]> granicus.if.org Git - clang/blob - lib/AST/Expr.cpp
Fix handling of preincrement on bit-fields. This gives a bit-field in C++, but
[clang] / lib / AST / Expr.cpp
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/Mangle.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Lexer.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstring>
37 using namespace clang;
38
39 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
40   const Expr *E = ignoreParenBaseCasts();
41
42   QualType DerivedType = E->getType();
43   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
44     DerivedType = PTy->getPointeeType();
45
46   if (DerivedType->isDependentType())
47     return nullptr;
48
49   const RecordType *Ty = DerivedType->castAs<RecordType>();
50   Decl *D = Ty->getDecl();
51   return cast<CXXRecordDecl>(D);
52 }
53
54 const Expr *Expr::skipRValueSubobjectAdjustments(
55     SmallVectorImpl<const Expr *> &CommaLHSs,
56     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
57   const Expr *E = this;
58   while (true) {
59     E = E->IgnoreParens();
60
61     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
62       if ((CE->getCastKind() == CK_DerivedToBase ||
63            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
64           E->getType()->isRecordType()) {
65         E = CE->getSubExpr();
66         CXXRecordDecl *Derived
67           = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
68         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
69         continue;
70       }
71
72       if (CE->getCastKind() == CK_NoOp) {
73         E = CE->getSubExpr();
74         continue;
75       }
76     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
77       if (!ME->isArrow()) {
78         assert(ME->getBase()->getType()->isRecordType());
79         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
80           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
81             E = ME->getBase();
82             Adjustments.push_back(SubobjectAdjustment(Field));
83             continue;
84           }
85         }
86       }
87     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
88       if (BO->isPtrMemOp()) {
89         assert(BO->getRHS()->isRValue());
90         E = BO->getLHS();
91         const MemberPointerType *MPT =
92           BO->getRHS()->getType()->getAs<MemberPointerType>();
93         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
94         continue;
95       } else if (BO->getOpcode() == BO_Comma) {
96         CommaLHSs.push_back(BO->getLHS());
97         E = BO->getRHS();
98         continue;
99       }
100     }
101
102     // Nothing changed.
103     break;
104   }
105   return E;
106 }
107
108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
109 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
110 /// but also int expressions which are produced by things like comparisons in
111 /// C.
112 bool Expr::isKnownToHaveBooleanValue() const {
113   const Expr *E = IgnoreParens();
114
115   // If this value has _Bool type, it is obvious 0/1.
116   if (E->getType()->isBooleanType()) return true;
117   // If this is a non-scalar-integer type, we don't care enough to try. 
118   if (!E->getType()->isIntegralOrEnumerationType()) return false;
119   
120   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
121     switch (UO->getOpcode()) {
122     case UO_Plus:
123       return UO->getSubExpr()->isKnownToHaveBooleanValue();
124     case UO_LNot:
125       return true;
126     default:
127       return false;
128     }
129   }
130   
131   // Only look through implicit casts.  If the user writes
132   // '(int) (a && b)' treat it as an arbitrary int.
133   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
134     return CE->getSubExpr()->isKnownToHaveBooleanValue();
135   
136   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
137     switch (BO->getOpcode()) {
138     default: return false;
139     case BO_LT:   // Relational operators.
140     case BO_GT:
141     case BO_LE:
142     case BO_GE:
143     case BO_EQ:   // Equality operators.
144     case BO_NE:
145     case BO_LAnd: // AND operator.
146     case BO_LOr:  // Logical OR operator.
147       return true;
148         
149     case BO_And:  // Bitwise AND operator.
150     case BO_Xor:  // Bitwise XOR operator.
151     case BO_Or:   // Bitwise OR operator.
152       // Handle things like (x==2)|(y==12).
153       return BO->getLHS()->isKnownToHaveBooleanValue() &&
154              BO->getRHS()->isKnownToHaveBooleanValue();
155         
156     case BO_Comma:
157     case BO_Assign:
158       return BO->getRHS()->isKnownToHaveBooleanValue();
159     }
160   }
161   
162   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
163     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
164            CO->getFalseExpr()->isKnownToHaveBooleanValue();
165   
166   return false;
167 }
168
169 // Amusing macro metaprogramming hack: check whether a class provides
170 // a more specific implementation of getExprLoc().
171 //
172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
173 namespace {
174   /// This implementation is used when a class provides a custom
175   /// implementation of getExprLoc.
176   template <class E, class T>
177   SourceLocation getExprLocImpl(const Expr *expr,
178                                 SourceLocation (T::*v)() const) {
179     return static_cast<const E*>(expr)->getExprLoc();
180   }
181
182   /// This implementation is used when a class doesn't provide
183   /// a custom implementation of getExprLoc.  Overload resolution
184   /// should pick it over the implementation above because it's
185   /// more specialized according to function template partial ordering.
186   template <class E>
187   SourceLocation getExprLocImpl(const Expr *expr,
188                                 SourceLocation (Expr::*v)() const) {
189     return static_cast<const E*>(expr)->getLocStart();
190   }
191 }
192
193 SourceLocation Expr::getExprLoc() const {
194   switch (getStmtClass()) {
195   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
196 #define ABSTRACT_STMT(type)
197 #define STMT(type, base) \
198   case Stmt::type##Class: break;
199 #define EXPR(type, base) \
200   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
201 #include "clang/AST/StmtNodes.inc"
202   }
203   llvm_unreachable("unknown expression kind");
204 }
205
206 //===----------------------------------------------------------------------===//
207 // Primary Expressions.
208 //===----------------------------------------------------------------------===//
209
210 /// \brief Compute the type-, value-, and instantiation-dependence of a 
211 /// declaration reference
212 /// based on the declaration being referenced.
213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
214                                      QualType T, bool &TypeDependent,
215                                      bool &ValueDependent,
216                                      bool &InstantiationDependent) {
217   TypeDependent = false;
218   ValueDependent = false;
219   InstantiationDependent = false;
220
221   // (TD) C++ [temp.dep.expr]p3:
222   //   An id-expression is type-dependent if it contains:
223   //
224   // and 
225   //
226   // (VD) C++ [temp.dep.constexpr]p2:
227   //  An identifier is value-dependent if it is:
228   
229   //  (TD)  - an identifier that was declared with dependent type
230   //  (VD)  - a name declared with a dependent type,
231   if (T->isDependentType()) {
232     TypeDependent = true;
233     ValueDependent = true;
234     InstantiationDependent = true;
235     return;
236   } else if (T->isInstantiationDependentType()) {
237     InstantiationDependent = true;
238   }
239   
240   //  (TD)  - a conversion-function-id that specifies a dependent type
241   if (D->getDeclName().getNameKind() 
242                                 == DeclarationName::CXXConversionFunctionName) {
243     QualType T = D->getDeclName().getCXXNameType();
244     if (T->isDependentType()) {
245       TypeDependent = true;
246       ValueDependent = true;
247       InstantiationDependent = true;
248       return;
249     }
250     
251     if (T->isInstantiationDependentType())
252       InstantiationDependent = true;
253   }
254   
255   //  (VD)  - the name of a non-type template parameter,
256   if (isa<NonTypeTemplateParmDecl>(D)) {
257     ValueDependent = true;
258     InstantiationDependent = true;
259     return;
260   }
261   
262   //  (VD) - a constant with integral or enumeration type and is
263   //         initialized with an expression that is value-dependent.
264   //  (VD) - a constant with literal type and is initialized with an
265   //         expression that is value-dependent [C++11].
266   //  (VD) - FIXME: Missing from the standard:
267   //       -  an entity with reference type and is initialized with an
268   //          expression that is value-dependent [C++11]
269   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
270     if ((Ctx.getLangOpts().CPlusPlus11 ?
271            Var->getType()->isLiteralType(Ctx) :
272            Var->getType()->isIntegralOrEnumerationType()) &&
273         (Var->getType().isConstQualified() ||
274          Var->getType()->isReferenceType())) {
275       if (const Expr *Init = Var->getAnyInitializer())
276         if (Init->isValueDependent()) {
277           ValueDependent = true;
278           InstantiationDependent = true;
279         }
280     }
281
282     // (VD) - FIXME: Missing from the standard: 
283     //      -  a member function or a static data member of the current 
284     //         instantiation
285     if (Var->isStaticDataMember() && 
286         Var->getDeclContext()->isDependentContext()) {
287       ValueDependent = true;
288       InstantiationDependent = true;
289       TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
290       if (TInfo->getType()->isIncompleteArrayType())
291         TypeDependent = true;
292     }
293     
294     return;
295   }
296   
297   // (VD) - FIXME: Missing from the standard: 
298   //      -  a member function or a static data member of the current 
299   //         instantiation
300   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
301     ValueDependent = true;
302     InstantiationDependent = true;
303   }
304 }
305
306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
307   bool TypeDependent = false;
308   bool ValueDependent = false;
309   bool InstantiationDependent = false;
310   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
311                            ValueDependent, InstantiationDependent);
312   
313   // (TD) C++ [temp.dep.expr]p3:
314   //   An id-expression is type-dependent if it contains:
315   //
316   // and 
317   //
318   // (VD) C++ [temp.dep.constexpr]p2:
319   //  An identifier is value-dependent if it is:
320   if (!TypeDependent && !ValueDependent &&
321       hasExplicitTemplateArgs() && 
322       TemplateSpecializationType::anyDependentTemplateArguments(
323                                                             getTemplateArgs(), 
324                                                        getNumTemplateArgs(),
325                                                       InstantiationDependent)) {
326     TypeDependent = true;
327     ValueDependent = true;
328     InstantiationDependent = true;
329   }
330   
331   ExprBits.TypeDependent = TypeDependent;
332   ExprBits.ValueDependent = ValueDependent;
333   ExprBits.InstantiationDependent = InstantiationDependent;
334   
335   // Is the declaration a parameter pack?
336   if (getDecl()->isParameterPack())
337     ExprBits.ContainsUnexpandedParameterPack = true;
338 }
339
340 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
341                          NestedNameSpecifierLoc QualifierLoc,
342                          SourceLocation TemplateKWLoc,
343                          ValueDecl *D, bool RefersToEnclosingLocal,
344                          const DeclarationNameInfo &NameInfo,
345                          NamedDecl *FoundD,
346                          const TemplateArgumentListInfo *TemplateArgs,
347                          QualType T, ExprValueKind VK)
348   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
349     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
350   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
351   if (QualifierLoc)
352     getInternalQualifierLoc() = QualifierLoc;
353   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
354   if (FoundD)
355     getInternalFoundDecl() = FoundD;
356   DeclRefExprBits.HasTemplateKWAndArgsInfo
357     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
358   DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
359   if (TemplateArgs) {
360     bool Dependent = false;
361     bool InstantiationDependent = false;
362     bool ContainsUnexpandedParameterPack = false;
363     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
364                                                Dependent,
365                                                InstantiationDependent,
366                                                ContainsUnexpandedParameterPack);
367     if (InstantiationDependent)
368       setInstantiationDependent(true);
369   } else if (TemplateKWLoc.isValid()) {
370     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
371   }
372   DeclRefExprBits.HadMultipleCandidates = 0;
373
374   computeDependence(Ctx);
375 }
376
377 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
378                                  NestedNameSpecifierLoc QualifierLoc,
379                                  SourceLocation TemplateKWLoc,
380                                  ValueDecl *D,
381                                  bool RefersToEnclosingLocal,
382                                  SourceLocation NameLoc,
383                                  QualType T,
384                                  ExprValueKind VK,
385                                  NamedDecl *FoundD,
386                                  const TemplateArgumentListInfo *TemplateArgs) {
387   return Create(Context, QualifierLoc, TemplateKWLoc, D,
388                 RefersToEnclosingLocal,
389                 DeclarationNameInfo(D->getDeclName(), NameLoc),
390                 T, VK, FoundD, TemplateArgs);
391 }
392
393 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
394                                  NestedNameSpecifierLoc QualifierLoc,
395                                  SourceLocation TemplateKWLoc,
396                                  ValueDecl *D,
397                                  bool RefersToEnclosingLocal,
398                                  const DeclarationNameInfo &NameInfo,
399                                  QualType T,
400                                  ExprValueKind VK,
401                                  NamedDecl *FoundD,
402                                  const TemplateArgumentListInfo *TemplateArgs) {
403   // Filter out cases where the found Decl is the same as the value refenenced.
404   if (D == FoundD)
405     FoundD = nullptr;
406
407   std::size_t Size = sizeof(DeclRefExpr);
408   if (QualifierLoc)
409     Size += sizeof(NestedNameSpecifierLoc);
410   if (FoundD)
411     Size += sizeof(NamedDecl *);
412   if (TemplateArgs)
413     Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
414   else if (TemplateKWLoc.isValid())
415     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
416
417   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
418   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
419                                RefersToEnclosingLocal,
420                                NameInfo, FoundD, TemplateArgs, T, VK);
421 }
422
423 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
424                                       bool HasQualifier,
425                                       bool HasFoundDecl,
426                                       bool HasTemplateKWAndArgsInfo,
427                                       unsigned NumTemplateArgs) {
428   std::size_t Size = sizeof(DeclRefExpr);
429   if (HasQualifier)
430     Size += sizeof(NestedNameSpecifierLoc);
431   if (HasFoundDecl)
432     Size += sizeof(NamedDecl *);
433   if (HasTemplateKWAndArgsInfo)
434     Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
435
436   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
437   return new (Mem) DeclRefExpr(EmptyShell());
438 }
439
440 SourceLocation DeclRefExpr::getLocStart() const {
441   if (hasQualifier())
442     return getQualifierLoc().getBeginLoc();
443   return getNameInfo().getLocStart();
444 }
445 SourceLocation DeclRefExpr::getLocEnd() const {
446   if (hasExplicitTemplateArgs())
447     return getRAngleLoc();
448   return getNameInfo().getLocEnd();
449 }
450
451 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
452 // expr" policy instead.
