
284   llvm::Constant *Zeros[2];
285   /// Null pointer value.  Mainly used as a terminator in various arrays.
286   llvm::Constant *NULLPtr;
287   /// LLVM context.
288   llvm::LLVMContext &VMContext;
289 private:
290   /// Placeholder for the class.  Lots of things refer to the class before we've
291   /// actually emitted it.  We use this alias as a placeholder, and then replace
292   /// it with a pointer to the class structure before finally emitting the
293   /// module.
294   llvm::GlobalAlias *ClassPtrAlias;
295   /// Placeholder for the metaclass.  Lots of things refer to the class before
296   /// we've / actually emitted it.  We use this alias as a placeholder, and then
297   /// replace / it with a pointer to the metaclass structure before finally
298   /// emitting the / module.
299   llvm::GlobalAlias *MetaClassPtrAlias;
300   /// All of the classes that have been generated for this compilation units.
301   std::vector<llvm::Constant*> Classes;
302   /// All of the categories that have been generated for this compilation units.
303   std::vector<llvm::Constant*> Categories;
304   /// All of the Objective-C constant strings that have been generated for this
305   /// compilation units.
306   std::vector<llvm::Constant*> ConstantStrings;
307   /// Map from string values to Objective-C constant strings in the output.
308   /// Used to prevent emitting Objective-C strings more than once.  This should
309   /// not be required at all - CodeGenModule should manage this list.
310   llvm::StringMap<llvm::Constant*> ObjCStrings;
311   /// All of the protocols that have been declared.
312   llvm::StringMap<llvm::Constant*> ExistingProtocols;
313   /// For each variant of a selector, we store the type encoding and a
314   /// placeholder value.  For an untyped selector, the type will be the empty
315   /// string.  Selector references are all done via the module's selector table,
316   /// so we create an alias as a placeholder and then replace it with the real
317   /// value later.
318   typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
319   /// Type of the selector map.  This is roughly equivalent to the structure
320   /// used in the GNUstep runtime, which maintains a list of all of the valid
321   /// types for a selector in a table.
322   typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
323     SelectorMap;
324   /// A map from selectors to selector types.  This allows us to emit all
325   /// selectors of the same name and type together.
326   SelectorMap SelectorTable;
327
328   /// Selectors related to memory management.  When compiling in GC mode, we
329   /// omit these.
330   Selector RetainSel, ReleaseSel, AutoreleaseSel;
331   /// Runtime functions used for memory management in GC mode.  Note that clang
332   /// supports code generation for calling these functions, but neither GNU
333   /// runtime actually supports this API properly yet.
334   LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn, 
335     WeakAssignFn, GlobalAssignFn;
336
337   typedef std::pair<std::string, std::string> ClassAliasPair;
338   /// All classes that have aliases set for them.
339   std::vector<ClassAliasPair> ClassAliases;
340
341 protected:
342   /// Function used for throwing Objective-C exceptions.
343   LazyRuntimeFunction ExceptionThrowFn;
344   /// Function used for rethrowing exceptions, used at the end of \@finally or
345   /// \@synchronize blocks.
346   LazyRuntimeFunction ExceptionReThrowFn;
347   /// Function called when entering a catch function.  This is required for
348   /// differentiating Objective-C exceptions and foreign exceptions.
349   LazyRuntimeFunction EnterCatchFn;
350   /// Function called when exiting from a catch block.  Used to do exception
351   /// cleanup.
352   LazyRuntimeFunction ExitCatchFn;
353   /// Function called when entering an \@synchronize block.  Acquires the lock.
354   LazyRuntimeFunction SyncEnterFn;
355   /// Function called when exiting an \@synchronize block.  Releases the lock.
356   LazyRuntimeFunction SyncExitFn;
357
358 private:
359
360   /// Function called if fast enumeration detects that the collection is
361   /// modified during the update.
362   LazyRuntimeFunction EnumerationMutationFn;
363   /// Function for implementing synthesized property getters that return an
364   /// object.
365   LazyRuntimeFunction GetPropertyFn;
366   /// Function for implementing synthesized property setters that return an
367   /// object.
368   LazyRuntimeFunction SetPropertyFn;
369   /// Function used for non-object declared property getters.
370   LazyRuntimeFunction GetStructPropertyFn;
371   /// Function used for non-object declared property setters.
372   LazyRuntimeFunction SetStructPropertyFn;
373
374   /// The version of the runtime that this class targets.  Must match the
375   /// version in the runtime.
376   int RuntimeVersion;
377   /// The version of the protocol class.  Used to differentiate between ObjC1
378   /// and ObjC2 protocols.  Objective-C 1 protocols can not contain optional
379   /// components and can not contain declared properties.  We always emit
380   /// Objective-C 2 property structures, but we have to pretend that they're
381   /// Objective-C 1 property structures when targeting the GCC runtime or it
382   /// will abort.
383   const int ProtocolVersion;
384 private:
385   /// Generates an instance variable list structure.  This is a structure
386   /// containing a size and an array of structures containing instance variable
387   /// metadata.  This is used purely for introspection in the fragile ABI.  In
388   /// the non-fragile ABI, it's used for instance variable fixup.
389   llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
390                                    ArrayRef<llvm::Constant *> IvarTypes,
391                                    ArrayRef<llvm::Constant *> IvarOffsets);
392   /// Generates a method list structure.  This is a structure containing a size
393   /// and an array of structures containing method metadata.
394   ///
395   /// This structure is used by both classes and categories, and contains a next
396   /// pointer allowing them to be chained together in a linked list.
397   llvm::Constant *GenerateMethodList(StringRef ClassName,
398       StringRef CategoryName,
399       ArrayRef<Selector> MethodSels,
400       ArrayRef<llvm::Constant *> MethodTypes,
401       bool isClassMethodList);
402   /// Emits an empty protocol.  This is used for \@protocol() where no protocol
403   /// is found.  The runtime will (hopefully) fix up the pointer to refer to the
404   /// real protocol.
405   llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName);
406   /// Generates a list of property metadata structures.  This follows the same
407   /// pattern as method and instance variable metadata lists.
408   llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID,
409         SmallVectorImpl<Selector> &InstanceMethodSels,
410         SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes);
411   /// Generates a list of referenced protocols.  Classes, categories, and
412   /// protocols all use this structure.
413   llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
414   /// To ensure that all protocols are seen by the runtime, we add a category on
415   /// a class defined in the runtime, declaring no methods, but adopting the
416   /// protocols.  This is a horribly ugly hack, but it allows us to collect all
417   /// of the protocols without changing the ABI.
418   void GenerateProtocolHolderCategory();
419   /// Generates a class structure.
420   llvm::Constant *GenerateClassStructure(
421       llvm::Constant *MetaClass,
422       llvm::Constant *SuperClass,
423       unsigned info,
424       const char *Name,
425       llvm::Constant *Version,
426       llvm::Constant *InstanceSize,
427       llvm::Constant *IVars,
428       llvm::Constant *Methods,
429       llvm::Constant *Protocols,
430       llvm::Constant *IvarOffsets,
431       llvm::Constant *Properties,
432       llvm::Constant *StrongIvarBitmap,
433       llvm::Constant *WeakIvarBitmap,
434       bool isMeta=false);
435   /// Generates a method list.  This is used by protocols to define the required
436   /// and optional methods.
437   llvm::Constant *GenerateProtocolMethodList(
438       ArrayRef<llvm::Constant *> MethodNames,
439       ArrayRef<llvm::Constant *> MethodTypes);
440   /// Returns a selector with the specified type encoding.  An empty string is
441   /// used to return an untyped selector (with the types field set to NULL).
442   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
443     const std::string &TypeEncoding, bool lval);
444   /// Returns the variable used to store the offset of an instance variable.
445   llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
446       const ObjCIvarDecl *Ivar);
447   /// Emits a reference to a class.  This allows the linker to object if there
448   /// is no class of the matching name.
449 protected:
450   void EmitClassRef(const std::string &className);
451   /// Emits a pointer to the named class
452   virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
453                                      const std::string &Name, bool isWeak);
454   /// Looks up the method for sending a message to the specified object.  This
455   /// mechanism differs between the GCC and GNU runtimes, so this method must be
456   /// overridden in subclasses.
457   virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
458                                  llvm::Value *&Receiver,
459                                  llvm::Value *cmd,
460                                  llvm::MDNode *node,
461                                  MessageSendInfo &MSI) = 0;
462   /// Looks up the method for sending a message to a superclass.  This
463   /// mechanism differs between the GCC and GNU runtimes, so this method must
464   /// be overridden in subclasses.
465   virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
466                                       llvm::Value *ObjCSuper,
467                                       llvm::Value *cmd,
468                                       MessageSendInfo &MSI) = 0;
469   /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
470   /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
471   /// bits set to their values, LSB first, while larger ones are stored in a
472   /// structure of this / form:
473   /// 
474   /// struct { int32_t length; int32_t values[length]; };
475   ///
476   /// The values in the array are stored in host-endian format, with the least
477   /// significant bit being assumed to come first in the bitfield.  Therefore,
478   /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
479   /// while a bitfield / with the 63rd bit set will be 1<<64.
480   llvm::Constant *MakeBitField(ArrayRef<bool> bits);
481 public:
482   CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
483       unsigned protocolClassVersion);
484
485   llvm::Constant *GenerateConstantString(const StringLiteral *) override;
486
487   RValue
488   GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
489                       QualType ResultType, Selector Sel,
490                       llvm::Value *Receiver, const CallArgList &CallArgs,
491                       const ObjCInterfaceDecl *Class,
492                       const ObjCMethodDecl *Method) override;
493   RValue
494   GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
495                            QualType ResultType, Selector Sel,
496                            const ObjCInterfaceDecl *Class,
497                            bool isCategoryImpl, llvm::Value *Receiver,
498                            bool IsClassMessage, const CallArgList &CallArgs,
499                            const ObjCMethodDecl *Method) override;
500   llvm::Value *GetClass(CodeGenFunction &CGF,
501                         const ObjCInterfaceDecl *OID) override;
502   llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
503                            bool lval = false) override;
504   llvm::Value *GetSelector(CodeGenFunction &CGF,
505                            const ObjCMethodDecl *Method) override;
506   llvm::Constant *GetEHType(QualType T) override;
507
508   llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
509                                  const ObjCContainerDecl *CD) override;
510   void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
511   void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
512   void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
513   llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
514                                    const ObjCProtocolDecl *PD) override;
515   void GenerateProtocol(const ObjCProtocolDecl *PD) override;
516   llvm::Function *ModuleInitFunction() override;
517   llvm::Constant *GetPropertyGetFunction() override;
518   llvm::Constant *GetPropertySetFunction() override;
519   llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
520                                                   bool copy) override;
521   llvm::Constant *GetSetStructFunction() override;
522   llvm::Constant *GetGetStructFunction() override;
523   llvm::Constant *GetCppAtomicObjectGetFunction() override;
524   llvm::Constant *GetCppAtomicObjectSetFunction() override;
525   llvm::Constant *EnumerationMutationFunction() override;
526
527   void EmitTryStmt(CodeGenFunction &CGF,
528                    const ObjCAtTryStmt &S) override;
529   void EmitSynchronizedStmt(CodeGenFunction &CGF,
530                             const ObjCAtSynchronizedStmt &S) override;
531   void EmitThrowStmt(CodeGenFunction &CGF,
532                      const ObjCAtThrowStmt &S,
533                      bool ClearInsertionPoint=true) override;
534   llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
535                                  llvm::Value *AddrWeakObj) override;
536   void EmitObjCWeakAssign(CodeGenFunction &CGF,
537                           llvm::Value *src, llvm::Value *dst) override;
538   void EmitObjCGlobalAssign(CodeGenFunction &CGF,
539                             llvm::Value *src, llvm::Value *dest,
540                             bool threadlocal=false) override;
541   void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
542                           llvm::Value *dest, llvm::Value *ivarOffset) override;
543   void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
544                                 llvm::Value *src, llvm::Value *dest) override;
545   void EmitGCMemmoveCollectable(CodeGenFunction &CGF, llvm::Value *DestPtr,
546                                 llvm::Value *SrcPtr,
547                                 llvm::Value *Size) override;
548   LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
549                               llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
550                               unsigned CVRQualifiers) override;
551   llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
552                               const ObjCInterfaceDecl *Interface,
553                               const ObjCIvarDecl *Ivar) override;
554   llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
555   llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
556                                      const CGBlockInfo &blockInfo) override {
557     return NULLPtr;
558   }
559   llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
560                                      const CGBlockInfo &blockInfo) override {
561     return NULLPtr;
562   }
563
564   llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
565     return NULLPtr;
566   }
567
568   llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
569                                        bool Weak = false) override {
570     return nullptr;
571   }
572 };
573 /// Class representing the legacy GCC Objective-C ABI.  This is the default when
574 /// -fobjc-nonfragile-abi is not specified.