453 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
454   ASTContext &Context = CurrentDecl->getASTContext();
455
456   if (IT == PredefinedExpr::FuncDName) {
457     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
458       std::unique_ptr<MangleContext> MC;
459       MC.reset(Context.createMangleContext());
460
461       if (MC->shouldMangleDeclName(ND)) {
462         SmallString<256> Buffer;
463         llvm::raw_svector_ostream Out(Buffer);
464         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
465           MC->mangleCXXCtor(CD, Ctor_Base, Out);
466         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
467           MC->mangleCXXDtor(DD, Dtor_Base, Out);
468         else
469           MC->mangleName(ND, Out);
470
471         Out.flush();
472         if (!Buffer.empty() && Buffer.front() == '\01')
473           return Buffer.substr(1);
474         return Buffer.str();
475       } else
476         return ND->getIdentifier()->getName();
477     }
478     return "";
479   }
480   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
481     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
482       return FD->getNameAsString();
483
484     SmallString<256> Name;
485     llvm::raw_svector_ostream Out(Name);
486
487     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
488       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
489         Out << "virtual ";
490       if (MD->isStatic())
491         Out << "static ";
492     }
493
494     PrintingPolicy Policy(Context.getLangOpts());
495     std::string Proto;
496     llvm::raw_string_ostream POut(Proto);
497
498     const FunctionDecl *Decl = FD;
499     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
500       Decl = Pattern;
501     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
502     const FunctionProtoType *FT = nullptr;
503     if (FD->hasWrittenPrototype())
504       FT = dyn_cast<FunctionProtoType>(AFT);
505
506     if (IT == FuncSig) {
507       switch (FT->getCallConv()) {
508       case CC_C: POut << "__cdecl "; break;
509       case CC_X86StdCall: POut << "__stdcall "; break;
510       case CC_X86FastCall: POut << "__fastcall "; break;
511       case CC_X86ThisCall: POut << "__thiscall "; break;
512       // Only bother printing the conventions that MSVC knows about.
513       default: break;
514       }
515     }
516
517     FD->printQualifiedName(POut, Policy);
518
519     POut << "(";
520     if (FT) {
521       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
522         if (i) POut << ", ";
523         POut << Decl->getParamDecl(i)->getType().stream(Policy);
524       }
525
526       if (FT->isVariadic()) {
527         if (FD->getNumParams()) POut << ", ";
528         POut << "...";
529       }
530     }
531     POut << ")";
532
533     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
534       const FunctionType *FT = MD->getType()->castAs<FunctionType>();
535       if (FT->isConst())
536         POut << " const";
537       if (FT->isVolatile())
538         POut << " volatile";
539       RefQualifierKind Ref = MD->getRefQualifier();
540       if (Ref == RQ_LValue)
541         POut << " &";
542       else if (Ref == RQ_RValue)
543         POut << " &&";
544     }
545
546     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
547     SpecsTy Specs;
548     const DeclContext *Ctx = FD->getDeclContext();
549     while (Ctx && isa<NamedDecl>(Ctx)) {
550       const ClassTemplateSpecializationDecl *Spec
551                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
552       if (Spec && !Spec->isExplicitSpecialization())
553         Specs.push_back(Spec);
554       Ctx = Ctx->getParent();
555     }
556
557     std::string TemplateParams;
558     llvm::raw_string_ostream TOut(TemplateParams);
559     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
560          I != E; ++I) {
561       const TemplateParameterList *Params 
562                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
563       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
564       assert(Params->size() == Args.size());
565       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
566         StringRef Param = Params->getParam(i)->getName();
567         if (Param.empty()) continue;
568         TOut << Param << " = ";
569         Args.get(i).print(Policy, TOut);
570         TOut << ", ";
571       }
572     }
573
574     FunctionTemplateSpecializationInfo *FSI 
575                                           = FD->getTemplateSpecializationInfo();
576     if (FSI && !FSI->isExplicitSpecialization()) {
577       const TemplateParameterList* Params 
578                                   = FSI->getTemplate()->getTemplateParameters();
579       const TemplateArgumentList* Args = FSI->TemplateArguments;
580       assert(Params->size() == Args->size());
581       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
582         StringRef Param = Params->getParam(i)->getName();
583         if (Param.empty()) continue;
584         TOut << Param << " = ";
585         Args->get(i).print(Policy, TOut);
586         TOut << ", ";
587       }
588     }
589
590     TOut.flush();
591     if (!TemplateParams.empty()) {
592       // remove the trailing comma and space
593       TemplateParams.resize(TemplateParams.size() - 2);
594       POut << " [" << TemplateParams << "]";
595     }
596
597     POut.flush();
598
599     // Print "auto" for all deduced return types. This includes C++1y return
600     // type deduction and lambdas. For trailing return types resolve the
601     // decltype expression. Otherwise print the real type when this is
602     // not a constructor or destructor.
603     if ((isa<CXXMethodDecl>(FD) &&
604          cast<CXXMethodDecl>(FD)->getParent()->isLambda()) ||
605         (FT && FT->getReturnType()->getAs<AutoType>()))
606       Proto = "auto " + Proto;
607     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
608       FT->getReturnType()
609           ->getAs<DecltypeType>()
610           ->getUnderlyingType()
611           .getAsStringInternal(Proto, Policy);
612     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
613       AFT->getReturnType().getAsStringInternal(Proto, Policy);
614
615     Out << Proto;
616
617     Out.flush();
618     return Name.str().str();
619   }
620   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
621     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
622       // Skip to its enclosing function or method, but not its enclosing
623       // CapturedDecl.
624       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
625         const Decl *D = Decl::castFromDeclContext(DC);
626         return ComputeName(IT, D);
627       }
628     llvm_unreachable("CapturedDecl not inside a function or method");
629   }
630   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
631     SmallString<256> Name;
632     llvm::raw_svector_ostream Out(Name);
633     Out << (MD->isInstanceMethod() ? '-' : '+');
634     Out << '[';
635
636     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
637     // a null check to avoid a crash.
638     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
639       Out << *ID;
640
641     if (const ObjCCategoryImplDecl *CID =
642         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
643       Out << '(' << *CID << ')';
644
645     Out <<  ' ';
646     MD->getSelector().print(Out);
647     Out <<  ']';
648
649     Out.flush();
650     return Name.str().str();
651   }
652   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
653     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
654     return "top level";
655   }
656   return "";
657 }
658
659 void APNumericStorage::setIntValue(const ASTContext &C,
660                                    const llvm::APInt &Val) {
661   if (hasAllocation())
662     C.Deallocate(pVal);
663
664   BitWidth = Val.getBitWidth();
665   unsigned NumWords = Val.getNumWords();
666   const uint64_t* Words = Val.getRawData();
667   if (NumWords > 1) {
668     pVal = new (C) uint64_t[NumWords];
669     std::copy(Words, Words + NumWords, pVal);
670   } else if (NumWords == 1)
671     VAL = Words[0];
672   else
673     VAL = 0;
674 }
675
676 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
677                                QualType type, SourceLocation l)
678   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
679          false, false),
680     Loc(l) {
681   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
682   assert(V.getBitWidth() == C.getIntWidth(type) &&
683          "Integer type is not the correct size for constant.");
684   setValue(C, V);
685 }
686
687 IntegerLiteral *
688 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
689                        QualType type, SourceLocation l) {
690   return new (C) IntegerLiteral(C, V, type, l);
691 }
692
693 IntegerLiteral *
694 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
695   return new (C) IntegerLiteral(Empty);
696 }
697
698 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
699                                  bool isexact, QualType Type, SourceLocation L)
700   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
701          false, false), Loc(L) {
702   setSemantics(V.getSemantics());
703   FloatingLiteralBits.IsExact = isexact;
704   setValue(C, V);
705 }
706
707 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
708   : Expr(FloatingLiteralClass, Empty) {
709   setRawSemantics(IEEEhalf);
710   FloatingLiteralBits.IsExact = false;
711 }
712
713 FloatingLiteral *
714 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
715                         bool isexact, QualType Type, SourceLocation L) {
716   return new (C) FloatingLiteral(C, V, isexact, Type, L);
717 }
718
719 FloatingLiteral *
720 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
721   return new (C) FloatingLiteral(C, Empty);
722 }
723
724 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
725   switch(FloatingLiteralBits.Semantics) {
726   case IEEEhalf:
727     return llvm::APFloat::IEEEhalf;
728   case IEEEsingle:
729     return llvm::APFloat::IEEEsingle;
730   case IEEEdouble:
731     return llvm::APFloat::IEEEdouble;
732   case x87DoubleExtended:
733     return llvm::APFloat::x87DoubleExtended;
734   case IEEEquad:
735     return llvm::APFloat::IEEEquad;
736   case PPCDoubleDouble:
737     return llvm::APFloat::PPCDoubleDouble;
738   }
739   llvm_unreachable("Unrecognised floating semantics");
740 }
741
742 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
743   if (&Sem == &llvm::APFloat::IEEEhalf)
744     FloatingLiteralBits.Semantics = IEEEhalf;
745   else if (&Sem == &llvm::APFloat::IEEEsingle)
746     FloatingLiteralBits.Semantics = IEEEsingle;
747   else if (&Sem == &llvm::APFloat::IEEEdouble)
748     FloatingLiteralBits.Semantics = IEEEdouble;
749   else if (&Sem == &llvm::APFloat::x87DoubleExtended)
750     FloatingLiteralBits.Semantics = x87DoubleExtended;
751   else if (&Sem == &llvm::APFloat::IEEEquad)
752     FloatingLiteralBits.Semantics = IEEEquad;
753   else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
754     FloatingLiteralBits.Semantics = PPCDoubleDouble;
755   else
756     llvm_unreachable("Unknown floating semantics");
757 }
758
759 /// getValueAsApproximateDouble - This returns the value as an inaccurate
760 /// double.  Note that this may cause loss of precision, but is useful for
761 /// debugging dumps, etc.
762 double FloatingLiteral::getValueAsApproximateDouble() const {
763   llvm::APFloat V = getValue();
764   bool ignored;
765   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
766             &ignored);
767   return V.convertToDouble();
768 }
769
770 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
771   int CharByteWidth = 0;
772   switch(k) {
773     case Ascii:
774     case UTF8:
775       CharByteWidth = target.getCharWidth();
776       break;
777     case Wide:
778       CharByteWidth = target.getWCharWidth();
779       break;
780     case UTF16:
781       CharByteWidth = target.getChar16Width();
782       break;
783     case UTF32:
784       CharByteWidth = target.getChar32Width();
785       break;
786   }
787   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
788   CharByteWidth /= 8;
789   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
790          && "character byte widths supported are 1, 2, and 4 only");
791   return CharByteWidth;
792 }
793
794 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
795                                      StringKind Kind, bool Pascal, QualType Ty,
796                                      const SourceLocation *Loc,
797                                      unsigned NumStrs) {
798   assert(C.getAsConstantArrayType(Ty) &&
799          "StringLiteral must be of constant array type!");
800
801   // Allocate enough space for the StringLiteral plus an array of locations for
802   // any concatenated string tokens.
803   void *Mem = C.Allocate(sizeof(StringLiteral)+
804                          sizeof(SourceLocation)*(NumStrs-1),
805                          llvm::alignOf<StringLiteral>());
806   StringLiteral *SL = new (Mem) StringLiteral(Ty);
807
808   // OPTIMIZE: could allocate this appended to the StringLiteral.
809   SL->setString(C,Str,Kind,Pascal);
810
811   SL->TokLocs[0] = Loc[0];
812   SL->NumConcatenated = NumStrs;
813
814   if (NumStrs != 1)
815     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
816   return SL;
817 }
818
819 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
820                                           unsigned NumStrs) {
821   void *Mem = C.Allocate(sizeof(StringLiteral)+
822                          sizeof(SourceLocation)*(NumStrs-1),
823                          llvm::alignOf<StringLiteral>());
824   StringLiteral *SL = new (Mem) StringLiteral(QualType());
825   SL->CharByteWidth = 0;
826   SL->Length = 0;
827   SL->NumConcatenated = NumStrs;
828   return SL;
829 }
830
831 void StringLiteral::outputString(raw_ostream &OS) const {
832   switch (getKind()) {
833   case Ascii: break; // no prefix.
834   case Wide:  OS << 'L'; break;
835   case UTF8:  OS << "u8"; break;
836   case UTF16: OS << 'u'; break;
837   case UTF32: OS << 'U'; break;
838   }
839   OS << '"';
840   static const char Hex[] = "0123456789ABCDEF";
841
842   unsigned LastSlashX = getLength();
843   for (unsigned I = 0, N = getLength(); I != N; ++I) {
844     switch (uint32_t Char = getCodeUnit(I)) {
845     default:
846       // FIXME: Convert UTF-8 back to codepoints before rendering.
847
848       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
849       // Leave invalid surrogates alone; we'll use \x for those.
850       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 
851           Char <= 0xdbff) {
852         uint32_t Trail = getCodeUnit(I + 1);
853         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
854           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
855           ++I;
856         }
857       }
858
859       if (Char > 0xff) {
860         // If this is a wide string, output characters over 0xff using \x
861         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
862         // codepoint: use \x escapes for invalid codepoints.
863         if (getKind() == Wide ||
864             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
865           // FIXME: Is this the best way to print wchar_t?
866           OS << "\\x";
867           int Shift = 28;
868           while ((Char >> Shift) == 0)
869             Shift -= 4;
870           for (/**/; Shift >= 0; Shift -= 4)
871             OS << Hex[(Char >> Shift) & 15];
872           LastSlashX = I;
873           break;
874         }
875
876         if (Char > 0xffff)
877           OS << "\\U00"
878              << Hex[(Char >> 20) & 15]
879              << Hex[(Char >> 16) & 15];
880         else
881           OS << "\\u";
882         OS << Hex[(Char >> 12) & 15]
883            << Hex[(Char >>  8) & 15]
884            << Hex[(Char >>  4) & 15]
885            << Hex[(Char >>  0) & 15];
886         break;
887       }
888
889       // If we used \x... for the previous character, and this character is a
890       // hexadecimal digit, prevent it being slurped as part of the \x.
891       if (LastSlashX + 1 == I) {
892         switch (Char) {
893           case '0': case '1': case '2': case '3': case '4':
894           case '5': case '6': case '7': case '8': case '9':
895           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
896           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
897             OS << "\"\"";
898         }
899       }
900
901       assert(Char <= 0xff &&
902              "Characters above 0xff should already have been handled.");
903
904       if (isPrintable(Char))
905         OS << (char)Char;
906       else  // Output anything hard as an octal escape.
907         OS << '\\'
908            << (char)('0' + ((Char >> 6) & 7))
909            << (char)('0' + ((Char >> 3) & 7))
910            << (char)('0' + ((Char >> 0) & 7));
911       break;
912     // Handle some common non-printable cases to make dumps prettier.
913     case '\\': OS << "\\\\"; break;
914     case '"': OS << "\\\""; break;
915     case '\n': OS << "\\n"; break;
916     case '\t': OS << "\\t"; break;
917     case '\a': OS << "\\a"; break;
918     case '\b': OS << "\\b"; break;
919     }
920   }
921   OS << '"';
922 }
923
924 void StringLiteral::setString(const ASTContext &C, StringRef Str,
925                               StringKind Kind, bool IsPascal) {
926   //FIXME: we assume that the string data comes from a target that uses the same
927   // code unit size and endianess for the type of string.
928   this->Kind = Kind;
929   this->IsPascal = IsPascal;
930   
931   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
932   assert((Str.size()%CharByteWidth == 0)
933          && "size of data must be multiple of CharByteWidth");
934   Length = Str.size()/CharByteWidth;
935
936   switch(CharByteWidth) {
937     case 1: {
938       char *AStrData = new (C) char[Length];
939       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
940       StrData.asChar = AStrData;
941       break;
942     }
943     case 2: {
944       uint16_t *AStrData = new (C) uint16_t[Length];
945       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
946       StrData.asUInt16 = AStrData;
947       break;
948     }
949     case 4: {
950       uint32_t *AStrData = new (C) uint32_t[Length];
951       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
952       StrData.asUInt32 = AStrData;
953       break;
954     }
955     default:
956       assert(false && "unsupported CharByteWidth");
957   }
958 }
959
960 /// getLocationOfByte - Return a source location that points to the specified
961 /// byte of this string literal.
962 ///
963 /// Strings are amazingly complex.  They can be formed from multiple tokens and
964 /// can have escape sequences in them in addition to the usual trigraph and
965 /// escaped newline business.  This routine handles this complexity.
966 ///
967 SourceLocation StringLiteral::
968 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
969                   const LangOptions &Features, const TargetInfo &Target) const {
970   assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
971          "Only narrow string literals are currently supported");
972
973   // Loop over all of the tokens in this string until we find the one that
974   // contains the byte we're looking for.
975   unsigned TokNo = 0;
976   while (1) {
977     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
978     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
979     
980     // Get the spelling of the string so that we can get the data that makes up
981     // the string literal, not the identifier for the macro it is potentially
982     // expanded through.
983     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
984     
985     // Re-lex the token to get its length and original spelling.
986     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
987     bool Invalid = false;
988     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
989     if (Invalid)
990       return StrTokSpellingLoc;
991     
992     const char *StrData = Buffer.data()+LocInfo.second;
993     
994     // Create a lexer starting at the beginning of this token.
995     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
996                    Buffer.begin(), StrData, Buffer.end());
997     Token TheTok;
998     TheLexer.LexFromRawLexer(TheTok);
999     
1000     // Use the StringLiteralParser to compute the length of the string in bytes.
1001     StringLiteralParser SLP(TheTok, SM, Features, Target);
1002     unsigned TokNumBytes = SLP.GetStringLength();
1003     
1004     // If the byte is in this token, return the location of the byte.
1005     if (ByteNo < TokNumBytes ||
1006         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1007       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 
1008       
1009       // Now that we know the offset of the token in the spelling, use the
1010       // preprocessor to get the offset in the original source.
1011       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1012     }
1013     
1014     // Move to the next string token.
1015     ++TokNo;
1016     ByteNo -= TokNumBytes;
1017   }
1018 }
1019
1020
1021
1022 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1023 /// corresponds to, e.g. "sizeof" or "[pre]++".
1024 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1025   switch (Op) {
1026   case UO_PostInc: return "++";
1027   case UO_PostDec: return "--";
1028   case UO_PreInc:  return "++";
1029   case UO_PreDec:  return "--";
1030   case UO_AddrOf:  return "&";
1031   case UO_Deref:   return "*";
1032   case UO_Plus:    return "+";
1033   case UO_Minus:   return "-";
1034   case UO_Not:     return "~";
1035   case UO_LNot:    return "!";
1036   case UO_Real:    return "__real";
1037   case UO_Imag:    return "__imag";
1038   case UO_Extension: return "__extension__";
1039   }
1040   llvm_unreachable("Unknown unary operator");
1041 }
1042
1043 UnaryOperatorKind
1044 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1045   switch (OO) {
1046   default: llvm_unreachable("No unary operator for overloaded function");
1047   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1048   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1049   case OO_Amp:        return UO_AddrOf;
1050   case OO_Star:       return UO_Deref;
1051   case OO_Plus:       return UO_Plus;
1052   case OO_Minus:      return UO_Minus;
1053   case OO_Tilde:      return UO_Not;
1054   case OO_Exclaim:    return UO_LNot;
1055   }
1056 }
1057
1058 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1059   switch (Opc) {
1060   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1061   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1062   case UO_AddrOf: return OO_Amp;
1063   case UO_Deref: return OO_Star;
1064   case UO_Plus: return OO_Plus;
1065   case UO_Minus: return OO_Minus;
1066   case UO_Not: return OO_Tilde;
1067   case UO_LNot: return OO_Exclaim;
1068   default: return OO_None;
1069   }
1070 }
1071
1072
1073 //===----------------------------------------------------------------------===//
1074 // Postfix Operators.
1075 //===----------------------------------------------------------------------===//
1076
1077 CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
1078                    unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
1079                    ExprValueKind VK, SourceLocation rparenloc)
1080   : Expr(SC, t, VK, OK_Ordinary,
1081          fn->isTypeDependent(),
1082          fn->isValueDependent(),
1083          fn->isInstantiationDependent(),
1084          fn->containsUnexpandedParameterPack()),
1085     NumArgs(args.size()) {
1086
1087   SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
1088   SubExprs[FN] = fn;
1089   for (unsigned i = 0; i != args.size(); ++i) {
1090     if (args[i]->isTypeDependent())
1091       ExprBits.TypeDependent = true;
1092     if (args[i]->isValueDependent())
1093       ExprBits.ValueDependent = true;
1094     if (args[i]->isInstantiationDependent())
1095       ExprBits.InstantiationDependent = true;
1096     if (args[i]->containsUnexpandedParameterPack())
1097       ExprBits.ContainsUnexpandedParameterPack = true;
1098
1099     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1100   }
1101
1102   CallExprBits.NumPreArgs = NumPreArgs;
1103   RParenLoc = rparenloc;
1104 }
1105
1106 CallExpr::CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
1107                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
1108   : Expr(CallExprClass, t, VK, OK_Ordinary,
1109          fn->isTypeDependent(),
1110          fn->isValueDependent(),
1111          fn->isInstantiationDependent(),
1112          fn->containsUnexpandedParameterPack()),
1113     NumArgs(args.size()) {
1114
1115   SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
1116   SubExprs[FN] = fn;
1117   for (unsigned i = 0; i != args.size(); ++i) {
1118     if (args[i]->isTypeDependent())
1119       ExprBits.TypeDependent = true;
1120     if (args[i]->isValueDependent())
1121       ExprBits.ValueDependent = true;
1122     if (args[i]->isInstantiationDependent())
1123       ExprBits.InstantiationDependent = true;
1124     if (args[i]->containsUnexpandedParameterPack())
1125       ExprBits.ContainsUnexpandedParameterPack = true;
1126
1127     SubExprs[i+PREARGS_START] = args[i];
1128   }
1129
1130   CallExprBits.NumPreArgs = 0;
1131   RParenLoc = rparenloc;
1132 }
1133
1134 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
1135   : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1136   // FIXME: Why do we allocate this?
1137   SubExprs = new (C) Stmt*[PREARGS_START];
1138   CallExprBits.NumPreArgs = 0;
1139 }
1140
1141 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1142                    EmptyShell Empty)
1143   : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1144   // FIXME: Why do we allocate this?
1145   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1146   CallExprBits.NumPreArgs = NumPreArgs;
1147 }
1148
1149 Decl *CallExpr::getCalleeDecl() {
1150   Expr *CEE = getCallee()->IgnoreParenImpCasts();
1151     
1152   while (SubstNonTypeTemplateParmExpr *NTTP
1153                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1154     CEE = NTTP->getReplacement()->IgnoreParenCasts();
1155   }
1156   
1157   // If we're calling a dereference, look at the pointer instead.
1158   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1159     if (BO->isPtrMemOp())
1160       CEE = BO->getRHS()->IgnoreParenCasts();
1161   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1162     if (UO->getOpcode() == UO_Deref)
1163       CEE = UO->getSubExpr()->IgnoreParenCasts();
1164   }
1165   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1166     return DRE->getDecl();
1167   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1168     return ME->getMemberDecl();
1169
1170   return nullptr;
1171 }
1172
1173 FunctionDecl *CallExpr::getDirectCallee() {
1174   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1175 }
1176
1177 /// setNumArgs - This changes the number of arguments present in this call.
1178 /// Any orphaned expressions are deleted by this, and any new operands are set
1179 /// to null.
1180 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
1181   // No change, just return.
1182   if (NumArgs == getNumArgs()) return;
1183
1184   // If shrinking # arguments, just delete the extras and forgot them.
1185   if (NumArgs < getNumArgs()) {
1186     this->NumArgs = NumArgs;
1187     return;
1188   }
1189
1190   // Otherwise, we are growing the # arguments.  New an bigger argument array.
1191   unsigned NumPreArgs = getNumPreArgs();
1192   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1193   // Copy over args.
1194   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1195     NewSubExprs[i] = SubExprs[i];
1196   // Null out new args.
1197   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1198        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1199     NewSubExprs[i] = nullptr;
1200
1201   if (SubExprs) C.Deallocate(SubExprs);
1202   SubExprs = NewSubExprs;
1203   this->NumArgs = NumArgs;
1204 }
1205
1206 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1207 /// not, return 0.
1208 unsigned CallExpr::getBuiltinCallee() const {
1209   // All simple function calls (e.g. func()) are implicitly cast to pointer to
1210   // function. As a result, we try and obtain the DeclRefExpr from the
1211   // ImplicitCastExpr.
1212   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1213   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1214     return 0;
1215
1216   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1217   if (!DRE)
1218     return 0;
1219
1220   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1221   if (!FDecl)
1222     return 0;
1223
1224   if (!FDecl->getIdentifier())
1225     return 0;
1226
1227   return FDecl->getBuiltinID();
1228 }
1229
1230 bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
1231   if (unsigned BI = getBuiltinCallee())
1232     return Ctx.BuiltinInfo.isUnevaluated(BI);
1233   return false;
1234 }
1235
1236 QualType CallExpr::getCallReturnType() const {
1237   QualType CalleeType = getCallee()->getType();
1238   if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1239     CalleeType = FnTypePtr->getPointeeType();
1240   else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1241     CalleeType = BPT->getPointeeType();
1242   else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1243     // This should never be overloaded and so should never return null.