575 ///
576 /// The GCC ABI target actually generates code that is approximately compatible
577 /// with the new GNUstep runtime ABI, but refrains from using any features that
578 /// would not work with the GCC runtime.  For example, clang always generates
579 /// the extended form of the class structure, and the extra fields are simply
580 /// ignored by GCC libobjc.
581 class CGObjCGCC : public CGObjCGNU {
582   /// The GCC ABI message lookup function.  Returns an IMP pointing to the
583   /// method implementation for this message.
584   LazyRuntimeFunction MsgLookupFn;
585   /// The GCC ABI superclass message lookup function.  Takes a pointer to a
586   /// structure describing the receiver and the class, and a selector as
587   /// arguments.  Returns the IMP for the corresponding method.
588   LazyRuntimeFunction MsgLookupSuperFn;
589 protected:
590   llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
591                          llvm::Value *cmd, llvm::MDNode *node,
592                          MessageSendInfo &MSI) override {
593     CGBuilderTy &Builder = CGF.Builder;
594     llvm::Value *args[] = {
595             EnforceType(Builder, Receiver, IdTy),
596             EnforceType(Builder, cmd, SelectorTy) };
597     llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
598     imp->setMetadata(msgSendMDKind, node);
599     return imp.getInstruction();
600   }
601   llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
602                               llvm::Value *cmd, MessageSendInfo &MSI) override {
603       CGBuilderTy &Builder = CGF.Builder;
604       llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
605           PtrToObjCSuperTy), cmd};
606       return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
607     }
608   public:
609     CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
610       // IMP objc_msg_lookup(id, SEL);
611       MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy,
612                        nullptr);
613       // IMP objc_msg_lookup_super(struct objc_super*, SEL);
614       MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
615               PtrToObjCSuperTy, SelectorTy, nullptr);
616     }
617 };
618 /// Class used when targeting the new GNUstep runtime ABI.
619 class CGObjCGNUstep : public CGObjCGNU {
620     /// The slot lookup function.  Returns a pointer to a cacheable structure
621     /// that contains (among other things) the IMP.
622     LazyRuntimeFunction SlotLookupFn;
623     /// The GNUstep ABI superclass message lookup function.  Takes a pointer to
624     /// a structure describing the receiver and the class, and a selector as
625     /// arguments.  Returns the slot for the corresponding method.  Superclass
626     /// message lookup rarely changes, so this is a good caching opportunity.
627     LazyRuntimeFunction SlotLookupSuperFn;
628     /// Specialised function for setting atomic retain properties
629     LazyRuntimeFunction SetPropertyAtomic;
630     /// Specialised function for setting atomic copy properties
631     LazyRuntimeFunction SetPropertyAtomicCopy;
632     /// Specialised function for setting nonatomic retain properties
633     LazyRuntimeFunction SetPropertyNonAtomic;
634     /// Specialised function for setting nonatomic copy properties
635     LazyRuntimeFunction SetPropertyNonAtomicCopy;
636     /// Function to perform atomic copies of C++ objects with nontrivial copy
637     /// constructors from Objective-C ivars.
638     LazyRuntimeFunction CxxAtomicObjectGetFn;
639     /// Function to perform atomic copies of C++ objects with nontrivial copy
640     /// constructors to Objective-C ivars.
641     LazyRuntimeFunction CxxAtomicObjectSetFn;
642     /// Type of an slot structure pointer.  This is returned by the various
643     /// lookup functions.
644     llvm::Type *SlotTy;
645   public:
646     llvm::Constant *GetEHType(QualType T) override;
647   protected:
648     llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
649                            llvm::Value *cmd, llvm::MDNode *node,
650                            MessageSendInfo &MSI) override {
651       CGBuilderTy &Builder = CGF.Builder;
652       llvm::Function *LookupFn = SlotLookupFn;
653
654       // Store the receiver on the stack so that we can reload it later
655       llvm::Value *ReceiverPtr = CGF.CreateTempAlloca(Receiver->getType());
656       Builder.CreateStore(Receiver, ReceiverPtr);
657
658       llvm::Value *self;
659
660       if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
661         self = CGF.LoadObjCSelf();
662       } else {
663         self = llvm::ConstantPointerNull::get(IdTy);
664       }
665
666       // The lookup function is guaranteed not to capture the receiver pointer.
667       LookupFn->setDoesNotCapture(1);
668
669       llvm::Value *args[] = {
670               EnforceType(Builder, ReceiverPtr, PtrToIdTy),
671               EnforceType(Builder, cmd, SelectorTy),
672               EnforceType(Builder, self, IdTy) };
673       llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
674       slot.setOnlyReadsMemory();
675       slot->setMetadata(msgSendMDKind, node);
676
677       // Load the imp from the slot
678       llvm::Value *imp = Builder.CreateLoad(
679           Builder.CreateStructGEP(nullptr, slot.getInstruction(), 4));
680
681       // The lookup function may have changed the receiver, so make sure we use
682       // the new one.
683       Receiver = Builder.CreateLoad(ReceiverPtr, true);
684       return imp;
685     }
686     llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
687                                 llvm::Value *cmd,
688                                 MessageSendInfo &MSI) override {
689       CGBuilderTy &Builder = CGF.Builder;
690       llvm::Value *lookupArgs[] = {ObjCSuper, cmd};
691
692       llvm::CallInst *slot =
693         CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
694       slot->setOnlyReadsMemory();
695
696       return Builder.CreateLoad(Builder.CreateStructGEP(nullptr, slot, 4));
697     }
698   public:
699     CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) {
700       const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
701
702       llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy,
703           PtrTy, PtrTy, IntTy, IMPTy, nullptr);
704       SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
705       // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
706       SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
707           SelectorTy, IdTy, nullptr);
708       // Slot_t objc_msg_lookup_super(struct objc_super*, SEL);
709       SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
710               PtrToObjCSuperTy, SelectorTy, nullptr);
711       // If we're in ObjC++ mode, then we want to make 
712       if (CGM.getLangOpts().CPlusPlus) {
713         llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
714         // void *__cxa_begin_catch(void *e)
715         EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, nullptr);
716         // void __cxa_end_catch(void)
717         ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, nullptr);
718         // void _Unwind_Resume_or_Rethrow(void*)
719         ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
720             PtrTy, nullptr);
721       } else if (R.getVersion() >= VersionTuple(1, 7)) {
722         llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
723         // id objc_begin_catch(void *e)
724         EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy, nullptr);
725         // void objc_end_catch(void)
726         ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy, nullptr);
727         // void _Unwind_Resume_or_Rethrow(void*)
728         ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy,
729             PtrTy, nullptr);
730       }
731       llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
732       SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
733           SelectorTy, IdTy, PtrDiffTy, nullptr);
734       SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
735           IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
736       SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
737           IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
738       SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
739           VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
740       // void objc_setCppObjectAtomic(void *dest, const void *src, void
741       // *helper);
742       CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
743           PtrTy, PtrTy, nullptr);
744       // void objc_getCppObjectAtomic(void *dest, const void *src, void
745       // *helper);
746       CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
747           PtrTy, PtrTy, nullptr);
748     }
749     llvm::Constant *GetCppAtomicObjectGetFunction() override {
750       // The optimised functions were added in version 1.7 of the GNUstep
751       // runtime.
752       assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
753           VersionTuple(1, 7));
754       return CxxAtomicObjectGetFn;
755     }
756     llvm::Constant *GetCppAtomicObjectSetFunction() override {
757       // The optimised functions were added in version 1.7 of the GNUstep
758       // runtime.
759       assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
760           VersionTuple(1, 7));
761       return CxxAtomicObjectSetFn;
762     }
763     llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
764                                                     bool copy) override {
765       // The optimised property functions omit the GC check, and so are not
766       // safe to use in GC mode.  The standard functions are fast in GC mode,
767       // so there is less advantage in using them.
768       assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
769       // The optimised functions were added in version 1.7 of the GNUstep
770       // runtime.
771       assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
772           VersionTuple(1, 7));
773
774       if (atomic) {
775         if (copy) return SetPropertyAtomicCopy;
776         return SetPropertyAtomic;
777       }
778
779       return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
780     }
781 };
782
783 /// Support for the ObjFW runtime.
784 class CGObjCObjFW: public CGObjCGNU {
785 protected:
786   /// The GCC ABI message lookup function.  Returns an IMP pointing to the
787   /// method implementation for this message.
788   LazyRuntimeFunction MsgLookupFn;
789   /// stret lookup function.  While this does not seem to make sense at the
790   /// first look, this is required to call the correct forwarding function.
791   LazyRuntimeFunction MsgLookupFnSRet;
792   /// The GCC ABI superclass message lookup function.  Takes a pointer to a
793   /// structure describing the receiver and the class, and a selector as
794   /// arguments.  Returns the IMP for the corresponding method.
795   LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
796
797   llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
798                          llvm::Value *cmd, llvm::MDNode *node,
799                          MessageSendInfo &MSI) override {
800     CGBuilderTy &Builder = CGF.Builder;
801     llvm::Value *args[] = {
802             EnforceType(Builder, Receiver, IdTy),
803             EnforceType(Builder, cmd, SelectorTy) };
804
805     llvm::CallSite imp;
806     if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
807       imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
808     else
809       imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
810
811     imp->setMetadata(msgSendMDKind, node);
812     return imp.getInstruction();
813   }
814
815   llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
816                               llvm::Value *cmd, MessageSendInfo &MSI) override {
817       CGBuilderTy &Builder = CGF.Builder;
818       llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
819           PtrToObjCSuperTy), cmd};
820
821       if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
822         return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
823       else
824         return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
825     }
826
827   llvm::Value *GetClassNamed(CodeGenFunction &CGF,
828                              const std::string &Name, bool isWeak) override {
829     if (isWeak)
830       return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
831
832     EmitClassRef(Name);
833
834     std::string SymbolName = "_OBJC_CLASS_" + Name;
835
836     llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
837
838     if (!ClassSymbol)
839       ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
840                                              llvm::GlobalValue::ExternalLinkage,
841                                              nullptr, SymbolName);
842
843     return ClassSymbol;
844   }
845
846 public:
847   CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
848     // IMP objc_msg_lookup(id, SEL);
849     MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, nullptr);
850     MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
851                          SelectorTy, nullptr);
852     // IMP objc_msg_lookup_super(struct objc_super*, SEL);
853     MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
854                           PtrToObjCSuperTy, SelectorTy, nullptr);
855     MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
856                               PtrToObjCSuperTy, SelectorTy, nullptr);
857   }
858 };
859 } // end anonymous namespace
860
861
862 /// Emits a reference to a dummy variable which is emitted with each class.
863 /// This ensures that a linker error will be generated when trying to link
864 /// together modules where a referenced class is not defined.
865 void CGObjCGNU::EmitClassRef(const std::string &className) {
866   std::string symbolRef = "__objc_class_ref_" + className;
867   // Don't emit two copies of the same symbol
868   if (TheModule.getGlobalVariable(symbolRef))
869     return;
870   std::string symbolName = "__objc_class_name_" + className;
871   llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
872   if (!ClassSymbol) {
873     ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
874                                            llvm::GlobalValue::ExternalLinkage,
875                                            nullptr, symbolName);
876   }
877   new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
878     llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
879 }
880
881 static std::string SymbolNameForMethod( StringRef ClassName,
882      StringRef CategoryName, const Selector MethodName,
883     bool isClassMethod) {
884   std::string MethodNameColonStripped = MethodName.getAsString();
885   std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
886       ':', '_');
887   return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
888     CategoryName + "_" + MethodNameColonStripped).str();
889 }
890
891 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
892                      unsigned protocolClassVersion)
893   : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
894     VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
895     MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
896     ProtocolVersion(protocolClassVersion) {
897
898   msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
899
900   CodeGenTypes &Types = CGM.getTypes();
901   IntTy = cast<llvm::IntegerType>(
902       Types.ConvertType(CGM.getContext().IntTy));
903   LongTy = cast<llvm::IntegerType>(
904       Types.ConvertType(CGM.getContext().LongTy));
905   SizeTy = cast<llvm::IntegerType>(
906       Types.ConvertType(CGM.getContext().getSizeType()));
907   PtrDiffTy = cast<llvm::IntegerType>(
908       Types.ConvertType(CGM.getContext().getPointerDiffType()));
909   BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
910
911   Int8Ty = llvm::Type::getInt8Ty(VMContext);
912   // C string type.  Used in lots of places.
913   PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
914
915   Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
916   Zeros[1] = Zeros[0];
917   NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
918   // Get the selector Type.
919   QualType selTy = CGM.getContext().getObjCSelType();
920   if (QualType() == selTy) {
921     SelectorTy = PtrToInt8Ty;
922   } else {
923     SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
924   }
925
926   PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
927   PtrTy = PtrToInt8Ty;
928
929   Int32Ty = llvm::Type::getInt32Ty(VMContext);
930   Int64Ty = llvm::Type::getInt64Ty(VMContext);
931
932   IntPtrTy =
933       CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
934
935   // Object type
936   QualType UnqualIdTy = CGM.getContext().getObjCIdType();
937   ASTIdTy = CanQualType();
938   if (UnqualIdTy != QualType()) {
939     ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
940     IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
941   } else {
942     IdTy = PtrToInt8Ty;
943   }
944   PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
945
946   ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, nullptr);
947   PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
948
949   llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
950
951   // void objc_exception_throw(id);
952   ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
953   ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
954   // int objc_sync_enter(id);
955   SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, nullptr);
956   // int objc_sync_exit(id);
957   SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, nullptr);
958
959   // void objc_enumerationMutation (id)
960   EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy,
961       IdTy, nullptr);
962
963   // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
964   GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
965       PtrDiffTy, BoolTy, nullptr);
966   // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
967   SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
968       PtrDiffTy, IdTy, BoolTy, BoolTy, nullptr);
969   // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
970   GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy, 
971       PtrDiffTy, BoolTy, BoolTy, nullptr);
972   // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
973   SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy, 
974       PtrDiffTy, BoolTy, BoolTy, nullptr);
975
976   // IMP type
977   llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
978   IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
979               true));
980
981   const LangOptions &Opts = CGM.getLangOpts();
982   if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
983     RuntimeVersion = 10;
984
985   // Don't bother initialising the GC stuff unless we're compiling in GC mode
986   if (Opts.getGC() != LangOptions::NonGC) {
987     // This is a bit of an hack.  We should sort this out by having a proper
988     // CGObjCGNUstep subclass for GC, but we may want to really support the old
989     // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
990     // Get selectors needed in GC mode
991     RetainSel = GetNullarySelector("retain", CGM.getContext());
992     ReleaseSel = GetNullarySelector("release", CGM.getContext());
993     AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
994
995     // Get functions needed in GC mode
996
997     // id objc_assign_ivar(id, id, ptrdiff_t);
998     IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy,
999         nullptr);
1000     // id objc_assign_strongCast (id, id*)
1001     StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
1002         PtrToIdTy, nullptr);
1003     // id objc_assign_global(id, id*);
1004     GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy,
1005         nullptr);
1006     // id objc_assign_weak(id, id*);
1007     WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, nullptr);
1008     // id objc_read_weak(id*);
1009     WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, nullptr);
1010     // void *objc_memmove_collectable(void*, void *, size_t);
1011     MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
1012         SizeTy, nullptr);
1013   }
1014 }
1015
1016 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
1017                                       const std::string &Name,
1018                                       bool isWeak) {
1019   llvm::GlobalVariable *ClassNameGV = CGM.GetAddrOfConstantCString(Name);
1020   // With the incompatible ABI, this will need to be replaced with a direct
1021   // reference to the class symbol.  For the compatible nonfragile ABI we are
1022   // still performing this lookup at run time but emitting the symbol for the
1023   // class externally so that we can make the switch later.
1024   //
1025   // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
1026   // with memoized versions or with static references if it's safe to do so.
1027   if (!isWeak)
1028     EmitClassRef(Name);
1029   llvm::Value *ClassName =
1030       CGF.Builder.CreateStructGEP(ClassNameGV->getValueType(), ClassNameGV, 0);
1031
1032   llvm::Constant *ClassLookupFn =
1033     CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
1034                               "objc_lookup_class");
1035   return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
1036 }
1037
1038 // This has to perform the lookup every time, since posing and related
1039 // techniques can modify the name -> class mapping.
1040 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
1041                                  const ObjCInterfaceDecl *OID) {
1042   return GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
1043 }
1044 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
1045   return GetClassNamed(CGF, "NSAutoreleasePool", false);
1046 }
1047
1048 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1049     const std::string &TypeEncoding, bool lval) {
1050
1051   SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
1052   llvm::GlobalAlias *SelValue = nullptr;
1053
1054   for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
1055       e = Types.end() ; i!=e ; i++) {
1056     if (i->first == TypeEncoding) {
1057       SelValue = i->second;
1058       break;
1059     }
1060   }
1061   if (!SelValue) {
1062     SelValue = llvm::GlobalAlias::create(
1063         SelectorTy, llvm::GlobalValue::PrivateLinkage,
1064         ".objc_selector_" + Sel.getAsString(), &TheModule);
1065     Types.push_back(TypedSelector(TypeEncoding, SelValue));
1066   }
1067
1068   if (lval) {
1069     llvm::Value *tmp = CGF.CreateTempAlloca(SelValue->getType());
1070     CGF.Builder.CreateStore(SelValue, tmp);
1071     return tmp;
1072   }
1073   return SelValue;
1074 }
1075
1076 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1077                                     bool lval) {
1078   return GetSelector(CGF, Sel, std::string(), lval);
1079 }
1080
1081 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
1082                                     const ObjCMethodDecl *Method) {
1083   std::string SelTypes;
1084   CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes);
1085   return GetSelector(CGF, Method->getSelector(), SelTypes, false);
1086 }
1087
1088 llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
1089   if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
1090     // With the old ABI, there was only one kind of catchall, which broke
1091     // foreign exceptions.  With the new ABI, we use __objc_id_typeinfo as
1092     // a pointer indicating object catchalls, and NULL to indicate real
1093     // catchalls
1094     if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
1095       return MakeConstantString("@id");
1096     } else {
1097       return nullptr;
1098     }
1099   }
1100
1101   // All other types should be Objective-C interface pointer types.
1102   const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
1103   assert(OPT && "Invalid @catch type.");
1104   const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
1105   assert(IDecl && "Invalid @catch type.");
1106   return MakeConstantString(IDecl->getIdentifier()->getName());
1107 }
1108
1109 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
1110   if (!CGM.getLangOpts().CPlusPlus)
1111     return CGObjCGNU::GetEHType(T);
1112
1113   // For Objective-C++, we want to provide the ability to catch both C++ and
1114   // Objective-C objects in the same function.
1115
1116   // There's a particular fixed type info for 'id'.
1117   if (T->isObjCIdType() ||
1118       T->isObjCQualifiedIdType()) {
1119     llvm::Constant *IDEHType =
1120       CGM.getModule().getGlobalVariable("__objc_id_type_info");
1121     if (!IDEHType)
1122       IDEHType =
1123         new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
1124                                  false,
1125                                  llvm::GlobalValue::ExternalLinkage,
1126                                  nullptr, "__objc_id_type_info");
1127     return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
1128   }
1129
1130   const ObjCObjectPointerType *PT =
1131     T->getAs<ObjCObjectPointerType>();
1132   assert(PT && "Invalid @catch type.");
1133   const ObjCInterfaceType *IT = PT->getInterfaceType();
1134   assert(IT && "Invalid @catch type.");
1135   std::string className = IT->getDecl()->getIdentifier()->getName();
1136
1137   std::string typeinfoName = "__objc_eh_typeinfo_" + className;
1138
1139   // Return the existing typeinfo if it exists
1140   llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
1141   if (typeinfo)
1142     return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
1143
1144   // Otherwise create it.
1145
1146   // vtable for gnustep::libobjc::__objc_class_type_info
1147   // It's quite ugly hard-coding this.  Ideally we'd generate it using the host
1148   // platform's name mangling.
1149   const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
1150   auto *Vtable = TheModule.getGlobalVariable(vtableName);
1151   if (!Vtable) {
1152     Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
1153                                       llvm::GlobalValue::ExternalLinkage,
1154                                       nullptr, vtableName);
1155   }
1156   llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
1157   auto *BVtable = llvm::ConstantExpr::getBitCast(
1158       llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
1159       PtrToInt8Ty);
1160
1161   llvm::Constant *typeName =
1162     ExportUniqueString(className, "__objc_eh_typename_");
1163
1164   std::vector<llvm::Constant*> fields;
1165   fields.push_back(BVtable);
1166   fields.push_back(typeName);
1167   llvm::Constant *TI = 
1168       MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1169               nullptr), fields, "__objc_eh_typeinfo_" + className,
1170           llvm::GlobalValue::LinkOnceODRLinkage);
1171   return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
1172 }
1173
1174 /// Generate an NSConstantString object.
1175 llvm::Constant *CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
1176
1177   std::string Str = SL->getString().str();
1178
1179   // Look for an existing one
1180   llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
1181   if (old != ObjCStrings.end())
1182     return old->getValue();
1183
1184   StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1185
1186   if (StringClass.empty()) StringClass = "NXConstantString";
1187
1188   std::string Sym = "_OBJC_CLASS_";
1189   Sym += StringClass;
1190
1191   llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1192
1193   if (!isa)
1194     isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1195             llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
1196   else if (isa->getType() != PtrToIdTy)
1197     isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1198
1199   std::vector<llvm::Constant*> Ivars;
1200   Ivars.push_back(isa);
1201   Ivars.push_back(MakeConstantString(Str));
1202   Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size()));
1203   llvm::Constant *ObjCStr = MakeGlobal(
1204     llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, nullptr),
1205     Ivars, ".objc_str");
1206   ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
1207   ObjCStrings[Str] = ObjCStr;
1208   ConstantStrings.push_back(ObjCStr);
1209   return ObjCStr;
1210 }
1211
1212 ///Generates a message send where the super is the receiver.  This is a message
1213 ///send to self with special delivery semantics indicating which class's method
1214 ///should be called.
1215 RValue
1216 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
1217                                     ReturnValueSlot Return,
1218                                     QualType ResultType,
1219                                     Selector Sel,
1220                                     const ObjCInterfaceDecl *Class,
1221                                     bool isCategoryImpl,
1222                                     llvm::Value *Receiver,
1223                                     bool IsClassMessage,
1224                                     const CallArgList &CallArgs,
1225                                     const ObjCMethodDecl *Method) {
1226   CGBuilderTy &Builder = CGF.Builder;
1227   if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1228     if (Sel == RetainSel || Sel == AutoreleaseSel) {
1229       return RValue::get(EnforceType(Builder, Receiver,
1230                   CGM.getTypes().ConvertType(ResultType)));
1231     }
1232     if (Sel == ReleaseSel) {
1233       return RValue::get(nullptr);
1234     }
1235   }
1236
1237   llvm::Value *cmd = GetSelector(CGF, Sel);
1238
1239
1240   CallArgList ActualArgs;
1241
1242   ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
1243   ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1244   ActualArgs.addFrom(CallArgs);
1245
1246   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1247
1248   llvm::Value *ReceiverClass = nullptr;
1249   if (isCategoryImpl) {
1250     llvm::Constant *classLookupFunction = nullptr;
1251     if (IsClassMessage)  {
1252       classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1253             IdTy, PtrTy, true), "objc_get_meta_class");
1254     } else {
1255       classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1256             IdTy, PtrTy, true), "objc_get_class");
1257     }
1258     ReceiverClass = Builder.CreateCall(classLookupFunction,
1259         MakeConstantString(Class->getNameAsString()));
1260   } else {
1261     // Set up global aliases for the metaclass or class pointer if they do not
1262     // already exist.  These will are forward-references which will be set to
1263     // pointers to the class and metaclass structure created for the runtime
1264     // load function.  To send a message to super, we look up the value of the
1265     // super_class pointer from either the class or metaclass structure.