1244     CalleeType = Expr::findBoundMemberType(getCallee());
1245     
1246   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1247   return FnType->getReturnType();
1248 }
1249
1250 SourceLocation CallExpr::getLocStart() const {
1251   if (isa<CXXOperatorCallExpr>(this))
1252     return cast<CXXOperatorCallExpr>(this)->getLocStart();
1253
1254   SourceLocation begin = getCallee()->getLocStart();
1255   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1256     begin = getArg(0)->getLocStart();
1257   return begin;
1258 }
1259 SourceLocation CallExpr::getLocEnd() const {
1260   if (isa<CXXOperatorCallExpr>(this))
1261     return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1262
1263   SourceLocation end = getRParenLoc();
1264   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1265     end = getArg(getNumArgs() - 1)->getLocEnd();
1266   return end;
1267 }
1268
1269 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1270                                    SourceLocation OperatorLoc,
1271                                    TypeSourceInfo *tsi, 
1272                                    ArrayRef<OffsetOfNode> comps,
1273                                    ArrayRef<Expr*> exprs,
1274                                    SourceLocation RParenLoc) {
1275   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1276                          sizeof(OffsetOfNode) * comps.size() +
1277                          sizeof(Expr*) * exprs.size());
1278
1279   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1280                                 RParenLoc);
1281 }
1282
1283 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1284                                         unsigned numComps, unsigned numExprs) {
1285   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1286                          sizeof(OffsetOfNode) * numComps +
1287                          sizeof(Expr*) * numExprs);
1288   return new (Mem) OffsetOfExpr(numComps, numExprs);
1289 }
1290
1291 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1292                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1293                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1294                            SourceLocation RParenLoc)
1295   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1296          /*TypeDependent=*/false, 
1297          /*ValueDependent=*/tsi->getType()->isDependentType(),
1298          tsi->getType()->isInstantiationDependentType(),
1299          tsi->getType()->containsUnexpandedParameterPack()),
1300     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 
1301     NumComps(comps.size()), NumExprs(exprs.size())
1302 {
1303   for (unsigned i = 0; i != comps.size(); ++i) {
1304     setComponent(i, comps[i]);
1305   }
1306   
1307   for (unsigned i = 0; i != exprs.size(); ++i) {
1308     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1309       ExprBits.ValueDependent = true;
1310     if (exprs[i]->containsUnexpandedParameterPack())
1311       ExprBits.ContainsUnexpandedParameterPack = true;
1312
1313     setIndexExpr(i, exprs[i]);
1314   }
1315 }
1316
1317 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1318   assert(getKind() == Field || getKind() == Identifier);
1319   if (getKind() == Field)
1320     return getField()->getIdentifier();
1321   
1322   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1323 }
1324
1325 MemberExpr *MemberExpr::Create(const ASTContext &C, Expr *base, bool isarrow,
1326                                NestedNameSpecifierLoc QualifierLoc,
1327                                SourceLocation TemplateKWLoc,
1328                                ValueDecl *memberdecl,
1329                                DeclAccessPair founddecl,
1330                                DeclarationNameInfo nameinfo,
1331                                const TemplateArgumentListInfo *targs,
1332                                QualType ty,
1333                                ExprValueKind vk,
1334                                ExprObjectKind ok) {
1335   std::size_t Size = sizeof(MemberExpr);
1336
1337   bool hasQualOrFound = (QualifierLoc ||
1338                          founddecl.getDecl() != memberdecl ||
1339                          founddecl.getAccess() != memberdecl->getAccess());
1340   if (hasQualOrFound)
1341     Size += sizeof(MemberNameQualifier);
1342
1343   if (targs)
1344     Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1345   else if (TemplateKWLoc.isValid())
1346     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1347
1348   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1349   MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1350                                        ty, vk, ok);
1351
1352   if (hasQualOrFound) {
1353     // FIXME: Wrong. We should be looking at the member declaration we found.
1354     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1355       E->setValueDependent(true);
1356       E->setTypeDependent(true);
1357       E->setInstantiationDependent(true);
1358     } 
1359     else if (QualifierLoc && 
1360              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 
1361       E->setInstantiationDependent(true);
1362     
1363     E->HasQualifierOrFoundDecl = true;
1364
1365     MemberNameQualifier *NQ = E->getMemberQualifier();
1366     NQ->QualifierLoc = QualifierLoc;
1367     NQ->FoundDecl = founddecl;
1368   }
1369
1370   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1371
1372   if (targs) {
1373     bool Dependent = false;
1374     bool InstantiationDependent = false;
1375     bool ContainsUnexpandedParameterPack = false;
1376     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1377                                                   Dependent,
1378                                                   InstantiationDependent,
1379                                              ContainsUnexpandedParameterPack);
1380     if (InstantiationDependent)
1381       E->setInstantiationDependent(true);
1382   } else if (TemplateKWLoc.isValid()) {
1383     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1384   }
1385
1386   return E;
1387 }
1388
1389 SourceLocation MemberExpr::getLocStart() const {
1390   if (isImplicitAccess()) {
1391     if (hasQualifier())
1392       return getQualifierLoc().getBeginLoc();
1393     return MemberLoc;
1394   }
1395
1396   // FIXME: We don't want this to happen. Rather, we should be able to
1397   // detect all kinds of implicit accesses more cleanly.
1398   SourceLocation BaseStartLoc = getBase()->getLocStart();
1399   if (BaseStartLoc.isValid())
1400     return BaseStartLoc;
1401   return MemberLoc;
1402 }
1403 SourceLocation MemberExpr::getLocEnd() const {
1404   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1405   if (hasExplicitTemplateArgs())
1406     EndLoc = getRAngleLoc();
1407   else if (EndLoc.isInvalid())
1408     EndLoc = getBase()->getLocEnd();
1409   return EndLoc;
1410 }
1411
1412 bool CastExpr::CastConsistency() const {
1413   switch (getCastKind()) {
1414   case CK_DerivedToBase:
1415   case CK_UncheckedDerivedToBase:
1416   case CK_DerivedToBaseMemberPointer:
1417   case CK_BaseToDerived:
1418   case CK_BaseToDerivedMemberPointer:
1419     assert(!path_empty() && "Cast kind should have a base path!");
1420     break;
1421
1422   case CK_CPointerToObjCPointerCast:
1423     assert(getType()->isObjCObjectPointerType());
1424     assert(getSubExpr()->getType()->isPointerType());
1425     goto CheckNoBasePath;
1426
1427   case CK_BlockPointerToObjCPointerCast:
1428     assert(getType()->isObjCObjectPointerType());
1429     assert(getSubExpr()->getType()->isBlockPointerType());
1430     goto CheckNoBasePath;
1431
1432   case CK_ReinterpretMemberPointer:
1433     assert(getType()->isMemberPointerType());
1434     assert(getSubExpr()->getType()->isMemberPointerType());
1435     goto CheckNoBasePath;
1436
1437   case CK_BitCast:
1438     // Arbitrary casts to C pointer types count as bitcasts.
1439     // Otherwise, we should only have block and ObjC pointer casts
1440     // here if they stay within the type kind.
1441     if (!getType()->isPointerType()) {
1442       assert(getType()->isObjCObjectPointerType() == 
1443              getSubExpr()->getType()->isObjCObjectPointerType());
1444       assert(getType()->isBlockPointerType() == 
1445              getSubExpr()->getType()->isBlockPointerType());
1446     }
1447     goto CheckNoBasePath;
1448
1449   case CK_AnyPointerToBlockPointerCast:
1450     assert(getType()->isBlockPointerType());
1451     assert(getSubExpr()->getType()->isAnyPointerType() &&
1452            !getSubExpr()->getType()->isBlockPointerType());
1453     goto CheckNoBasePath;
1454
1455   case CK_CopyAndAutoreleaseBlockObject:
1456     assert(getType()->isBlockPointerType());
1457     assert(getSubExpr()->getType()->isBlockPointerType());
1458     goto CheckNoBasePath;
1459
1460   case CK_FunctionToPointerDecay:
1461     assert(getType()->isPointerType());
1462     assert(getSubExpr()->getType()->isFunctionType());
1463     goto CheckNoBasePath;
1464
1465   case CK_AddressSpaceConversion:
1466     assert(getType()->isPointerType());
1467     assert(getSubExpr()->getType()->isPointerType());
1468     assert(getType()->getPointeeType().getAddressSpace() !=
1469            getSubExpr()->getType()->getPointeeType().getAddressSpace());
1470   // These should not have an inheritance path.
1471   case CK_Dynamic:
1472   case CK_ToUnion:
1473   case CK_ArrayToPointerDecay:
1474   case CK_NullToMemberPointer:
1475   case CK_NullToPointer:
1476   case CK_ConstructorConversion:
1477   case CK_IntegralToPointer:
1478   case CK_PointerToIntegral:
1479   case CK_ToVoid:
1480   case CK_VectorSplat:
1481   case CK_IntegralCast:
1482   case CK_IntegralToFloating:
1483   case CK_FloatingToIntegral:
1484   case CK_FloatingCast:
1485   case CK_ObjCObjectLValueCast:
1486   case CK_FloatingRealToComplex:
1487   case CK_FloatingComplexToReal:
1488   case CK_FloatingComplexCast:
1489   case CK_FloatingComplexToIntegralComplex:
1490   case CK_IntegralRealToComplex:
1491   case CK_IntegralComplexToReal:
1492   case CK_IntegralComplexCast:
1493   case CK_IntegralComplexToFloatingComplex:
1494   case CK_ARCProduceObject:
1495   case CK_ARCConsumeObject:
1496   case CK_ARCReclaimReturnedObject:
1497   case CK_ARCExtendBlockObject:
1498   case CK_ZeroToOCLEvent:
1499     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1500     goto CheckNoBasePath;
1501
1502   case CK_Dependent:
1503   case CK_LValueToRValue:
1504   case CK_NoOp:
1505   case CK_AtomicToNonAtomic:
1506   case CK_NonAtomicToAtomic:
1507   case CK_PointerToBoolean:
1508   case CK_IntegralToBoolean:
1509   case CK_FloatingToBoolean:
1510   case CK_MemberPointerToBoolean:
1511   case CK_FloatingComplexToBoolean:
1512   case CK_IntegralComplexToBoolean:
1513   case CK_LValueBitCast:            // -> bool&
1514   case CK_UserDefinedConversion:    // operator bool()
1515   case CK_BuiltinFnToFnPtr:
1516   CheckNoBasePath:
1517     assert(path_empty() && "Cast kind should not have a base path!");
1518     break;
1519   }
1520   return true;
1521 }
1522
1523 const char *CastExpr::getCastKindName() const {
1524   switch (getCastKind()) {
1525   case CK_Dependent:
1526     return "Dependent";
1527   case CK_BitCast:
1528     return "BitCast";
1529   case CK_LValueBitCast:
1530     return "LValueBitCast";
1531   case CK_LValueToRValue:
1532     return "LValueToRValue";
1533   case CK_NoOp:
1534     return "NoOp";
1535   case CK_BaseToDerived:
1536     return "BaseToDerived";
1537   case CK_DerivedToBase:
1538     return "DerivedToBase";
1539   case CK_UncheckedDerivedToBase:
1540     return "UncheckedDerivedToBase";
1541   case CK_Dynamic:
1542     return "Dynamic";
1543   case CK_ToUnion:
1544     return "ToUnion";
1545   case CK_ArrayToPointerDecay:
1546     return "ArrayToPointerDecay";
1547   case CK_FunctionToPointerDecay:
1548     return "FunctionToPointerDecay";
1549   case CK_NullToMemberPointer:
1550     return "NullToMemberPointer";
1551   case CK_NullToPointer:
1552     return "NullToPointer";
1553   case CK_BaseToDerivedMemberPointer:
1554     return "BaseToDerivedMemberPointer";
1555   case CK_DerivedToBaseMemberPointer:
1556     return "DerivedToBaseMemberPointer";
1557   case CK_ReinterpretMemberPointer:
1558     return "ReinterpretMemberPointer";
1559   case CK_UserDefinedConversion:
1560     return "UserDefinedConversion";
1561   case CK_ConstructorConversion:
1562     return "ConstructorConversion";
1563   case CK_IntegralToPointer:
1564     return "IntegralToPointer";
1565   case CK_PointerToIntegral:
1566     return "PointerToIntegral";
1567   case CK_PointerToBoolean:
1568     return "PointerToBoolean";
1569   case CK_ToVoid:
1570     return "ToVoid";
1571   case CK_VectorSplat:
1572     return "VectorSplat";
1573   case CK_IntegralCast:
1574     return "IntegralCast";
1575   case CK_IntegralToBoolean:
1576     return "IntegralToBoolean";
1577   case CK_IntegralToFloating:
1578     return "IntegralToFloating";
1579   case CK_FloatingToIntegral:
1580     return "FloatingToIntegral";
1581   case CK_FloatingCast:
1582     return "FloatingCast";
1583   case CK_FloatingToBoolean:
1584     return "FloatingToBoolean";
1585   case CK_MemberPointerToBoolean:
1586     return "MemberPointerToBoolean";
1587   case CK_CPointerToObjCPointerCast:
1588     return "CPointerToObjCPointerCast";
1589   case CK_BlockPointerToObjCPointerCast:
1590     return "BlockPointerToObjCPointerCast";
1591   case CK_AnyPointerToBlockPointerCast:
1592     return "AnyPointerToBlockPointerCast";
1593   case CK_ObjCObjectLValueCast:
1594     return "ObjCObjectLValueCast";
1595   case CK_FloatingRealToComplex:
1596     return "FloatingRealToComplex";
1597   case CK_FloatingComplexToReal:
1598     return "FloatingComplexToReal";
1599   case CK_FloatingComplexToBoolean:
1600     return "FloatingComplexToBoolean";
1601   case CK_FloatingComplexCast:
1602     return "FloatingComplexCast";
1603   case CK_FloatingComplexToIntegralComplex:
1604     return "FloatingComplexToIntegralComplex";
1605   case CK_IntegralRealToComplex:
1606     return "IntegralRealToComplex";
1607   case CK_IntegralComplexToReal:
1608     return "IntegralComplexToReal";
1609   case CK_IntegralComplexToBoolean:
1610     return "IntegralComplexToBoolean";
1611   case CK_IntegralComplexCast:
1612     return "IntegralComplexCast";
1613   case CK_IntegralComplexToFloatingComplex:
1614     return "IntegralComplexToFloatingComplex";
1615   case CK_ARCConsumeObject:
1616     return "ARCConsumeObject";
1617   case CK_ARCProduceObject:
1618     return "ARCProduceObject";
1619   case CK_ARCReclaimReturnedObject:
1620     return "ARCReclaimReturnedObject";
1621   case CK_ARCExtendBlockObject:
1622     return "ARCExtendBlockObject";
1623   case CK_AtomicToNonAtomic:
1624     return "AtomicToNonAtomic";
1625   case CK_NonAtomicToAtomic:
1626     return "NonAtomicToAtomic";
1627   case CK_CopyAndAutoreleaseBlockObject:
1628     return "CopyAndAutoreleaseBlockObject";
1629   case CK_BuiltinFnToFnPtr:
1630     return "BuiltinFnToFnPtr";
1631   case CK_ZeroToOCLEvent:
1632     return "ZeroToOCLEvent";
1633   case CK_AddressSpaceConversion:
1634     return "AddressSpaceConversion";
1635   }
1636
1637   llvm_unreachable("Unhandled cast kind!");
1638 }
1639
1640 Expr *CastExpr::getSubExprAsWritten() {
1641   Expr *SubExpr = nullptr;
1642   CastExpr *E = this;
1643   do {
1644     SubExpr = E->getSubExpr();
1645
1646     // Skip through reference binding to temporary.