1266     if (IsClassMessage)  {
1267       if (!MetaClassPtrAlias) {
1268         MetaClassPtrAlias = llvm::GlobalAlias::create(
1269             IdTy, llvm::GlobalValue::InternalLinkage,
1270             ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
1271       }
1272       ReceiverClass = MetaClassPtrAlias;
1273     } else {
1274       if (!ClassPtrAlias) {
1275         ClassPtrAlias = llvm::GlobalAlias::create(
1276             IdTy, llvm::GlobalValue::InternalLinkage,
1277             ".objc_class_ref" + Class->getNameAsString(), &TheModule);
1278       }
1279       ReceiverClass = ClassPtrAlias;
1280     }
1281   }
1282   // Cast the pointer to a simplified version of the class structure
1283   llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy, nullptr);
1284   ReceiverClass = Builder.CreateBitCast(ReceiverClass,
1285                                         llvm::PointerType::getUnqual(CastTy));
1286   // Get the superclass pointer
1287   ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
1288   // Load the superclass pointer
1289   ReceiverClass = Builder.CreateLoad(ReceiverClass);
1290   // Construct the structure used to look up the IMP
1291   llvm::StructType *ObjCSuperTy = llvm::StructType::get(
1292       Receiver->getType(), IdTy, nullptr);
1293   llvm::Value *ObjCSuper = Builder.CreateAlloca(ObjCSuperTy);
1294
1295   Builder.CreateStore(Receiver,
1296                       Builder.CreateStructGEP(ObjCSuperTy, ObjCSuper, 0));
1297   Builder.CreateStore(ReceiverClass,
1298                       Builder.CreateStructGEP(ObjCSuperTy, ObjCSuper, 1));
1299
1300   ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
1301
1302   // Get the IMP
1303   llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
1304   imp = EnforceType(Builder, imp, MSI.MessengerType);
1305
1306   llvm::Metadata *impMD[] = {
1307       llvm::MDString::get(VMContext, Sel.getAsString()),
1308       llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
1309       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1310           llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
1311   llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1312
1313   llvm::Instruction *call;
1314   RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, nullptr,
1315                                &call);
1316   call->setMetadata(msgSendMDKind, node);
1317   return msgRet;
1318 }
1319
1320 /// Generate code for a message send expression.
1321 RValue
1322 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
1323                                ReturnValueSlot Return,
1324                                QualType ResultType,
1325                                Selector Sel,
1326                                llvm::Value *Receiver,
1327                                const CallArgList &CallArgs,
1328                                const ObjCInterfaceDecl *Class,
1329                                const ObjCMethodDecl *Method) {
1330   CGBuilderTy &Builder = CGF.Builder;
1331
1332   // Strip out message sends to retain / release in GC mode
1333   if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1334     if (Sel == RetainSel || Sel == AutoreleaseSel) {
1335       return RValue::get(EnforceType(Builder, Receiver,
1336                   CGM.getTypes().ConvertType(ResultType)));
1337     }
1338     if (Sel == ReleaseSel) {
1339       return RValue::get(nullptr);
1340     }
1341   }
1342
1343   // If the return type is something that goes in an integer register, the
1344   // runtime will handle 0 returns.  For other cases, we fill in the 0 value
1345   // ourselves.
1346   //
1347   // The language spec says the result of this kind of message send is
1348   // undefined, but lots of people seem to have forgotten to read that
1349   // paragraph and insist on sending messages to nil that have structure
1350   // returns.  With GCC, this generates a random return value (whatever happens
1351   // to be on the stack / in those registers at the time) on most platforms,
1352   // and generates an illegal instruction trap on SPARC.  With LLVM it corrupts
1353   // the stack.  
1354   bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
1355       ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
1356
1357   llvm::BasicBlock *startBB = nullptr;
1358   llvm::BasicBlock *messageBB = nullptr;
1359   llvm::BasicBlock *continueBB = nullptr;
1360
1361   if (!isPointerSizedReturn) {
1362     startBB = Builder.GetInsertBlock();
1363     messageBB = CGF.createBasicBlock("msgSend");
1364     continueBB = CGF.createBasicBlock("continue");
1365
1366     llvm::Value *isNil = Builder.CreateICmpEQ(Receiver, 
1367             llvm::Constant::getNullValue(Receiver->getType()));
1368     Builder.CreateCondBr(isNil, continueBB, messageBB);
1369     CGF.EmitBlock(messageBB);
1370   }
1371
1372   IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
1373   llvm::Value *cmd;
1374   if (Method)
1375     cmd = GetSelector(CGF, Method);
1376   else
1377     cmd = GetSelector(CGF, Sel);
1378   cmd = EnforceType(Builder, cmd, SelectorTy);
1379   Receiver = EnforceType(Builder, Receiver, IdTy);
1380
1381   llvm::Metadata *impMD[] = {
1382       llvm::MDString::get(VMContext, Sel.getAsString()),
1383       llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
1384       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1385           llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
1386   llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1387
1388   CallArgList ActualArgs;
1389   ActualArgs.add(RValue::get(Receiver), ASTIdTy);
1390   ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1391   ActualArgs.addFrom(CallArgs);
1392
1393   MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1394
1395   // Get the IMP to call
1396   llvm::Value *imp;
1397
1398   // If we have non-legacy dispatch specified, we try using the objc_msgSend()
1399   // functions.  These are not supported on all platforms (or all runtimes on a
1400   // given platform), so we 
1401   switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
1402     case CodeGenOptions::Legacy:
1403       imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
1404       break;
1405     case CodeGenOptions::Mixed:
1406     case CodeGenOptions::NonLegacy:
1407       if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1408         imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1409                                   "objc_msgSend_fpret");
1410       } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
1411         // The actual types here don't matter - we're going to bitcast the
1412         // function anyway
1413         imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1414                                   "objc_msgSend_stret");
1415       } else {
1416         imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1417                                   "objc_msgSend");
1418       }
1419   }
1420
1421   // Reset the receiver in case the lookup modified it
1422   ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false);
1423
1424   imp = EnforceType(Builder, imp, MSI.MessengerType);
1425
1426   llvm::Instruction *call;
1427   RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, nullptr,
1428                                &call);
1429   call->setMetadata(msgSendMDKind, node);
1430
1431
1432   if (!isPointerSizedReturn) {
1433     messageBB = CGF.Builder.GetInsertBlock();
1434     CGF.Builder.CreateBr(continueBB);
1435     CGF.EmitBlock(continueBB);
1436     if (msgRet.isScalar()) {
1437       llvm::Value *v = msgRet.getScalarVal();
1438       llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1439       phi->addIncoming(v, messageBB);
1440       phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
1441       msgRet = RValue::get(phi);
1442     } else if (msgRet.isAggregate()) {
1443       llvm::Value *v = msgRet.getAggregateAddr();
1444       llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1445       llvm::PointerType *RetTy = cast<llvm::PointerType>(v->getType());
1446       llvm::AllocaInst *NullVal = 
1447           CGF.CreateTempAlloca(RetTy->getElementType(), "null");
1448       CGF.InitTempAlloca(NullVal,
1449           llvm::Constant::getNullValue(RetTy->getElementType()));
1450       phi->addIncoming(v, messageBB);
1451       phi->addIncoming(NullVal, startBB);
1452       msgRet = RValue::getAggregate(phi);
1453     } else /* isComplex() */ {
1454       std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
1455       llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
1456       phi->addIncoming(v.first, messageBB);
1457       phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
1458           startBB);
1459       llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
1460       phi2->addIncoming(v.second, messageBB);
1461       phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
1462           startBB);
1463       msgRet = RValue::getComplex(phi, phi2);
1464     }
1465   }
1466   return msgRet;
1467 }
1468
1469 /// Generates a MethodList.  Used in construction of a objc_class and
1470 /// objc_category structures.
1471 llvm::Constant *CGObjCGNU::
1472 GenerateMethodList(StringRef ClassName,
1473                    StringRef CategoryName,
1474                    ArrayRef<Selector> MethodSels,
1475                    ArrayRef<llvm::Constant *> MethodTypes,
1476                    bool isClassMethodList) {
1477   if (MethodSels.empty())
1478     return NULLPtr;
1479   // Get the method structure type.
1480   llvm::StructType *ObjCMethodTy = llvm::StructType::get(
1481     PtrToInt8Ty, // Really a selector, but the runtime creates it us.
1482     PtrToInt8Ty, // Method types
1483     IMPTy, //Method pointer
1484     nullptr);
1485   std::vector<llvm::Constant*> Methods;
1486   std::vector<llvm::Constant*> Elements;
1487   for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) {
1488     Elements.clear();
1489     llvm::Constant *Method =
1490       TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
1491                                                 MethodSels[i],
1492                                                 isClassMethodList));
1493     assert(Method && "Can't generate metadata for method that doesn't exist");
1494     llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString());
1495     Elements.push_back(C);
1496     Elements.push_back(MethodTypes[i]);
1497     Method = llvm::ConstantExpr::getBitCast(Method,
1498         IMPTy);
1499     Elements.push_back(Method);
1500     Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements));
1501   }
1502
1503   // Array of method structures
1504   llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy,
1505                                                             Methods.size());
1506   llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy,
1507                                                          Methods);
1508
1509   // Structure containing list pointer, array and array count
1510   llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext);
1511   llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy);
1512   ObjCMethodListTy->setBody(
1513       NextPtrTy,
1514       IntTy,
1515       ObjCMethodArrayTy,
1516       nullptr);
1517
1518   Methods.clear();
1519   Methods.push_back(llvm::ConstantPointerNull::get(
1520         llvm::PointerType::getUnqual(ObjCMethodListTy)));
1521   Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size()));
1522   Methods.push_back(MethodArray);
1523
1524   // Create an instance of the structure
1525   return MakeGlobal(ObjCMethodListTy, Methods, ".objc_method_list");
1526 }
1527
1528 /// Generates an IvarList.  Used in construction of a objc_class.
1529 llvm::Constant *CGObjCGNU::
1530 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1531                  ArrayRef<llvm::Constant *> IvarTypes,
1532                  ArrayRef<llvm::Constant *> IvarOffsets) {
1533   if (IvarNames.size() == 0)
1534     return NULLPtr;
1535   // Get the method structure type.
1536   llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1537     PtrToInt8Ty,
1538     PtrToInt8Ty,
1539     IntTy,
1540     nullptr);
1541   std::vector<llvm::Constant*> Ivars;
1542   std::vector<llvm::Constant*> Elements;
1543   for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
1544     Elements.clear();
1545     Elements.push_back(IvarNames[i]);
1546     Elements.push_back(IvarTypes[i]);
1547     Elements.push_back(IvarOffsets[i]);
1548     Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements));
1549   }
1550
1551   // Array of method structures
1552   llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy,
1553       IvarNames.size());
1554
1555
1556   Elements.clear();
1557   Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size()));
1558   Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars));
1559   // Structure containing array and array count
1560   llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy,
1561     ObjCIvarArrayTy,
1562     nullptr);
1563
1564   // Create an instance of the structure
1565   return MakeGlobal(ObjCIvarListTy, Elements, ".objc_ivar_list");
1566 }
1567
1568 /// Generate a class structure
1569 llvm::Constant *CGObjCGNU::GenerateClassStructure(
1570     llvm::Constant *MetaClass,
1571     llvm::Constant *SuperClass,
1572     unsigned info,
1573     const char *Name,
1574     llvm::Constant *Version,
1575     llvm::Constant *InstanceSize,
1576     llvm::Constant *IVars,
1577     llvm::Constant *Methods,
1578     llvm::Constant *Protocols,
1579     llvm::Constant *IvarOffsets,
1580     llvm::Constant *Properties,
1581     llvm::Constant *StrongIvarBitmap,
1582     llvm::Constant *WeakIvarBitmap,
1583     bool isMeta) {
1584   // Set up the class structure
1585   // Note:  Several of these are char*s when they should be ids.  This is
1586   // because the runtime performs this translation on load.
1587   //
1588   // Fields marked New ABI are part of the GNUstep runtime.  We emit them
1589   // anyway; the classes will still work with the GNU runtime, they will just
1590   // be ignored.
1591   llvm::StructType *ClassTy = llvm::StructType::get(
1592       PtrToInt8Ty,        // isa 
1593       PtrToInt8Ty,        // super_class
1594       PtrToInt8Ty,        // name
1595       LongTy,             // version
1596       LongTy,             // info
1597       LongTy,             // instance_size
1598       IVars->getType(),   // ivars
1599       Methods->getType(), // methods
1600       // These are all filled in by the runtime, so we pretend
1601       PtrTy,              // dtable
1602       PtrTy,              // subclass_list
1603       PtrTy,              // sibling_class
1604       PtrTy,              // protocols
1605       PtrTy,              // gc_object_type
1606       // New ABI:
1607       LongTy,                 // abi_version
1608       IvarOffsets->getType(), // ivar_offsets
1609       Properties->getType(),  // properties
1610       IntPtrTy,               // strong_pointers
1611       IntPtrTy,               // weak_pointers
1612       nullptr);
1613   llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0);
1614   // Fill in the structure
1615   std::vector<llvm::Constant*> Elements;
1616   Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty));
1617   Elements.push_back(SuperClass);
1618   Elements.push_back(MakeConstantString(Name, ".class_name"));
1619   Elements.push_back(Zero);
1620   Elements.push_back(llvm::ConstantInt::get(LongTy, info));
1621   if (isMeta) {
1622     llvm::DataLayout td(&TheModule);
1623     Elements.push_back(
1624         llvm::ConstantInt::get(LongTy,
1625                                td.getTypeSizeInBits(ClassTy) /
1626                                  CGM.getContext().getCharWidth()));
1627   } else
1628     Elements.push_back(InstanceSize);
1629   Elements.push_back(IVars);
1630   Elements.push_back(Methods);
1631   Elements.push_back(NULLPtr);
1632   Elements.push_back(NULLPtr);
1633   Elements.push_back(NULLPtr);
1634   Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy));
1635   Elements.push_back(NULLPtr);
1636   Elements.push_back(llvm::ConstantInt::get(LongTy, 1));
1637   Elements.push_back(IvarOffsets);
1638   Elements.push_back(Properties);
1639   Elements.push_back(StrongIvarBitmap);
1640   Elements.push_back(WeakIvarBitmap);
1641   // Create an instance of the structure
1642   // This is now an externally visible symbol, so that we can speed up class
1643   // messages in the next ABI.  We may already have some weak references to
1644   // this, so check and fix them properly.
1645   std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
1646           std::string(Name));
1647   llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
1648   llvm::Constant *Class = MakeGlobal(ClassTy, Elements, ClassSym,
1649           llvm::GlobalValue::ExternalLinkage);
1650   if (ClassRef) {
1651       ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
1652                   ClassRef->getType()));
1653       ClassRef->removeFromParent();
1654       Class->setName(ClassSym);
1655   }
1656   return Class;
1657 }
1658
1659 llvm::Constant *CGObjCGNU::
1660 GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames,
1661                            ArrayRef<llvm::Constant *> MethodTypes) {
1662   // Get the method structure type.
1663   llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(
1664     PtrToInt8Ty, // Really a selector, but the runtime does the casting for us.
1665     PtrToInt8Ty,
1666     nullptr);
1667   std::vector<llvm::Constant*> Methods;
1668   std::vector<llvm::Constant*> Elements;
1669   for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) {
1670     Elements.clear();
1671     Elements.push_back(MethodNames[i]);
1672     Elements.push_back(MethodTypes[i]);
1673     Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements));
1674   }
1675   llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy,
1676       MethodNames.size());
1677   llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy,
1678                                                    Methods);
1679   llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get(
1680       IntTy, ObjCMethodArrayTy, nullptr);
1681   Methods.clear();
1682   Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size()));
1683   Methods.push_back(Array);
1684   return MakeGlobal(ObjCMethodDescListTy, Methods, ".objc_method_list");
1685 }
1686
1687 // Create the protocol list structure used in classes, categories and so on
1688 llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){
1689   llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
1690       Protocols.size());
1691   llvm::StructType *ProtocolListTy = llvm::StructType::get(
1692       PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1693       SizeTy,
1694       ProtocolArrayTy,
1695       nullptr);
1696   std::vector<llvm::Constant*> Elements;
1697   for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
1698       iter != endIter ; iter++) {
1699     llvm::Constant *protocol = nullptr;
1700     llvm::StringMap<llvm::Constant*>::iterator value =
1701       ExistingProtocols.find(*iter);
1702     if (value == ExistingProtocols.end()) {
1703       protocol = GenerateEmptyProtocol(*iter);
1704     } else {
1705       protocol = value->getValue();
1706     }
1707     llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol,
1708                                                            PtrToInt8Ty);
1709     Elements.push_back(Ptr);
1710   }
1711   llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1712       Elements);
1713   Elements.clear();
1714   Elements.push_back(NULLPtr);
1715   Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size()));
1716   Elements.push_back(ProtocolArray);
1717   return MakeGlobal(ProtocolListTy, Elements, ".objc_protocol_list");
1718 }
1719
1720 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
1721                                             const ObjCProtocolDecl *PD) {
1722   llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()];
1723   llvm::Type *T =
1724     CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
1725   return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
1726 }
1727
1728 llvm::Constant *CGObjCGNU::GenerateEmptyProtocol(
1729   const std::string &ProtocolName) {
1730   SmallVector<std::string, 0> EmptyStringVector;
1731   SmallVector<llvm::Constant*, 0> EmptyConstantVector;
1732
1733   llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector);
1734   llvm::Constant *MethodList =
1735     GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector);
1736   // Protocols are objects containing lists of the methods implemented and
1737   // protocols adopted.
1738   llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1739       PtrToInt8Ty,
1740       ProtocolList->getType(),
1741       MethodList->getType(),
1742       MethodList->getType(),
1743       MethodList->getType(),
1744       MethodList->getType(),
1745       nullptr);
1746   std::vector<llvm::Constant*> Elements;
1747   // The isa pointer must be set to a magic number so the runtime knows it's
1748   // the correct layout.
1749   Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1750         llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1751   Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1752   Elements.push_back(ProtocolList);
1753   Elements.push_back(MethodList);
1754   Elements.push_back(MethodList);
1755   Elements.push_back(MethodList);
1756   Elements.push_back(MethodList);
1757   return MakeGlobal(ProtocolTy, Elements, ".objc_protocol");
1758 }
1759
1760 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
1761   ASTContext &Context = CGM.getContext();
1762   std::string ProtocolName = PD->getNameAsString();
1763   
1764   // Use the protocol definition, if there is one.
1765   if (const ObjCProtocolDecl *Def = PD->getDefinition())
1766     PD = Def;
1767
1768   SmallVector<std::string, 16> Protocols;
1769   for (const auto *PI : PD->protocols())
1770     Protocols.push_back(PI->getNameAsString());
1771   SmallVector<llvm::Constant*, 16> InstanceMethodNames;
1772   SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1773   SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames;
1774   SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes;
1775   for (const auto *I : PD->instance_methods()) {
1776     std::string TypeStr;
1777     Context.getObjCEncodingForMethodDecl(I, TypeStr);
1778     if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1779       OptionalInstanceMethodNames.push_back(
1780           MakeConstantString(I->getSelector().getAsString()));
1781       OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1782     } else {
1783       InstanceMethodNames.push_back(
1784           MakeConstantString(I->getSelector().getAsString()));
1785       InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1786     }
1787   }
1788   // Collect information about class methods:
1789   SmallVector<llvm::Constant*, 16> ClassMethodNames;
1790   SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1791   SmallVector<llvm::Constant*, 16> OptionalClassMethodNames;
1792   SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes;
1793   for (const auto *I : PD->class_methods()) {
1794     std::string TypeStr;
1795     Context.getObjCEncodingForMethodDecl(I,TypeStr);
1796     if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1797       OptionalClassMethodNames.push_back(
1798           MakeConstantString(I->getSelector().getAsString()));
1799       OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr));
1800     } else {
1801       ClassMethodNames.push_back(
1802           MakeConstantString(I->getSelector().getAsString()));
1803       ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1804     }
1805   }
1806
1807   llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1808   llvm::Constant *InstanceMethodList =
1809     GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes);
1810   llvm::Constant *ClassMethodList =
1811     GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes);
1812   llvm::Constant *OptionalInstanceMethodList =
1813     GenerateProtocolMethodList(OptionalInstanceMethodNames,
1814             OptionalInstanceMethodTypes);
1815   llvm::Constant *OptionalClassMethodList =
1816     GenerateProtocolMethodList(OptionalClassMethodNames,
1817             OptionalClassMethodTypes);
1818
1819   // Property metadata: name, attributes, isSynthesized, setter name, setter
1820   // types, getter name, getter types.
1821   // The isSynthesized value is always set to 0 in a protocol.  It exists to
1822   // simplify the runtime library by allowing it to use the same data
1823   // structures for protocol metadata everywhere.
1824   llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1825           PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
1826           PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
1827   std::vector<llvm::Constant*> Properties;
1828   std::vector<llvm::Constant*> OptionalProperties;
1829
1830   // Add all of the property methods need adding to the method list and to the
1831   // property metadata list.
1832   for (auto *property : PD->properties()) {
1833     std::vector<llvm::Constant*> Fields;
1834
1835     Fields.push_back(MakePropertyEncodingString(property, nullptr));
1836     PushPropertyAttributes(Fields, property);
1837
1838     if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1839       std::string TypeStr;
1840       Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1841       llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1842       InstanceMethodTypes.push_back(TypeEncoding);
1843       Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1844       Fields.push_back(TypeEncoding);
1845     } else {
1846       Fields.push_back(NULLPtr);
1847       Fields.push_back(NULLPtr);
1848     }
1849     if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1850       std::string TypeStr;
1851       Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1852       llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1853       InstanceMethodTypes.push_back(TypeEncoding);
1854       Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1855       Fields.push_back(TypeEncoding);
1856     } else {
1857       Fields.push_back(NULLPtr);
1858       Fields.push_back(NULLPtr);
1859     }
1860     if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) {
1861       OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1862     } else {
1863       Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1864     }
1865   }
1866   llvm::Constant *PropertyArray = llvm::ConstantArray::get(
1867       llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties);
1868   llvm::Constant* PropertyListInitFields[] =
1869     {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1870
1871   llvm::Constant *PropertyListInit =
1872       llvm::ConstantStruct::getAnon(PropertyListInitFields);
1873   llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule,
1874       PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage,
1875       PropertyListInit, ".objc_property_list");
1876
1877   llvm::Constant *OptionalPropertyArray =
1878       llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy,
1879           OptionalProperties.size()) , OptionalProperties);
1880   llvm::Constant* OptionalPropertyListInitFields[] = {
1881       llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr,
1882       OptionalPropertyArray };
1883
1884   llvm::Constant *OptionalPropertyListInit =
1885       llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields);
1886   llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule,
1887           OptionalPropertyListInit->getType(), false,
1888           llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit,
1889           ".objc_property_list");
1890
1891   // Protocols are objects containing lists of the methods implemented and
1892   // protocols adopted.