1647     if (MaterializeTemporaryExpr *Materialize 
1648                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1649       SubExpr = Materialize->GetTemporaryExpr();
1650         
1651     // Skip any temporary bindings; they're implicit.
1652     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1653       SubExpr = Binder->getSubExpr();
1654     
1655     // Conversions by constructor and conversion functions have a
1656     // subexpression describing the call; strip it off.
1657     if (E->getCastKind() == CK_ConstructorConversion)
1658       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1659     else if (E->getCastKind() == CK_UserDefinedConversion)
1660       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1661     
1662     // If the subexpression we're left with is an implicit cast, look
1663     // through that, too.
1664   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));  
1665   
1666   return SubExpr;
1667 }
1668
1669 CXXBaseSpecifier **CastExpr::path_buffer() {
1670   switch (getStmtClass()) {
1671 #define ABSTRACT_STMT(x)
1672 #define CASTEXPR(Type, Base) \
1673   case Stmt::Type##Class: \
1674     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1675 #define STMT(Type, Base)
1676 #include "clang/AST/StmtNodes.inc"
1677   default:
1678     llvm_unreachable("non-cast expressions not possible here");
1679   }
1680 }
1681
1682 void CastExpr::setCastPath(const CXXCastPath &Path) {
1683   assert(Path.size() == path_size());
1684   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1685 }
1686
1687 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1688                                            CastKind Kind, Expr *Operand,
1689                                            const CXXCastPath *BasePath,
1690                                            ExprValueKind VK) {
1691   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1692   void *Buffer =
1693     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1694   ImplicitCastExpr *E =
1695     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1696   if (PathSize) E->setCastPath(*BasePath);
1697   return E;
1698 }
1699
1700 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1701                                                 unsigned PathSize) {
1702   void *Buffer =
1703     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1704   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1705 }
1706
1707
1708 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1709                                        ExprValueKind VK, CastKind K, Expr *Op,
1710                                        const CXXCastPath *BasePath,
1711                                        TypeSourceInfo *WrittenTy,
1712                                        SourceLocation L, SourceLocation R) {
1713   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1714   void *Buffer =
1715     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1716   CStyleCastExpr *E =
1717     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1718   if (PathSize) E->setCastPath(*BasePath);
1719   return E;
1720 }
1721
1722 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1723                                             unsigned PathSize) {
1724   void *Buffer =
1725     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1726   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1727 }
1728
1729 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1730 /// corresponds to, e.g. "<<=".
1731 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1732   switch (Op) {
1733   case BO_PtrMemD:   return ".*";
1734   case BO_PtrMemI:   return "->*";
1735   case BO_Mul:       return "*";
1736   case BO_Div:       return "/";
1737   case BO_Rem:       return "%";
1738   case BO_Add:       return "+";
1739   case BO_Sub:       return "-";
1740   case BO_Shl:       return "<<";
1741   case BO_Shr:       return ">>";
1742   case BO_LT:        return "<";
1743   case BO_GT:        return ">";
1744   case BO_LE:        return "<=";
1745   case BO_GE:        return ">=";
1746   case BO_EQ:        return "==";
1747   case BO_NE:        return "!=";
1748   case BO_And:       return "&";
1749   case BO_Xor:       return "^";
1750   case BO_Or:        return "|";
1751   case BO_LAnd:      return "&&";
1752   case BO_LOr:       return "||";
1753   case BO_Assign:    return "=";
1754   case BO_MulAssign: return "*=";
1755   case BO_DivAssign: return "/=";
1756   case BO_RemAssign: return "%=";
1757   case BO_AddAssign: return "+=";
1758   case BO_SubAssign: return "-=";
1759   case BO_ShlAssign: return "<<=";
1760   case BO_ShrAssign: return ">>=";
1761   case BO_AndAssign: return "&=";
1762   case BO_XorAssign: return "^=";
1763   case BO_OrAssign:  return "|=";
1764   case BO_Comma:     return ",";
1765   }
1766
1767   llvm_unreachable("Invalid OpCode!");
1768 }
1769
1770 BinaryOperatorKind
1771 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1772   switch (OO) {
1773   default: llvm_unreachable("Not an overloadable binary operator");
1774   case OO_Plus: return BO_Add;
1775   case OO_Minus: return BO_Sub;
1776   case OO_Star: return BO_Mul;
1777   case OO_Slash: return BO_Div;
1778   case OO_Percent: return BO_Rem;
1779   case OO_Caret: return BO_Xor;
1780   case OO_Amp: return BO_And;
1781   case OO_Pipe: return BO_Or;
1782   case OO_Equal: return BO_Assign;
1783   case OO_Less: return BO_LT;
1784   case OO_Greater: return BO_GT;
1785   case OO_PlusEqual: return BO_AddAssign;
1786   case OO_MinusEqual: return BO_SubAssign;
1787   case OO_StarEqual: return BO_MulAssign;
1788   case OO_SlashEqual: return BO_DivAssign;
1789   case OO_PercentEqual: return BO_RemAssign;
1790   case OO_CaretEqual: return BO_XorAssign;
1791   case OO_AmpEqual: return BO_AndAssign;
1792   case OO_PipeEqual: return BO_OrAssign;
1793   case OO_LessLess: return BO_Shl;
1794   case OO_GreaterGreater: return BO_Shr;
1795   case OO_LessLessEqual: return BO_ShlAssign;
1796   case OO_GreaterGreaterEqual: return BO_ShrAssign;
1797   case OO_EqualEqual: return BO_EQ;
1798   case OO_ExclaimEqual: return BO_NE;
1799   case OO_LessEqual: return BO_LE;
1800   case OO_GreaterEqual: return BO_GE;
1801   case OO_AmpAmp: return BO_LAnd;
1802   case OO_PipePipe: return BO_LOr;
1803   case OO_Comma: return BO_Comma;
1804   case OO_ArrowStar: return BO_PtrMemI;
1805   }
1806 }
1807
1808 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1809   static const OverloadedOperatorKind OverOps[] = {
1810     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1811     OO_Star, OO_Slash, OO_Percent,
1812     OO_Plus, OO_Minus,
1813     OO_LessLess, OO_GreaterGreater,
1814     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1815     OO_EqualEqual, OO_ExclaimEqual,
1816     OO_Amp,
1817     OO_Caret,
1818     OO_Pipe,
1819     OO_AmpAmp,
1820     OO_PipePipe,
1821     OO_Equal, OO_StarEqual,
1822     OO_SlashEqual, OO_PercentEqual,
1823     OO_PlusEqual, OO_MinusEqual,
1824     OO_LessLessEqual, OO_GreaterGreaterEqual,
1825     OO_AmpEqual, OO_CaretEqual,
1826     OO_PipeEqual,
1827     OO_Comma
1828   };
1829   return OverOps[Opc];
1830 }
1831
1832 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
1833                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1834   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1835          false, false),
1836     InitExprs(C, initExprs.size()),
1837     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
1838 {
1839   sawArrayRangeDesignator(false);
1840   for (unsigned I = 0; I != initExprs.size(); ++I) {
1841     if (initExprs[I]->isTypeDependent())
1842       ExprBits.TypeDependent = true;
1843     if (initExprs[I]->isValueDependent())
1844       ExprBits.ValueDependent = true;
1845     if (initExprs[I]->isInstantiationDependent())
1846       ExprBits.InstantiationDependent = true;
1847     if (initExprs[I]->containsUnexpandedParameterPack())
1848       ExprBits.ContainsUnexpandedParameterPack = true;
1849   }
1850       
1851   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1852 }
1853
1854 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1855   if (NumInits > InitExprs.size())
1856     InitExprs.reserve(C, NumInits);
1857 }
1858
1859 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1860   InitExprs.resize(C, NumInits, nullptr);
1861 }
1862
1863 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1864   if (Init >= InitExprs.size()) {
1865     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
1866     setInit(Init, expr);
1867     return nullptr;
1868   }
1869
1870   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1871   setInit(Init, expr);
1872   return Result;
1873 }
1874
1875 void InitListExpr::setArrayFiller(Expr *filler) {
1876   assert(!hasArrayFiller() && "Filler already set!");
1877   ArrayFillerOrUnionFieldInit = filler;
1878   // Fill out any "holes" in the array due to designated initializers.
1879   Expr **inits = getInits();
1880   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1881     if (inits[i] == nullptr)
1882       inits[i] = filler;
1883 }
1884
1885 bool InitListExpr::isStringLiteralInit() const {
1886   if (getNumInits() != 1)
1887     return false;
1888   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1889   if (!AT || !AT->getElementType()->isIntegerType())
1890     return false;
1891   // It is possible for getInit() to return null.
1892   const Expr *Init = getInit(0);
1893   if (!Init)
1894     return false;
1895   Init = Init->IgnoreParens();
1896   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1897 }
1898
1899 SourceLocation InitListExpr::getLocStart() const {
1900   if (InitListExpr *SyntacticForm = getSyntacticForm())
1901     return SyntacticForm->getLocStart();
1902   SourceLocation Beg = LBraceLoc;
1903   if (Beg.isInvalid()) {
1904     // Find the first non-null initializer.
1905     for (InitExprsTy::const_iterator I = InitExprs.begin(),
1906                                      E = InitExprs.end(); 
1907       I != E; ++I) {
1908       if (Stmt *S = *I) {
1909         Beg = S->getLocStart();
1910         break;
1911       }  
1912     }
1913   }
1914   return Beg;
1915 }
1916
1917 SourceLocation InitListExpr::getLocEnd() const {
1918   if (InitListExpr *SyntacticForm = getSyntacticForm())
1919     return SyntacticForm->getLocEnd();
1920   SourceLocation End = RBraceLoc;
1921   if (End.isInvalid()) {
1922     // Find the first non-null initializer from the end.
1923     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1924          E = InitExprs.rend();
1925          I != E; ++I) {
1926       if (Stmt *S = *I) {
1927         End = S->getLocEnd();
1928         break;
1929       }
1930     }
1931   }
1932   return End;
1933 }
1934
1935 /// getFunctionType - Return the underlying function type for this block.
1936 ///
1937 const FunctionProtoType *BlockExpr::getFunctionType() const {
1938   // The block pointer is never sugared, but the function type might be.
1939   return cast<BlockPointerType>(getType())
1940            ->getPointeeType()->castAs<FunctionProtoType>();
1941 }
1942
1943 SourceLocation BlockExpr::getCaretLocation() const {
1944   return TheBlock->getCaretLocation();
1945 }
1946 const Stmt *BlockExpr::getBody() const {
1947   return TheBlock->getBody();
1948 }
1949 Stmt *BlockExpr::getBody() {
1950   return TheBlock->getBody();
1951 }
1952
1953
1954 //===----------------------------------------------------------------------===//
1955 // Generic Expression Routines
1956 //===----------------------------------------------------------------------===//
1957
1958 /// isUnusedResultAWarning - Return true if this immediate expression should
1959 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
1960 /// with location to warn on and the source range[s] to report with the
1961 /// warning.
1962 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 
1963                                   SourceRange &R1, SourceRange &R2,
1964                                   ASTContext &Ctx) const {
1965   // Don't warn if the expr is type dependent. The type could end up
1966   // instantiating to void.
1967   if (isTypeDependent())
1968     return false;
1969
1970   switch (getStmtClass()) {
1971   default:
1972     if (getType()->isVoidType())
1973       return false;
1974     WarnE = this;
1975     Loc = getExprLoc();
1976     R1 = getSourceRange();
1977     return true;
1978   case ParenExprClass:
1979     return cast<ParenExpr>(this)->getSubExpr()->
1980       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1981   case GenericSelectionExprClass:
1982     return cast<GenericSelectionExpr>(this)->getResultExpr()->
1983       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1984   case ChooseExprClass:
1985     return cast<ChooseExpr>(this)->getChosenSubExpr()->
1986       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1987   case UnaryOperatorClass: {
1988     const UnaryOperator *UO = cast<UnaryOperator>(this);
1989
1990     switch (UO->getOpcode()) {
1991     case UO_Plus:
1992     case UO_Minus:
1993     case UO_AddrOf:
1994     case UO_Not:
1995     case UO_LNot:
1996     case UO_Deref:
1997       break;
1998     case UO_PostInc:
1999     case UO_PostDec:
2000     case UO_PreInc:
2001     case UO_PreDec:                 // ++/--
2002       return false;  // Not a warning.
2003     case UO_Real:
2004     case UO_Imag:
2005       // accessing a piece of a volatile complex is a side-effect.
2006       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2007           .isVolatileQualified())
2008         return false;
2009       break;
2010     case UO_Extension:
2011       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2012     }
2013     WarnE = this;
2014     Loc = UO->getOperatorLoc();
2015     R1 = UO->getSubExpr()->getSourceRange();
2016     return true;
2017   }
2018   case BinaryOperatorClass: {
2019     const BinaryOperator *BO = cast<BinaryOperator>(this);
2020     switch (BO->getOpcode()) {
2021       default:
2022         break;
2023       // Consider the RHS of comma for side effects. LHS was checked by
2024       // Sema::CheckCommaOperands.
2025       case BO_Comma:
2026         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2027         // lvalue-ness) of an assignment written in a macro.
2028         if (IntegerLiteral *IE =
2029               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2030           if (IE->getValue() == 0)
2031             return false;
2032         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2033       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2034       case BO_LAnd:
2035       case BO_LOr:
2036         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2037             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2038           return false;
2039         break;
2040     }
2041     if (BO->isAssignmentOp())
2042       return false;
2043     WarnE = this;
2044     Loc = BO->getOperatorLoc();
2045     R1 = BO->getLHS()->getSourceRange();
2046     R2 = BO->getRHS()->getSourceRange();
2047     return true;
2048   }
2049   case CompoundAssignOperatorClass:
2050   case VAArgExprClass:
2051   case AtomicExprClass:
2052     return false;
2053
2054   case ConditionalOperatorClass: {
2055     // If only one of the LHS or RHS is a warning, the operator might
2056     // be being used for control flow. Only warn if both the LHS and
2057     // RHS are warnings.
2058     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2059     if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2060       return false;
2061     if (!Exp->getLHS())
2062       return true;
2063     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2064   }
2065
2066   case MemberExprClass:
2067     WarnE = this;
2068     Loc = cast<MemberExpr>(this)->getMemberLoc();
2069     R1 = SourceRange(Loc, Loc);
2070     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2071     return true;
2072
2073   case ArraySubscriptExprClass:
2074     WarnE = this;
2075     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2076     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2077     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2078     return true;
2079
2080   case CXXOperatorCallExprClass: {
2081     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2082     // overloads as there is no reasonable way to define these such that they
2083     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2084     // warning: operators == and != are commonly typo'ed, and so warning on them
2085     // provides additional value as well. If this list is updated,
2086     // DiagnoseUnusedComparison should be as well.
2087     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2088     switch (Op->getOperator()) {
2089     default:
2090       break;
2091     case OO_EqualEqual:
2092     case OO_ExclaimEqual:
2093     case OO_Less:
2094     case OO_Greater:
2095     case OO_GreaterEqual:
2096     case OO_LessEqual:
2097       if (Op->getCallReturnType()->isReferenceType() ||
2098           Op->getCallReturnType()->isVoidType())
2099         break;
2100       WarnE = this;
2101       Loc = Op->getOperatorLoc();
2102       R1 = Op->getSourceRange();
2103       return true;
2104     }
2105
2106     // Fallthrough for generic call handling.
2107   }
2108   case CallExprClass:
2109   case CXXMemberCallExprClass:
2110   case UserDefinedLiteralClass: {
2111     // If this is a direct call, get the callee.
2112     const CallExpr *CE = cast<CallExpr>(this);
2113     if (const Decl *FD = CE->getCalleeDecl()) {
2114       // If the callee has attribute pure, const, or warn_unused_result, warn
2115       // about it. void foo() { strlen("bar"); } should warn.
2116       //
2117       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2118       // updated to match for QoI.
2119       if (FD->hasAttr<WarnUnusedResultAttr>() ||
2120           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2121         WarnE = this;
2122         Loc = CE->getCallee()->getLocStart();
2123         R1 = CE->getCallee()->getSourceRange();
2124
2125         if (unsigned NumArgs = CE->getNumArgs())
2126           R2 = SourceRange(CE->getArg(0)->getLocStart(),
2127                            CE->getArg(NumArgs-1)->getLocEnd());
2128         return true;
2129       }
2130     }
2131     return false;
2132   }
2133
2134   // If we don't know precisely what we're looking at, let's not warn.
2135   case UnresolvedLookupExprClass:
2136   case CXXUnresolvedConstructExprClass:
2137     return false;
2138
2139   case CXXTemporaryObjectExprClass:
2140   case CXXConstructExprClass: {
2141     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2142       if (Type->hasAttr<WarnUnusedAttr>()) {
2143         WarnE = this;
2144         Loc = getLocStart();
2145         R1 = getSourceRange();
2146         return true;
2147       }
2148     }
2149     return false;
2150   }
2151
2152   case ObjCMessageExprClass: {
2153     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2154     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2155         ME->isInstanceMessage() &&
2156         !ME->getType()->isVoidType() &&
2157         ME->getMethodFamily() == OMF_init) {
2158       WarnE = this;
2159       Loc = getExprLoc();
2160       R1 = ME->getSourceRange();
2161       return true;
2162     }
2163
2164     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2165       if (MD->hasAttr<WarnUnusedResultAttr>() ||
2166           (MD->isPropertyAccessor() && !MD->getReturnType()->isVoidType() &&
2167            !ME->getReceiverType()->isObjCIdType())) {
2168         WarnE = this;
2169         Loc = getExprLoc();
2170         return true;
2171       }
2172
2173     return false;
2174   }
2175
2176   case ObjCPropertyRefExprClass:
2177     WarnE = this;
2178     Loc = getExprLoc();
2179     R1 = getSourceRange();
2180     return true;
2181
2182   case PseudoObjectExprClass: {
2183     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2184
2185     // Only complain about things that have the form of a getter.
2186     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2187         isa<BinaryOperator>(PO->getSyntacticForm()))
2188       return false;
2189
2190     WarnE = this;
2191     Loc = getExprLoc();
2192     R1 = getSourceRange();
2193     return true;
2194   }
2195
2196   case StmtExprClass: {
2197     // Statement exprs don't logically have side effects themselves, but are
2198     // sometimes used in macros in ways that give them a type that is unused.
2199     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2200     // however, if the result of the stmt expr is dead, we don't want to emit a
2201     // warning.
2202     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2203     if (!CS->body_empty()) {
2204       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2205         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2206       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2207         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2208           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2209     }
2210
2211     if (getType()->isVoidType())
2212       return false;
2213     WarnE = this;
2214     Loc = cast<StmtExpr>(this)->getLParenLoc();
2215     R1 = getSourceRange();
2216     return true;
2217   }
2218   case CXXFunctionalCastExprClass:
2219   case CStyleCastExprClass: {
2220     // Ignore an explicit cast to void unless the operand is a non-trivial
2221     // volatile lvalue.
2222     const CastExpr *CE = cast<CastExpr>(this);
2223     if (CE->getCastKind() == CK_ToVoid) {
2224       if (CE->getSubExpr()->isGLValue() &&
2225           CE->getSubExpr()->getType().isVolatileQualified()) {
2226         const DeclRefExpr *DRE =
2227             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2228         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2229               cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2230           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2231                                                           R1, R2, Ctx);
2232         }
2233       }
2234       return false;
2235     }
2236
2237     // If this is a cast to a constructor conversion, check the operand.
2238     // Otherwise, the result of the cast is unused.
2239     if (CE->getCastKind() == CK_ConstructorConversion)
2240       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2241
2242     WarnE = this;
2243     if (const CXXFunctionalCastExpr *CXXCE =
2244             dyn_cast<CXXFunctionalCastExpr>(this)) {
2245       Loc = CXXCE->getLocStart();
2246       R1 = CXXCE->getSubExpr()->getSourceRange();
2247     } else {
2248       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2249       Loc = CStyleCE->getLParenLoc();
2250       R1 = CStyleCE->getSubExpr()->getSourceRange();
2251     }
2252     return true;
2253   }
2254   case ImplicitCastExprClass: {
2255     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2256
2257     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2258     if (ICE->getCastKind() == CK_LValueToRValue &&
2259         ICE->getSubExpr()->getType().isVolatileQualified())
2260       return false;
2261
2262     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2263   }
2264   case CXXDefaultArgExprClass:
2265     return (cast<CXXDefaultArgExpr>(this)
2266             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2267   case CXXDefaultInitExprClass:
2268     return (cast<CXXDefaultInitExpr>(this)
2269             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2270
2271   case CXXNewExprClass:
2272     // FIXME: In theory, there might be new expressions that don't have side
2273     // effects (e.g. a placement new with an uninitialized POD).
2274   case CXXDeleteExprClass:
2275     return false;
2276   case CXXBindTemporaryExprClass:
2277     return (cast<CXXBindTemporaryExpr>(this)
2278             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2279   case ExprWithCleanupsClass:
2280     return (cast<ExprWithCleanups>(this)
2281             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2282   }
2283 }
2284
2285 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2286 /// returns true, if it is; false otherwise.
2287 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2288   const Expr *E = IgnoreParens();
2289   switch (E->getStmtClass()) {
2290   default:
2291     return false;
2292   case ObjCIvarRefExprClass:
2293     return true;
2294   case Expr::UnaryOperatorClass:
2295     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2296   case ImplicitCastExprClass:
2297     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2298   case MaterializeTemporaryExprClass:
2299     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2300                                                       ->isOBJCGCCandidate(Ctx);
2301   case CStyleCastExprClass:
2302     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2303   case DeclRefExprClass: {
2304     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2305         
2306     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2307       if (VD->hasGlobalStorage())
2308         return true;
2309       QualType T = VD->getType();
2310       // dereferencing to a  pointer is always a gc'able candidate,
2311       // unless it is __weak.
2312       return T->isPointerType() &&
2313              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2314     }
2315     return false;
2316   }
2317   case MemberExprClass: {
2318     const MemberExpr *M = cast<MemberExpr>(E);
2319     return M->getBase()->isOBJCGCCandidate(Ctx);
2320   }
2321   case ArraySubscriptExprClass:
2322     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2323   }
2324 }
2325
2326 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2327   if (isTypeDependent())
2328     return false;
2329   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2330 }
2331
2332 QualType Expr::findBoundMemberType(const Expr *expr) {
2333   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2334
2335   // Bound member expressions are always one of these possibilities:
2336   //   x->m      x.m      x->*y      x.*y
2337   // (possibly parenthesized)
2338
2339   expr = expr->IgnoreParens();
2340   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2341     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2342     return mem->getMemberDecl()->getType();
2343   }
2344
2345   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2346     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2347                       ->getPointeeType();
2348     assert(type->isFunctionType());
2349     return type;
2350   }
2351
2352   assert(isa<UnresolvedMemberExpr>(expr));
2353   return QualType();
2354 }
2355
2356 Expr* Expr::IgnoreParens() {
2357   Expr* E = this;
2358   while (true) {
2359     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2360       E = P->getSubExpr();
2361       continue;
2362     }
2363     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2364       if (P->getOpcode() == UO_Extension) {
2365         E = P->getSubExpr();
2366         continue;
2367       }
2368     }
2369     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2370       if (!P->isResultDependent()) {
2371         E = P->getResultExpr();
2372         continue;
2373       }
2374     }
2375     if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2376       if (!P->isConditionDependent()) {
2377         E = P->getChosenSubExpr();
2378         continue;
2379       }
2380     }
2381     return E;
2382   }
2383 }
2384
2385 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2386 /// or CastExprs or ImplicitCastExprs, returning their operand.
2387 Expr *Expr::IgnoreParenCasts() {
2388   Expr *E = this;
2389   while (true) {
2390     E = E->IgnoreParens();
2391     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2392       E = P->getSubExpr();
2393       continue;
2394     }
2395     if (MaterializeTemporaryExpr *Materialize 
2396                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2397       E = Materialize->GetTemporaryExpr();
2398       continue;
2399     }
2400     if (SubstNonTypeTemplateParmExpr *NTTP
2401                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2402       E = NTTP->getReplacement();
2403       continue;
2404     }      
2405     return E;
2406   }
2407 }
2408
2409 Expr *Expr::IgnoreCasts() {
2410   Expr *E = this;
2411   while (true) {
2412     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2413       E = P->getSubExpr();
2414       continue;
2415     }
2416     if (MaterializeTemporaryExpr *Materialize
2417         = dyn_cast<MaterializeTemporaryExpr>(E)) {
2418       E = Materialize->GetTemporaryExpr();
2419       continue;
2420     }
2421     if (SubstNonTypeTemplateParmExpr *NTTP
2422         = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2423       E = NTTP->getReplacement();
2424       continue;
2425     }
2426     return E;
2427   }
2428 }
2429
2430 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2431 /// casts.  This is intended purely as a temporary workaround for code
2432 /// that hasn't yet been rewritten to do the right thing about those
2433 /// casts, and may disappear along with the last internal use.