1893   llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1894       PtrToInt8Ty,
1895       ProtocolList->getType(),
1896       InstanceMethodList->getType(),
1897       ClassMethodList->getType(),
1898       OptionalInstanceMethodList->getType(),
1899       OptionalClassMethodList->getType(),
1900       PropertyList->getType(),
1901       OptionalPropertyList->getType(),
1902       nullptr);
1903   std::vector<llvm::Constant*> Elements;
1904   // The isa pointer must be set to a magic number so the runtime knows it's
1905   // the correct layout.
1906   Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1907         llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1908   Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1909   Elements.push_back(ProtocolList);
1910   Elements.push_back(InstanceMethodList);
1911   Elements.push_back(ClassMethodList);
1912   Elements.push_back(OptionalInstanceMethodList);
1913   Elements.push_back(OptionalClassMethodList);
1914   Elements.push_back(PropertyList);
1915   Elements.push_back(OptionalPropertyList);
1916   ExistingProtocols[ProtocolName] =
1917     llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements,
1918           ".objc_protocol"), IdTy);
1919 }
1920 void CGObjCGNU::GenerateProtocolHolderCategory() {
1921   // Collect information about instance methods
1922   SmallVector<Selector, 1> MethodSels;
1923   SmallVector<llvm::Constant*, 1> MethodTypes;
1924
1925   std::vector<llvm::Constant*> Elements;
1926   const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
1927   const std::string CategoryName = "AnotherHack";
1928   Elements.push_back(MakeConstantString(CategoryName));
1929   Elements.push_back(MakeConstantString(ClassName));
1930   // Instance method list
1931   Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1932           ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy));
1933   // Class method list
1934   Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1935           ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy));
1936   // Protocol list
1937   llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy,
1938       ExistingProtocols.size());
1939   llvm::StructType *ProtocolListTy = llvm::StructType::get(
1940       PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1941       SizeTy,
1942       ProtocolArrayTy,
1943       nullptr);
1944   std::vector<llvm::Constant*> ProtocolElements;
1945   for (llvm::StringMapIterator<llvm::Constant*> iter =
1946        ExistingProtocols.begin(), endIter = ExistingProtocols.end();
1947        iter != endIter ; iter++) {
1948     llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(),
1949             PtrTy);
1950     ProtocolElements.push_back(Ptr);
1951   }
1952   llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1953       ProtocolElements);
1954   ProtocolElements.clear();
1955   ProtocolElements.push_back(NULLPtr);
1956   ProtocolElements.push_back(llvm::ConstantInt::get(LongTy,
1957               ExistingProtocols.size()));
1958   ProtocolElements.push_back(ProtocolArray);
1959   Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy,
1960                   ProtocolElements, ".objc_protocol_list"), PtrTy));
1961   Categories.push_back(llvm::ConstantExpr::getBitCast(
1962         MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1963             PtrTy, PtrTy, PtrTy, nullptr), Elements), PtrTy));
1964 }
1965
1966 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
1967 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
1968 /// bits set to their values, LSB first, while larger ones are stored in a
1969 /// structure of this / form:
1970 /// 
1971 /// struct { int32_t length; int32_t values[length]; };
1972 ///
1973 /// The values in the array are stored in host-endian format, with the least
1974 /// significant bit being assumed to come first in the bitfield.  Therefore, a
1975 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
1976 /// bitfield / with the 63rd bit set will be 1<<64.
1977 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
1978   int bitCount = bits.size();
1979   int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
1980   if (bitCount < ptrBits) {
1981     uint64_t val = 1;
1982     for (int i=0 ; i<bitCount ; ++i) {
1983       if (bits[i]) val |= 1ULL<<(i+1);
1984     }
1985     return llvm::ConstantInt::get(IntPtrTy, val);
1986   }
1987   SmallVector<llvm::Constant *, 8> values;
1988   int v=0;
1989   while (v < bitCount) {
1990     int32_t word = 0;
1991     for (int i=0 ; (i<32) && (v<bitCount)  ; ++i) {
1992       if (bits[v]) word |= 1<<i;
1993       v++;
1994     }
1995     values.push_back(llvm::ConstantInt::get(Int32Ty, word));
1996   }
1997   llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size());
1998   llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values);
1999   llvm::Constant *fields[2] = {
2000       llvm::ConstantInt::get(Int32Ty, values.size()),
2001       array };
2002   llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy,
2003         nullptr), fields);
2004   llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
2005   return ptr;
2006 }
2007
2008 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
2009   std::string ClassName = OCD->getClassInterface()->getNameAsString();
2010   std::string CategoryName = OCD->getNameAsString();
2011   // Collect information about instance methods
2012   SmallVector<Selector, 16> InstanceMethodSels;
2013   SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2014   for (const auto *I : OCD->instance_methods()) {
2015     InstanceMethodSels.push_back(I->getSelector());
2016     std::string TypeStr;
2017     CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2018     InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2019   }
2020
2021   // Collect information about class methods
2022   SmallVector<Selector, 16> ClassMethodSels;
2023   SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2024   for (const auto *I : OCD->class_methods()) {
2025     ClassMethodSels.push_back(I->getSelector());
2026     std::string TypeStr;
2027     CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2028     ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2029   }
2030
2031   // Collect the names of referenced protocols
2032   SmallVector<std::string, 16> Protocols;
2033   const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
2034   const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
2035   for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
2036        E = Protos.end(); I != E; ++I)
2037     Protocols.push_back((*I)->getNameAsString());
2038
2039   std::vector<llvm::Constant*> Elements;
2040   Elements.push_back(MakeConstantString(CategoryName));
2041   Elements.push_back(MakeConstantString(ClassName));
2042   // Instance method list
2043   Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2044           ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes,
2045           false), PtrTy));
2046   // Class method list
2047   Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2048           ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true),
2049         PtrTy));
2050   // Protocol list
2051   Elements.push_back(llvm::ConstantExpr::getBitCast(
2052         GenerateProtocolList(Protocols), PtrTy));
2053   Categories.push_back(llvm::ConstantExpr::getBitCast(
2054         MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
2055             PtrTy, PtrTy, PtrTy, nullptr), Elements), PtrTy));
2056 }
2057
2058 llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID,
2059         SmallVectorImpl<Selector> &InstanceMethodSels,
2060         SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) {
2061   ASTContext &Context = CGM.getContext();
2062   // Property metadata: name, attributes, attributes2, padding1, padding2,
2063   // setter name, setter types, getter name, getter types.
2064   llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
2065           PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
2066           PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
2067   std::vector<llvm::Constant*> Properties;
2068
2069   // Add all of the property methods need adding to the method list and to the
2070   // property metadata list.
2071   for (auto *propertyImpl : OID->property_impls()) {
2072     std::vector<llvm::Constant*> Fields;
2073     ObjCPropertyDecl *property = propertyImpl->getPropertyDecl();
2074     bool isSynthesized = (propertyImpl->getPropertyImplementation() == 
2075         ObjCPropertyImplDecl::Synthesize);
2076     bool isDynamic = (propertyImpl->getPropertyImplementation() == 
2077         ObjCPropertyImplDecl::Dynamic);
2078
2079     Fields.push_back(MakePropertyEncodingString(property, OID));
2080     PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
2081     if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
2082       std::string TypeStr;
2083       Context.getObjCEncodingForMethodDecl(getter,TypeStr);
2084       llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2085       if (isSynthesized) {
2086         InstanceMethodTypes.push_back(TypeEncoding);
2087         InstanceMethodSels.push_back(getter->getSelector());
2088       }
2089       Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
2090       Fields.push_back(TypeEncoding);
2091     } else {
2092       Fields.push_back(NULLPtr);
2093       Fields.push_back(NULLPtr);
2094     }
2095     if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
2096       std::string TypeStr;
2097       Context.getObjCEncodingForMethodDecl(setter,TypeStr);
2098       llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2099       if (isSynthesized) {
2100         InstanceMethodTypes.push_back(TypeEncoding);
2101         InstanceMethodSels.push_back(setter->getSelector());
2102       }
2103       Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
2104       Fields.push_back(TypeEncoding);
2105     } else {
2106       Fields.push_back(NULLPtr);
2107       Fields.push_back(NULLPtr);
2108     }
2109     Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
2110   }
2111   llvm::ArrayType *PropertyArrayTy =
2112       llvm::ArrayType::get(PropertyMetadataTy, Properties.size());
2113   llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy,
2114           Properties);
2115   llvm::Constant* PropertyListInitFields[] =
2116     {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
2117
2118   llvm::Constant *PropertyListInit =
2119       llvm::ConstantStruct::getAnon(PropertyListInitFields);
2120   return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false,
2121           llvm::GlobalValue::InternalLinkage, PropertyListInit,
2122           ".objc_property_list");
2123 }
2124
2125 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
2126   // Get the class declaration for which the alias is specified.
2127   ObjCInterfaceDecl *ClassDecl =
2128     const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
2129   std::string ClassName = ClassDecl->getNameAsString();
2130   std::string AliasName = OAD->getNameAsString();
2131   ClassAliases.push_back(ClassAliasPair(ClassName,AliasName));
2132 }
2133
2134 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
2135   ASTContext &Context = CGM.getContext();
2136
2137   // Get the superclass name.
2138   const ObjCInterfaceDecl * SuperClassDecl =
2139     OID->getClassInterface()->getSuperClass();
2140   std::string SuperClassName;
2141   if (SuperClassDecl) {
2142     SuperClassName = SuperClassDecl->getNameAsString();
2143     EmitClassRef(SuperClassName);
2144   }
2145
2146   // Get the class name
2147   ObjCInterfaceDecl *ClassDecl =
2148     const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
2149   std::string ClassName = ClassDecl->getNameAsString();
2150   // Emit the symbol that is used to generate linker errors if this class is
2151   // referenced in other modules but not declared.
2152   std::string classSymbolName = "__objc_class_name_" + ClassName;
2153   if (llvm::GlobalVariable *symbol =
2154       TheModule.getGlobalVariable(classSymbolName)) {
2155     symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
2156   } else {
2157     new llvm::GlobalVariable(TheModule, LongTy, false,
2158     llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0),
2159     classSymbolName);
2160   }
2161
2162   // Get the size of instances.
2163   int instanceSize = 
2164     Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
2165
2166   // Collect information about instance variables.
2167   SmallVector<llvm::Constant*, 16> IvarNames;
2168   SmallVector<llvm::Constant*, 16> IvarTypes;
2169   SmallVector<llvm::Constant*, 16> IvarOffsets;
2170
2171   std::vector<llvm::Constant*> IvarOffsetValues;
2172   SmallVector<bool, 16> WeakIvars;
2173   SmallVector<bool, 16> StrongIvars;
2174
2175   int superInstanceSize = !SuperClassDecl ? 0 :
2176     Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
2177   // For non-fragile ivars, set the instance size to 0 - {the size of just this
2178   // class}.  The runtime will then set this to the correct value on load.
2179   if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2180     instanceSize = 0 - (instanceSize - superInstanceSize);
2181   }
2182
2183   for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2184        IVD = IVD->getNextIvar()) {
2185       // Store the name
2186       IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
2187       // Get the type encoding for this ivar
2188       std::string TypeStr;
2189       Context.getObjCEncodingForType(IVD->getType(), TypeStr);
2190       IvarTypes.push_back(MakeConstantString(TypeStr));
2191       // Get the offset
2192       uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
2193       uint64_t Offset = BaseOffset;
2194       if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2195         Offset = BaseOffset - superInstanceSize;
2196       }
2197       llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
2198       // Create the direct offset value
2199       std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
2200           IVD->getNameAsString();
2201       llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
2202       if (OffsetVar) {
2203         OffsetVar->setInitializer(OffsetValue);
2204         // If this is the real definition, change its linkage type so that
2205         // different modules will use this one, rather than their private
2206         // copy.