2434 Expr *Expr::IgnoreParenLValueCasts() {
2435   Expr *E = this;
2436   while (true) {
2437     E = E->IgnoreParens();
2438     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2439       if (P->getCastKind() == CK_LValueToRValue) {
2440         E = P->getSubExpr();
2441         continue;
2442       }
2443     } else if (MaterializeTemporaryExpr *Materialize 
2444                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2445       E = Materialize->GetTemporaryExpr();
2446       continue;
2447     } else if (SubstNonTypeTemplateParmExpr *NTTP
2448                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2449       E = NTTP->getReplacement();
2450       continue;
2451     }
2452     break;
2453   }
2454   return E;
2455 }
2456
2457 Expr *Expr::ignoreParenBaseCasts() {
2458   Expr *E = this;
2459   while (true) {
2460     E = E->IgnoreParens();
2461     if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2462       if (CE->getCastKind() == CK_DerivedToBase ||
2463           CE->getCastKind() == CK_UncheckedDerivedToBase ||
2464           CE->getCastKind() == CK_NoOp) {
2465         E = CE->getSubExpr();
2466         continue;
2467       }
2468     }
2469
2470     return E;
2471   }
2472 }
2473
2474 Expr *Expr::IgnoreParenImpCasts() {
2475   Expr *E = this;
2476   while (true) {
2477     E = E->IgnoreParens();
2478     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2479       E = P->getSubExpr();
2480       continue;
2481     }
2482     if (MaterializeTemporaryExpr *Materialize 
2483                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2484       E = Materialize->GetTemporaryExpr();
2485       continue;
2486     }
2487     if (SubstNonTypeTemplateParmExpr *NTTP
2488                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2489       E = NTTP->getReplacement();
2490       continue;
2491     }
2492     return E;
2493   }
2494 }
2495
2496 Expr *Expr::IgnoreConversionOperator() {
2497   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2498     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2499       return MCE->getImplicitObjectArgument();
2500   }
2501   return this;
2502 }
2503
2504 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2505 /// value (including ptr->int casts of the same size).  Strip off any
2506 /// ParenExpr or CastExprs, returning their operand.
2507 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2508   Expr *E = this;
2509   while (true) {
2510     E = E->IgnoreParens();
2511
2512     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2513       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2514       // ptr<->int casts of the same width.  We also ignore all identity casts.
2515       Expr *SE = P->getSubExpr();
2516
2517       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2518         E = SE;
2519         continue;
2520       }
2521
2522       if ((E->getType()->isPointerType() ||
2523            E->getType()->isIntegralType(Ctx)) &&
2524           (SE->getType()->isPointerType() ||
2525            SE->getType()->isIntegralType(Ctx)) &&
2526           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2527         E = SE;
2528         continue;
2529       }
2530     }
2531
2532     if (SubstNonTypeTemplateParmExpr *NTTP
2533                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2534       E = NTTP->getReplacement();
2535       continue;
2536     }
2537     
2538     return E;
2539   }
2540 }
2541
2542 bool Expr::isDefaultArgument() const {
2543   const Expr *E = this;
2544   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2545     E = M->GetTemporaryExpr();
2546
2547   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2548     E = ICE->getSubExprAsWritten();
2549   
2550   return isa<CXXDefaultArgExpr>(E);
2551 }
2552
2553 /// \brief Skip over any no-op casts and any temporary-binding
2554 /// expressions.
2555 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2556   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2557     E = M->GetTemporaryExpr();
2558
2559   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2560     if (ICE->getCastKind() == CK_NoOp)
2561       E = ICE->getSubExpr();
2562     else
2563       break;
2564   }
2565
2566   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2567     E = BE->getSubExpr();
2568
2569   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2570     if (ICE->getCastKind() == CK_NoOp)
2571       E = ICE->getSubExpr();
2572     else
2573       break;
2574   }
2575
2576   return E->IgnoreParens();
2577 }
2578
2579 /// isTemporaryObject - Determines if this expression produces a
2580 /// temporary of the given class type.
2581 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2582   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2583     return false;
2584
2585   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2586
2587   // Temporaries are by definition pr-values of class type.
2588   if (!E->Classify(C).isPRValue()) {
2589     // In this context, property reference is a message call and is pr-value.
2590     if (!isa<ObjCPropertyRefExpr>(E))
2591       return false;
2592   }
2593
2594   // Black-list a few cases which yield pr-values of class type that don't
2595   // refer to temporaries of that type:
2596
2597   // - implicit derived-to-base conversions
2598   if (isa<ImplicitCastExpr>(E)) {
2599     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2600     case CK_DerivedToBase:
2601     case CK_UncheckedDerivedToBase:
2602       return false;
2603     default:
2604       break;
2605     }
2606   }
2607
2608   // - member expressions (all)
2609   if (isa<MemberExpr>(E))
2610     return false;
2611
2612   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2613     if (BO->isPtrMemOp())
2614       return false;
2615
2616   // - opaque values (all)
2617   if (isa<OpaqueValueExpr>(E))
2618     return false;
2619
2620   return true;
2621 }
2622
2623 bool Expr::isImplicitCXXThis() const {
2624   const Expr *E = this;
2625   
2626   // Strip away parentheses and casts we don't care about.
2627   while (true) {
2628     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2629       E = Paren->getSubExpr();
2630       continue;
2631     }
2632     
2633     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2634       if (ICE->getCastKind() == CK_NoOp ||
2635           ICE->getCastKind() == CK_LValueToRValue ||
2636           ICE->getCastKind() == CK_DerivedToBase || 
2637           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2638         E = ICE->getSubExpr();
2639         continue;
2640       }
2641     }
2642     
2643     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2644       if (UnOp->getOpcode() == UO_Extension) {
2645         E = UnOp->getSubExpr();
2646         continue;
2647       }
2648     }
2649     
2650     if (const MaterializeTemporaryExpr *M
2651                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2652       E = M->GetTemporaryExpr();
2653       continue;
2654     }
2655     
2656     break;
2657   }
2658   
2659   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2660     return This->isImplicit();
2661   
2662   return false;
2663 }
2664
2665 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2666 /// in Exprs is type-dependent.
2667 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2668   for (unsigned I = 0; I < Exprs.size(); ++I)
2669     if (Exprs[I]->isTypeDependent())
2670       return true;
2671
2672   return false;
2673 }
2674
2675 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2676                                  const Expr **Culprit) const {
2677   // This function is attempting whether an expression is an initializer
2678   // which can be evaluated at compile-time. It very closely parallels
2679   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2680   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
2681   // to isEvaluatable most of the time.
2682   //
2683   // If we ever capture reference-binding directly in the AST, we can
2684   // kill the second parameter.
2685
2686   if (IsForRef) {
2687     EvalResult Result;
2688     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2689       return true;
2690     if (Culprit)
2691       *Culprit = this;
2692     return false;
2693   }
2694
2695   switch (getStmtClass()) {
2696   default: break;
2697   case StringLiteralClass:
2698   case ObjCEncodeExprClass:
2699     return true;
2700   case CXXTemporaryObjectExprClass:
2701   case CXXConstructExprClass: {
2702     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2703
2704     if (CE->getConstructor()->isTrivial() &&
2705         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2706       // Trivial default constructor
2707       if (!CE->getNumArgs()) return true;
2708
2709       // Trivial copy constructor
2710       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2711       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
2712     }
2713
2714     break;
2715   }
2716   case CompoundLiteralExprClass: {
2717     // This handles gcc's extension that allows global initializers like
2718     // "struct x {int x;} x = (struct x) {};".
2719     // FIXME: This accepts other cases it shouldn't!
2720     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2721     return Exp->isConstantInitializer(Ctx, false, Culprit);
2722   }
2723   case InitListExprClass: {
2724     const InitListExpr *ILE = cast<InitListExpr>(this);
2725     if (ILE->getType()->isArrayType()) {
2726       unsigned numInits = ILE->getNumInits();
2727       for (unsigned i = 0; i < numInits; i++) {
2728         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
2729           return false;
2730       }
2731       return true;
2732     }
2733
2734     if (ILE->getType()->isRecordType()) {
2735       unsigned ElementNo = 0;
2736       RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2737       for (const auto *Field : RD->fields()) {
2738         // If this is a union, skip all the fields that aren't being initialized.
2739         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
2740           continue;
2741
2742         // Don't emit anonymous bitfields, they just affect layout.
2743         if (Field->isUnnamedBitfield())
2744           continue;
2745
2746         if (ElementNo < ILE->getNumInits()) {
2747           const Expr *Elt = ILE->getInit(ElementNo++);
2748           if (Field->isBitField()) {
2749             // Bitfields have to evaluate to an integer.
2750             llvm::APSInt ResultTmp;
2751             if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
2752               if (Culprit)
2753                 *Culprit = Elt;
2754               return false;
2755             }
2756           } else {
2757             bool RefType = Field->getType()->isReferenceType();
2758             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
2759               return false;
2760           }
2761         }
2762       }
2763       return true;
2764     }
2765
2766     break;
2767   }
2768   case ImplicitValueInitExprClass:
2769     return true;
2770   case ParenExprClass:
2771     return cast<ParenExpr>(this)->getSubExpr()
2772       ->isConstantInitializer(Ctx, IsForRef, Culprit);
2773   case GenericSelectionExprClass:
2774     return cast<GenericSelectionExpr>(this)->getResultExpr()
2775       ->isConstantInitializer(Ctx, IsForRef, Culprit);
2776   case ChooseExprClass:
2777     if (cast<ChooseExpr>(this)->isConditionDependent()) {
2778       if (Culprit)
2779         *Culprit = this;
2780       return false;
2781     }
2782     return cast<ChooseExpr>(this)->getChosenSubExpr()
2783       ->isConstantInitializer(Ctx, IsForRef, Culprit);
2784   case UnaryOperatorClass: {
2785     const UnaryOperator* Exp = cast<UnaryOperator>(this);
2786     if (Exp->getOpcode() == UO_Extension)
2787       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2788     break;
2789   }
2790   case CXXFunctionalCastExprClass:
2791   case CXXStaticCastExprClass:
2792   case ImplicitCastExprClass:
2793   case CStyleCastExprClass:
2794   case ObjCBridgedCastExprClass:
2795   case CXXDynamicCastExprClass:
2796   case CXXReinterpretCastExprClass:
2797   case CXXConstCastExprClass: {
2798     const CastExpr *CE = cast<CastExpr>(this);
2799
2800     // Handle misc casts we want to ignore.
2801     if (CE->getCastKind() == CK_NoOp ||
2802         CE->getCastKind() == CK_LValueToRValue ||
2803         CE->getCastKind() == CK_ToUnion ||
2804         CE->getCastKind() == CK_ConstructorConversion ||
2805         CE->getCastKind() == CK_NonAtomicToAtomic ||
2806         CE->getCastKind() == CK_AtomicToNonAtomic)
2807       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2808
2809     break;
2810   }
2811   case MaterializeTemporaryExprClass:
2812     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2813       ->isConstantInitializer(Ctx, false, Culprit);
2814
2815   case SubstNonTypeTemplateParmExprClass:
2816     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2817       ->isConstantInitializer(Ctx, false, Culprit);
2818   case CXXDefaultArgExprClass:
2819     return cast<CXXDefaultArgExpr>(this)->getExpr()
2820       ->isConstantInitializer(Ctx, false, Culprit);
2821   case CXXDefaultInitExprClass:
2822     return cast<CXXDefaultInitExpr>(this)->getExpr()
2823       ->isConstantInitializer(Ctx, false, Culprit);
2824   }
2825   if (isEvaluatable(Ctx))
2826     return true;
2827   if (Culprit)
2828     *Culprit = this;
2829   return false;
2830 }
2831
2832 bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2833   if (isInstantiationDependent())
2834     return true;
2835
2836   switch (getStmtClass()) {
2837   case NoStmtClass:
2838   #define ABSTRACT_STMT(Type)
2839   #define STMT(Type, Base) case Type##Class:
2840   #define EXPR(Type, Base)
2841   #include "clang/AST/StmtNodes.inc"
2842     llvm_unreachable("unexpected Expr kind");
2843
2844   case DependentScopeDeclRefExprClass:
2845   case CXXUnresolvedConstructExprClass:
2846   case CXXDependentScopeMemberExprClass:
2847   case UnresolvedLookupExprClass:
2848   case UnresolvedMemberExprClass:
2849   case PackExpansionExprClass:
2850   case SubstNonTypeTemplateParmPackExprClass:
2851   case FunctionParmPackExprClass:
2852     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2853
2854   case DeclRefExprClass:
2855   case ObjCIvarRefExprClass:
2856   case PredefinedExprClass:
2857   case IntegerLiteralClass:
2858   case FloatingLiteralClass:
2859   case ImaginaryLiteralClass:
2860   case StringLiteralClass:
2861   case CharacterLiteralClass:
2862   case OffsetOfExprClass:
2863   case ImplicitValueInitExprClass:
2864   case UnaryExprOrTypeTraitExprClass:
2865   case AddrLabelExprClass:
2866   case GNUNullExprClass:
2867   case CXXBoolLiteralExprClass:
2868   case CXXNullPtrLiteralExprClass:
2869   case CXXThisExprClass:
2870   case CXXScalarValueInitExprClass:
2871   case TypeTraitExprClass:
2872   case ArrayTypeTraitExprClass:
2873   case ExpressionTraitExprClass:
2874   case CXXNoexceptExprClass:
2875   case SizeOfPackExprClass:
2876   case ObjCStringLiteralClass:
2877   case ObjCEncodeExprClass:
2878   case ObjCBoolLiteralExprClass:
2879   case CXXUuidofExprClass:
2880   case OpaqueValueExprClass:
2881     // These never have a side-effect.