2207         OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
2208       } else
2209         OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
2210           false, llvm::GlobalValue::ExternalLinkage,
2211           OffsetValue,
2212           "__objc_ivar_offset_value_" + ClassName +"." +
2213           IVD->getNameAsString());
2214       IvarOffsets.push_back(OffsetValue);
2215       IvarOffsetValues.push_back(OffsetVar);
2216       Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
2217       switch (lt) {
2218         case Qualifiers::OCL_Strong:
2219           StrongIvars.push_back(true);
2220           WeakIvars.push_back(false);
2221           break;
2222         case Qualifiers::OCL_Weak:
2223           StrongIvars.push_back(false);
2224           WeakIvars.push_back(true);
2225           break;
2226         default:
2227           StrongIvars.push_back(false);
2228           WeakIvars.push_back(false);
2229       }
2230   }
2231   llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
2232   llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
2233   llvm::GlobalVariable *IvarOffsetArray =
2234     MakeGlobalArray(PtrToIntTy, IvarOffsetValues, ".ivar.offsets");
2235
2236
2237   // Collect information about instance methods
2238   SmallVector<Selector, 16> InstanceMethodSels;
2239   SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2240   for (const auto *I : OID->instance_methods()) {
2241     InstanceMethodSels.push_back(I->getSelector());
2242     std::string TypeStr;
2243     Context.getObjCEncodingForMethodDecl(I,TypeStr);
2244     InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2245   }
2246
2247   llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels,
2248           InstanceMethodTypes);
2249
2250
2251   // Collect information about class methods
2252   SmallVector<Selector, 16> ClassMethodSels;
2253   SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2254   for (const auto *I : OID->class_methods()) {
2255     ClassMethodSels.push_back(I->getSelector());
2256     std::string TypeStr;
2257     Context.getObjCEncodingForMethodDecl(I,TypeStr);
2258     ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2259   }
2260   // Collect the names of referenced protocols
2261   SmallVector<std::string, 16> Protocols;
2262   for (const auto *I : ClassDecl->protocols())
2263     Protocols.push_back(I->getNameAsString());
2264
2265   // Get the superclass pointer.
2266   llvm::Constant *SuperClass;
2267   if (!SuperClassName.empty()) {
2268     SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
2269   } else {
2270     SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2271   }
2272   // Empty vector used to construct empty method lists
2273   SmallVector<llvm::Constant*, 1>  empty;
2274   // Generate the method and instance variable lists
2275   llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
2276       InstanceMethodSels, InstanceMethodTypes, false);
2277   llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
2278       ClassMethodSels, ClassMethodTypes, true);
2279   llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
2280       IvarOffsets);
2281   // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
2282   // we emit a symbol containing the offset for each ivar in the class.  This
2283   // allows code compiled for the non-Fragile ABI to inherit from code compiled
2284   // for the legacy ABI, without causing problems.  The converse is also
2285   // possible, but causes all ivar accesses to be fragile.
2286
2287   // Offset pointer for getting at the correct field in the ivar list when
2288   // setting up the alias.  These are: The base address for the global, the
2289   // ivar array (second field), the ivar in this list (set for each ivar), and
2290   // the offset (third field in ivar structure)
2291   llvm::Type *IndexTy = Int32Ty;
2292   llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
2293       llvm::ConstantInt::get(IndexTy, 1), nullptr,
2294       llvm::ConstantInt::get(IndexTy, 2) };
2295
2296   unsigned ivarIndex = 0;
2297   for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2298        IVD = IVD->getNextIvar()) {
2299       const std::string Name = "__objc_ivar_offset_" + ClassName + '.'
2300           + IVD->getNameAsString();
2301       offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
2302       // Get the correct ivar field
2303       llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
2304           cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
2305           offsetPointerIndexes);
2306       // Get the existing variable, if one exists.
2307       llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
2308       if (offset) {
2309         offset->setInitializer(offsetValue);
2310         // If this is the real definition, change its linkage type so that
2311         // different modules will use this one, rather than their private
2312         // copy.
2313         offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
2314       } else {
2315         // Add a new alias if there isn't one already.
2316         offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(),
2317                 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
2318         (void) offset; // Silence dead store warning.
2319       }
2320       ++ivarIndex;
2321   }
2322   llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
2323   //Generate metaclass for class methods
2324   llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr,
2325       NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], GenerateIvarList(
2326         empty, empty, empty), ClassMethodList, NULLPtr,
2327       NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true);
2328
2329   // Generate the class structure
2330   llvm::Constant *ClassStruct =
2331     GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L,
2332                            ClassName.c_str(), nullptr,
2333       llvm::ConstantInt::get(LongTy, instanceSize), IvarList,
2334       MethodList, GenerateProtocolList(Protocols), IvarOffsetArray,
2335       Properties, StrongIvarBitmap, WeakIvarBitmap);
2336
2337   // Resolve the class aliases, if they exist.
2338   if (ClassPtrAlias) {
2339     ClassPtrAlias->replaceAllUsesWith(
2340         llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
2341     ClassPtrAlias->eraseFromParent();
2342     ClassPtrAlias = nullptr;
2343   }
2344   if (MetaClassPtrAlias) {
2345     MetaClassPtrAlias->replaceAllUsesWith(
2346         llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
2347     MetaClassPtrAlias->eraseFromParent();
2348     MetaClassPtrAlias = nullptr;
2349   }
2350
2351   // Add class structure to list to be added to the symtab later
2352   ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
2353   Classes.push_back(ClassStruct);
2354 }
2355
2356
2357 llvm::Function *CGObjCGNU::ModuleInitFunction() {
2358   // Only emit an ObjC load function if no Objective-C stuff has been called
2359   if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
2360       ExistingProtocols.empty() && SelectorTable.empty())
2361     return nullptr;
2362
2363   // Add all referenced protocols to a category.
2364   GenerateProtocolHolderCategory();
2365
2366   llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>(
2367           SelectorTy->getElementType());
2368   llvm::Type *SelStructPtrTy = SelectorTy;
2369   if (!SelStructTy) {
2370     SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, nullptr);
2371     SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy);
2372   }
2373
2374   std::vector<llvm::Constant*> Elements;
2375   llvm::Constant *Statics = NULLPtr;
2376   // Generate statics list:
2377   if (!ConstantStrings.empty()) {
2378     llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
2379         ConstantStrings.size() + 1);
2380     ConstantStrings.push_back(NULLPtr);
2381
2382     StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2383
2384     if (StringClass.empty()) StringClass = "NXConstantString";
2385
2386     Elements.push_back(MakeConstantString(StringClass,
2387                 ".objc_static_class_name"));
2388     Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy,
2389        ConstantStrings));
2390     llvm::StructType *StaticsListTy =
2391       llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, nullptr);
2392     llvm::Type *StaticsListPtrTy =
2393       llvm::PointerType::getUnqual(StaticsListTy);
2394     Statics = MakeGlobal(StaticsListTy, Elements, ".objc_statics");
2395     llvm::ArrayType *StaticsListArrayTy =
2396       llvm::ArrayType::get(StaticsListPtrTy, 2);
2397     Elements.clear();
2398     Elements.push_back(Statics);
2399     Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy));
2400     Statics = MakeGlobal(StaticsListArrayTy, Elements, ".objc_statics_ptr");
2401     Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy);
2402   }
2403   // Array of classes, categories, and constant objects
2404   llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty,
2405       Classes.size() + Categories.size()  + 2);
2406   llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy,
2407                                                      llvm::Type::getInt16Ty(VMContext),
2408                                                      llvm::Type::getInt16Ty(VMContext),
2409                                                      ClassListTy, nullptr);
2410
2411   Elements.clear();
2412   // Pointer to an array of selectors used in this module.
2413   std::vector<llvm::Constant*> Selectors;
2414   std::vector<llvm::GlobalAlias*> SelectorAliases;
2415   for (SelectorMap::iterator iter = SelectorTable.begin(),
2416       iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) {
2417
2418     std::string SelNameStr = iter->first.getAsString();
2419     llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name");
2420
2421     SmallVectorImpl<TypedSelector> &Types = iter->second;
2422     for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2423         e = Types.end() ; i!=e ; i++) {
2424
2425       llvm::Constant *SelectorTypeEncoding = NULLPtr;
2426       if (!i->first.empty())
2427         SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types");
2428
2429       Elements.push_back(SelName);
2430       Elements.push_back(SelectorTypeEncoding);
2431       Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2432       Elements.clear();
2433
2434       // Store the selector alias for later replacement
2435       SelectorAliases.push_back(i->second);
2436     }
2437   }
2438   unsigned SelectorCount = Selectors.size();
2439   // NULL-terminate the selector list.  This should not actually be required,
2440   // because the selector list has a length field.  Unfortunately, the GCC
2441   // runtime decides to ignore the length field and expects a NULL terminator,
2442   // and GCC cooperates with this by always setting the length to 0.
2443   Elements.push_back(NULLPtr);
2444   Elements.push_back(NULLPtr);
2445   Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2446   Elements.clear();
2447
2448   // Number of static selectors
2449   Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount));
2450   llvm::GlobalVariable *SelectorList =
2451       MakeGlobalArray(SelStructTy, Selectors, ".objc_selector_list");
2452   Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList,
2453     SelStructPtrTy));
2454
2455   // Now that all of the static selectors exist, create pointers to them.
2456   for (unsigned int i=0 ; i<SelectorCount ; i++) {
2457
2458     llvm::Constant *Idxs[] = {Zeros[0],
2459       llvm::ConstantInt::get(Int32Ty, i), Zeros[0]};
2460     // FIXME: We're generating redundant loads and stores here!
2461     llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(
2462         SelectorList->getValueType(), SelectorList, makeArrayRef(Idxs, 2));
2463     // If selectors are defined as an opaque type, cast the pointer to this
2464     // type.
2465     SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy);
2466     SelectorAliases[i]->replaceAllUsesWith(SelPtr);
2467     SelectorAliases[i]->eraseFromParent();
2468   }
2469
2470   // Number of classes defined.
2471   Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2472         Classes.size()));
2473   // Number of categories defined
2474   Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2475         Categories.size()));
2476   // Create an array of classes, then categories, then static object instances
2477   Classes.insert(Classes.end(), Categories.begin(), Categories.end());
2478   //  NULL-terminated list of static object instances (mainly constant strings)
2479   Classes.push_back(Statics);
2480   Classes.push_back(NULLPtr);
2481   llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes);
2482   Elements.push_back(ClassList);
2483   // Construct the symbol table
2484   llvm::Constant *SymTab= MakeGlobal(SymTabTy, Elements);
2485
2486   // The symbol table is contained in a module which has some version-checking
2487   // constants
2488   llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy,
2489       PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy), 
2490       (RuntimeVersion >= 10) ? IntTy : nullptr, nullptr);
2491   Elements.clear();
2492   // Runtime version, used for ABI compatibility checking.
2493   Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion));
2494   // sizeof(ModuleTy)
2495   llvm::DataLayout td(&TheModule);
2496   Elements.push_back(
2497     llvm::ConstantInt::get(LongTy,
2498                            td.getTypeSizeInBits(ModuleTy) /
2499                              CGM.getContext().getCharWidth()));
2500
2501   // The path to the source file where this module was declared
2502   SourceManager &SM = CGM.getContext().getSourceManager();
2503   const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
2504   std::string path =
2505     std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName();
2506   Elements.push_back(MakeConstantString(path, ".objc_source_file_name"));
2507   Elements.push_back(SymTab);
2508
2509   if (RuntimeVersion >= 10)
2510     switch (CGM.getLangOpts().getGC()) {
2511       case LangOptions::GCOnly:
2512         Elements.push_back(llvm::ConstantInt::get(IntTy, 2));
2513         break;
2514       case LangOptions::NonGC:
2515         if (CGM.getLangOpts().ObjCAutoRefCount)
2516           Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2517         else
2518           Elements.push_back(llvm::ConstantInt::get(IntTy, 0));
2519         break;
2520       case LangOptions::HybridGC:
2521           Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2522         break;
2523     }
2524
2525   llvm::Value *Module = MakeGlobal(ModuleTy, Elements);
2526
2527   // Create the load function calling the runtime entry point with the module
2528   // structure
2529   llvm::Function * LoadFunction = llvm::Function::Create(
2530       llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
2531       llvm::GlobalValue::InternalLinkage, ".objc_load_function",
2532       &TheModule);
2533   llvm::BasicBlock *EntryBB =
2534       llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
2535   CGBuilderTy Builder(VMContext);
2536   Builder.SetInsertPoint(EntryBB);
2537
2538   llvm::FunctionType *FT =
2539     llvm::FunctionType::get(Builder.getVoidTy(),
2540                             llvm::PointerType::getUnqual(ModuleTy), true);
2541   llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
2542   Builder.CreateCall(Register, Module);
2543
2544   if (!ClassAliases.empty()) {
2545     llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
2546     llvm::FunctionType *RegisterAliasTy =
2547       llvm::FunctionType::get(Builder.getVoidTy(),
2548                               ArgTypes, false);
2549     llvm::Function *RegisterAlias = llvm::Function::Create(
2550       RegisterAliasTy,
2551       llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
2552       &TheModule);
2553     llvm::BasicBlock *AliasBB =
2554       llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
2555     llvm::BasicBlock *NoAliasBB =
2556       llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
2557
2558     // Branch based on whether the runtime provided class_registerAlias_np()
2559     llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
2560             llvm::Constant::getNullValue(RegisterAlias->getType()));
2561     Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
2562
2563     // The true branch (has alias registration function):
2564     Builder.SetInsertPoint(AliasBB);
2565     // Emit alias registration calls:
2566     for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
2567        iter != ClassAliases.end(); ++iter) {
2568        llvm::Constant *TheClass =
2569          TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(),
2570             true);
2571        if (TheClass) {
2572          TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
2573          Builder.CreateCall(RegisterAlias,
2574                             {TheClass, MakeConstantString(iter->second)});
2575        }
2576     }
2577     // Jump to end:
2578     Builder.CreateBr(NoAliasBB);
2579
2580     // Missing alias registration function, just return from the function:
2581     Builder.SetInsertPoint(NoAliasBB);
2582   }
2583   Builder.CreateRetVoid();
2584
2585   return LoadFunction;
2586 }
2587
2588 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
2589                                           const ObjCContainerDecl *CD) {
2590   const ObjCCategoryImplDecl *OCD =
2591     dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
2592   StringRef CategoryName = OCD ? OCD->getName() : "";
2593   StringRef ClassName = CD->getName();
2594   Selector MethodName = OMD->getSelector();
2595   bool isClassMethod = !OMD->isInstanceMethod();
2596
2597   CodeGenTypes &Types = CGM.getTypes();
2598   llvm::FunctionType *MethodTy =
2599     Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
2600   std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
2601       MethodName, isClassMethod);
2602
2603   llvm::Function *Method
2604     = llvm::Function::Create(MethodTy,
2605                              llvm::GlobalValue::InternalLinkage,
2606                              FunctionName,
2607                              &TheModule);
2608   return Method;
2609 }
2610
2611 llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
2612   return GetPropertyFn;
2613 }
2614
2615 llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
2616   return SetPropertyFn;
2617 }
2618
2619 llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
2620                                                            bool copy) {
2621   return nullptr;
2622 }
2623
2624 llvm::Constant *CGObjCGNU::GetGetStructFunction() {
2625   return GetStructPropertyFn;
2626 }
2627 llvm::Constant *CGObjCGNU::GetSetStructFunction() {
2628   return SetStructPropertyFn;
2629 }
2630 llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() {
2631   return nullptr;
2632 }
2633 llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() {
2634   return nullptr;
2635 }
2636
2637 llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
2638   return EnumerationMutationFn;
2639 }
2640
2641 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
2642                                      const ObjCAtSynchronizedStmt &S) {
2643   EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
2644 }
2645
2646
2647 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
2648                             const ObjCAtTryStmt &S) {
2649   // Unlike the Apple non-fragile runtimes, which also uses
2650   // unwind-based zero cost exceptions, the GNU Objective C runtime's
2651   // EH support isn't a veneer over C++ EH.  Instead, exception
2652   // objects are created by objc_exception_throw and destroyed by
2653   // the personality function; this avoids the need for bracketing
2654   // catch handlers with calls to __blah_begin_catch/__blah_end_catch
2655   // (or even _Unwind_DeleteException), but probably doesn't
2656   // interoperate very well with foreign exceptions.
2657   //
2658   // In Objective-C++ mode, we actually emit something equivalent to the C++
2659   // exception handler. 
2660   EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
2661   return ;
2662 }
2663
2664 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
2665                               const ObjCAtThrowStmt &S,
2666                               bool ClearInsertionPoint) {
2667   llvm::Value *ExceptionAsObject;
2668
2669   if (const Expr *ThrowExpr = S.getThrowExpr()) {
2670     llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
2671     ExceptionAsObject = Exception;
2672   } else {
2673     assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
2674            "Unexpected rethrow outside @catch block.");
2675     ExceptionAsObject = CGF.ObjCEHValueStack.back();
2676   }
2677   ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
2678   llvm::CallSite Throw =
2679       CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
2680   Throw.setDoesNotReturn();
2681   CGF.Builder.CreateUnreachable();
2682   if (ClearInsertionPoint)
2683     CGF.Builder.ClearInsertionPoint();
2684 }
2685
2686 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
2687                                           llvm::Value *AddrWeakObj) {
2688   CGBuilderTy &B = CGF.Builder;
2689   AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
2690   return B.CreateCall(WeakReadFn, AddrWeakObj);
2691 }
2692
2693 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
2694                                    llvm::Value *src, llvm::Value *dst) {
2695   CGBuilderTy &B = CGF.Builder;
2696   src = EnforceType(B, src, IdTy);
2697   dst = EnforceType(B, dst, PtrToIdTy);
2698   B.CreateCall(WeakAssignFn, {src, dst});
2699 }
2700
2701 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
2702                                      llvm::Value *src, llvm::Value *dst,
2703                                      bool threadlocal) {
2704   CGBuilderTy &B = CGF.Builder;
2705   src = EnforceType(B, src, IdTy);
2706   dst = EnforceType(B, dst, PtrToIdTy);
2707   // FIXME. Add threadloca assign API
2708   assert(!threadlocal && "EmitObjCGlobalAssign - Threal Local API NYI");
2709   B.CreateCall(GlobalAssignFn, {src, dst});
2710 }
2711
2712 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
2713                                    llvm::Value *src, llvm::Value *dst,
2714                                    llvm::Value *ivarOffset) {
2715   CGBuilderTy &B = CGF.Builder;
2716   src = EnforceType(B, src, IdTy);
2717   dst = EnforceType(B, dst, IdTy);
2718   B.CreateCall(IvarAssignFn, {src, dst, ivarOffset});
2719 }
2720
2721 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
2722                                          llvm::Value *src, llvm::Value *dst) {
2723   CGBuilderTy &B = CGF.Builder;
2724   src = EnforceType(B, src, IdTy);
2725   dst = EnforceType(B, dst, PtrToIdTy);
2726   B.CreateCall(StrongCastAssignFn, {src, dst});
2727 }
2728
2729 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
2730                                          llvm::Value *DestPtr,
2731                                          llvm::Value *SrcPtr,
2732                                          llvm::Value *Size) {
2733   CGBuilderTy &B = CGF.Builder;
2734   DestPtr = EnforceType(B, DestPtr, PtrTy);
2735   SrcPtr = EnforceType(B, SrcPtr, PtrTy);
2736
2737   B.CreateCall(MemMoveFn, {DestPtr, SrcPtr, Size});
2738 }
2739
2740 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
2741                               const ObjCInterfaceDecl *ID,
2742                               const ObjCIvarDecl *Ivar) {
2743   const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
2744     + '.' + Ivar->getNameAsString();
2745   // Emit the variable and initialize it with what we think the correct value
2746   // is.  This allows code compiled with non-fragile ivars to work correctly
2747   // when linked against code which isn't (most of the time).
2748   llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
2749   if (!IvarOffsetPointer) {
2750     // This will cause a run-time crash if we accidentally use it.  A value of
2751     // 0 would seem more sensible, but will silently overwrite the isa pointer
2752     // causing a great deal of confusion.
2753     uint64_t Offset = -1;
2754     // We can't call ComputeIvarBaseOffset() here if we have the
2755     // implementation, because it will create an invalid ASTRecordLayout object
2756     // that we are then stuck with forever, so we only initialize the ivar
2757     // offset variable with a guess if we only have the interface.  The
2758     // initializer will be reset later anyway, when we are generating the class
2759     // description.
2760     if (!CGM.getContext().getObjCImplementation(
2761               const_cast<ObjCInterfaceDecl *>(ID)))
2762       Offset = ComputeIvarBaseOffset(CGM, ID, Ivar);
2763
2764     llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset,
2765                              /*isSigned*/true);
2766     // Don't emit the guess in non-PIC code because the linker will not be able
2767     // to replace it with the real version for a library.  In non-PIC code you
2768     // must compile with the fragile ABI if you want to use ivars from a
2769     // GCC-compiled class.
2770     if (CGM.getLangOpts().PICLevel || CGM.getLangOpts().PIELevel) {
2771       llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule,
2772             Int32Ty, false,
2773             llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess");
2774       IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2775             IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage,
2776             IvarOffsetGV, Name);
2777     } else {
2778       IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2779               llvm::Type::getInt32PtrTy(VMContext), false,
2780               llvm::GlobalValue::ExternalLinkage, nullptr, Name);
2781     }
2782   }
2783   return IvarOffsetPointer;
2784 }
2785
2786 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
2787                                        QualType ObjectTy,
2788                                        llvm::Value *BaseValue,
2789                                        const ObjCIvarDecl *Ivar,
2790                                        unsigned CVRQualifiers) {
2791   const ObjCInterfaceDecl *ID =
2792     ObjectTy->getAs<ObjCObjectType>()->getInterface();
2793   return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
2794                                   EmitIvarOffset(CGF, ID, Ivar));
2795 }
2796
2797 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
2798                                                   const ObjCInterfaceDecl *OID,
2799                                                   const ObjCIvarDecl *OIVD) {
2800   for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
2801        next = next->getNextIvar()) {
2802     if (OIVD == next)
2803       return OID;
2804   }
2805
2806   // Otherwise check in the super class.
2807   if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
2808     return FindIvarInterface(Context, Super, OIVD);
2809
2810   return nullptr;
2811 }
2812
2813 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
2814                          const ObjCInterfaceDecl *Interface,
2815                          const ObjCIvarDecl *Ivar) {
2816   if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2817     Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
2818     if (RuntimeVersion < 10)
2819       return CGF.Builder.CreateZExtOrBitCast(
2820           CGF.Builder.CreateLoad(CGF.Builder.CreateLoad(
2821                   ObjCIvarOffsetVariable(Interface, Ivar), false, "ivar")),
2822           PtrDiffTy);
2823     std::string name = "__objc_ivar_offset_value_" +
2824       Interface->getNameAsString() +"." + Ivar->getNameAsString();
2825     llvm::Value *Offset = TheModule.getGlobalVariable(name);
2826     if (!Offset)
2827       Offset = new llvm::GlobalVariable(TheModule, IntTy,
2828           false, llvm::GlobalValue::LinkOnceAnyLinkage,
2829           llvm::Constant::getNullValue(IntTy), name);
2830     Offset = CGF.Builder.CreateLoad(Offset);
2831     if (Offset->getType() != PtrDiffTy)
2832       Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
2833     return Offset;
2834   }
2835   uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
2836   return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
2837 }
2838
2839 CGObjCRuntime *
2840 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
2841   switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
2842   case ObjCRuntime::GNUstep:
2843     return new CGObjCGNUstep(CGM);
2844
2845   case ObjCRuntime::GCC:
2846     return new CGObjCGCC(CGM);
2847
2848   case ObjCRuntime::ObjFW:
2849     return new CGObjCObjFW(CGM);
2850
2851   case ObjCRuntime::FragileMacOSX:
2852   case ObjCRuntime::MacOSX:
2853   case ObjCRuntime::iOS:
2854     llvm_unreachable("these runtimes are not GNU runtimes");
2855   }
2856   llvm_unreachable("bad runtime");
2857 }