2882     return false;
2883
2884   case CallExprClass:
2885   case MSPropertyRefExprClass:
2886   case CompoundAssignOperatorClass:
2887   case VAArgExprClass:
2888   case AtomicExprClass:
2889   case StmtExprClass:
2890   case CXXOperatorCallExprClass:
2891   case CXXMemberCallExprClass:
2892   case UserDefinedLiteralClass:
2893   case CXXThrowExprClass:
2894   case CXXNewExprClass:
2895   case CXXDeleteExprClass:
2896   case ExprWithCleanupsClass:
2897   case CXXBindTemporaryExprClass:
2898   case BlockExprClass:
2899   case CUDAKernelCallExprClass:
2900     // These always have a side-effect.
2901     return true;
2902
2903   case ParenExprClass:
2904   case ArraySubscriptExprClass:
2905   case MemberExprClass:
2906   case ConditionalOperatorClass:
2907   case BinaryConditionalOperatorClass:
2908   case CompoundLiteralExprClass:
2909   case ExtVectorElementExprClass:
2910   case DesignatedInitExprClass:
2911   case ParenListExprClass:
2912   case CXXPseudoDestructorExprClass:
2913   case CXXStdInitializerListExprClass:
2914   case SubstNonTypeTemplateParmExprClass:
2915   case MaterializeTemporaryExprClass:
2916   case ShuffleVectorExprClass:
2917   case ConvertVectorExprClass:
2918   case AsTypeExprClass:
2919     // These have a side-effect if any subexpression does.
2920     break;
2921
2922   case UnaryOperatorClass:
2923     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2924       return true;
2925     break;
2926
2927   case BinaryOperatorClass:
2928     if (cast<BinaryOperator>(this)->isAssignmentOp())
2929       return true;
2930     break;
2931
2932   case InitListExprClass:
2933     // FIXME: The children for an InitListExpr doesn't include the array filler.
2934     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2935       if (E->HasSideEffects(Ctx))
2936         return true;
2937     break;
2938
2939   case GenericSelectionExprClass:
2940     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2941         HasSideEffects(Ctx);
2942
2943   case ChooseExprClass:
2944     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(Ctx);
2945
2946   case CXXDefaultArgExprClass:
2947     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2948
2949   case CXXDefaultInitExprClass:
2950     if (const Expr *E = cast<CXXDefaultInitExpr>(this)->getExpr())
2951       return E->HasSideEffects(Ctx);
2952     // If we've not yet parsed the initializer, assume it has side-effects.
2953     return true;
2954
2955   case CXXDynamicCastExprClass: {
2956     // A dynamic_cast expression has side-effects if it can throw.
2957     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2958     if (DCE->getTypeAsWritten()->isReferenceType() &&
2959         DCE->getCastKind() == CK_Dynamic)
2960       return true;
2961   } // Fall through.
2962   case ImplicitCastExprClass:
2963   case CStyleCastExprClass:
2964   case CXXStaticCastExprClass:
2965   case CXXReinterpretCastExprClass:
2966   case CXXConstCastExprClass:
2967   case CXXFunctionalCastExprClass: {
2968     const CastExpr *CE = cast<CastExpr>(this);
2969     if (CE->getCastKind() == CK_LValueToRValue &&
2970         CE->getSubExpr()->getType().isVolatileQualified())
2971       return true;
2972     break;
2973   }
2974
2975   case CXXTypeidExprClass:
2976     // typeid might throw if its subexpression is potentially-evaluated, so has
2977     // side-effects in that case whether or not its subexpression does.
2978     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2979
2980   case CXXConstructExprClass:
2981   case CXXTemporaryObjectExprClass: {
2982     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2983     if (!CE->getConstructor()->isTrivial())
2984       return true;
2985     // A trivial constructor does not add any side-effects of its own. Just look
2986     // at its arguments.
2987     break;
2988   }
2989
2990   case LambdaExprClass: {
2991     const LambdaExpr *LE = cast<LambdaExpr>(this);
2992     for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2993                                       E = LE->capture_end(); I != E; ++I)
2994       if (I->getCaptureKind() == LCK_ByCopy)
2995         // FIXME: Only has a side-effect if the variable is volatile or if
2996         // the copy would invoke a non-trivial copy constructor.
2997         return true;
2998     return false;
2999   }
3000
3001   case PseudoObjectExprClass: {
3002     // Only look for side-effects in the semantic form, and look past
3003     // OpaqueValueExpr bindings in that form.
3004     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3005     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3006                                                     E = PO->semantics_end();
3007          I != E; ++I) {
3008       const Expr *Subexpr = *I;
3009       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3010         Subexpr = OVE->getSourceExpr();
3011       if (Subexpr->HasSideEffects(Ctx))
3012         return true;
3013     }
3014     return false;
3015   }
3016
3017   case ObjCBoxedExprClass:
3018   case ObjCArrayLiteralClass:
3019   case ObjCDictionaryLiteralClass:
3020   case ObjCMessageExprClass:
3021   case ObjCSelectorExprClass:
3022   case ObjCProtocolExprClass:
3023   case ObjCPropertyRefExprClass:
3024   case ObjCIsaExprClass:
3025   case ObjCIndirectCopyRestoreExprClass:
3026   case ObjCSubscriptRefExprClass:
3027   case ObjCBridgedCastExprClass:
3028     // FIXME: Classify these cases better.
3029     return true;
3030   }
3031
3032   // Recurse to children.
3033   for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
3034     if (const Stmt *S = *SubStmts)
3035       if (cast<Expr>(S)->HasSideEffects(Ctx))
3036         return true;
3037
3038   return false;
3039 }
3040
3041 namespace {
3042   /// \brief Look for a call to a non-trivial function within an expression.
3043   class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
3044   {
3045     typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3046     
3047     bool NonTrivial;
3048     
3049   public:
3050     explicit NonTrivialCallFinder(ASTContext &Context) 
3051       : Inherited(Context), NonTrivial(false) { }
3052     
3053     bool hasNonTrivialCall() const { return NonTrivial; }
3054     
3055     void VisitCallExpr(CallExpr *E) {
3056       if (CXXMethodDecl *Method
3057           = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
3058         if (Method->isTrivial()) {
3059           // Recurse to children of the call.
3060           Inherited::VisitStmt(E);
3061           return;
3062         }
3063       }
3064       
3065       NonTrivial = true;
3066     }
3067     
3068     void VisitCXXConstructExpr(CXXConstructExpr *E) {
3069       if (E->getConstructor()->isTrivial()) {
3070         // Recurse to children of the call.
3071         Inherited::VisitStmt(E);
3072         return;
3073       }
3074       
3075       NonTrivial = true;
3076     }
3077     
3078     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3079       if (E->getTemporary()->getDestructor()->isTrivial()) {
3080         Inherited::VisitStmt(E);
3081         return;
3082       }
3083       
3084       NonTrivial = true;
3085     }
3086   };
3087 }
3088
3089 bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
3090   NonTrivialCallFinder Finder(Ctx);
3091   Finder.Visit(this);
3092   return Finder.hasNonTrivialCall();  
3093 }
3094
3095 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 
3096 /// pointer constant or not, as well as the specific kind of constant detected.
3097 /// Null pointer constants can be integer constant expressions with the
3098 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3099 /// (a GNU extension).
3100 Expr::NullPointerConstantKind
3101 Expr::isNullPointerConstant(ASTContext &Ctx,
3102                             NullPointerConstantValueDependence NPC) const {
3103   if (isValueDependent() &&
3104       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3105     switch (NPC) {
3106     case NPC_NeverValueDependent:
3107       llvm_unreachable("Unexpected value dependent expression!");
3108     case NPC_ValueDependentIsNull:
3109       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3110         return NPCK_ZeroExpression;
3111       else
3112         return NPCK_NotNull;
3113         
3114     case NPC_ValueDependentIsNotNull:
3115       return NPCK_NotNull;
3116     }
3117   }
3118
3119   // Strip off a cast to void*, if it exists. Except in C++.
3120   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3121     if (!Ctx.getLangOpts().CPlusPlus) {
3122       // Check that it is a cast to void*.
3123       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3124         QualType Pointee = PT->getPointeeType();
3125         if (!Pointee.hasQualifiers() &&
3126             Pointee->isVoidType() &&                              // to void*
3127             CE->getSubExpr()->getType()->isIntegerType())         // from int.
3128           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3129       }
3130     }
3131   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3132     // Ignore the ImplicitCastExpr type entirely.
3133     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3134   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3135     // Accept ((void*)0) as a null pointer constant, as many other
3136     // implementations do.
3137     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3138   } else if (const GenericSelectionExpr *GE =
3139                dyn_cast<GenericSelectionExpr>(this)) {
3140     if (GE->isResultDependent())
3141       return NPCK_NotNull;
3142     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3143   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3144     if (CE->isConditionDependent())
3145       return NPCK_NotNull;
3146     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3147   } else if (const CXXDefaultArgExpr *DefaultArg
3148                = dyn_cast<CXXDefaultArgExpr>(this)) {
3149     // See through default argument expressions.
3150     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3151   } else if (const CXXDefaultInitExpr *DefaultInit
3152                = dyn_cast<CXXDefaultInitExpr>(this)) {
3153     // See through default initializer expressions.
3154     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3155   } else if (isa<GNUNullExpr>(this)) {
3156     // The GNU __null extension is always a null pointer constant.
3157     return NPCK_GNUNull;
3158   } else if (const MaterializeTemporaryExpr *M 
3159                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3160     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3161   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3162     if (const Expr *Source = OVE->getSourceExpr())
3163       return Source->isNullPointerConstant(Ctx, NPC);
3164   }
3165
3166   // C++11 nullptr_t is always a null pointer constant.
3167   if (getType()->isNullPtrType())
3168     return NPCK_CXX11_nullptr;
3169
3170   if (const RecordType *UT = getType()->getAsUnionType())
3171     if (!Ctx.getLangOpts().CPlusPlus11 &&
3172         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3173       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3174         const Expr *InitExpr = CLE->getInitializer();
3175         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3176           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3177       }
3178   // This expression must be an integer type.
3179   if (!getType()->isIntegerType() || 
3180       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3181     return NPCK_NotNull;
3182
3183   if (Ctx.getLangOpts().CPlusPlus11) {
3184     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3185     // value zero or a prvalue of type std::nullptr_t.
3186     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3187     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3188     if (Lit && !Lit->getValue())
3189       return NPCK_ZeroLiteral;
3190     else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3191       return NPCK_NotNull;
3192   } else {
3193     // If we have an integer constant expression, we need to *evaluate* it and
3194     // test for the value 0.
3195     if (!isIntegerConstantExpr(Ctx))
3196       return NPCK_NotNull;
3197   }
3198
3199   if (EvaluateKnownConstInt(Ctx) != 0)
3200     return NPCK_NotNull;
3201
3202   if (isa<IntegerLiteral>(this))
3203     return NPCK_ZeroLiteral;
3204   return NPCK_ZeroExpression;
3205 }
3206
3207 /// \brief If this expression is an l-value for an Objective C
3208 /// property, find the underlying property reference expression.
3209 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3210   const Expr *E = this;
3211   while (true) {
3212     assert((E->getValueKind() == VK_LValue &&
3213             E->getObjectKind() == OK_ObjCProperty) &&
3214            "expression is not a property reference");
3215     E = E->IgnoreParenCasts();
3216     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3217       if (BO->getOpcode() == BO_Comma) {
3218         E = BO->getRHS();
3219         continue;
3220       }
3221     }
3222
3223     break;
3224   }
3225
3226   return cast<ObjCPropertyRefExpr>(E);
3227 }
3228
3229 bool Expr::isObjCSelfExpr() const {
3230   const Expr *E = IgnoreParenImpCasts();
3231
3232   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3233   if (!DRE)
3234     return false;
3235
3236   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3237   if (!Param)
3238     return false;
3239
3240   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3241   if (!M)
3242     return false;
3243
3244   return M->getSelfDecl() == Param;
3245 }
3246
3247 FieldDecl *Expr::getSourceBitField() {
3248   Expr *E = this->IgnoreParens();
3249
3250   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3251     if (ICE->getCastKind() == CK_LValueToRValue ||
3252         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3253       E = ICE->getSubExpr()->IgnoreParens();
3254     else
3255       break;
3256   }
3257
3258   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3259     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3260       if (Field->isBitField())
3261         return Field;
3262
3263   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
3264     if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
3265       if (Ivar->isBitField())
3266         return Ivar;
3267
3268   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3269     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3270       if (Field->isBitField())
3271         return Field;
3272
3273   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3274     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3275       return BinOp->getLHS()->getSourceBitField();
3276
3277     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3278       return BinOp->getRHS()->getSourceBitField();
3279   }
3280
3281   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3282     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3283       return UnOp->getSubExpr()->getSourceBitField();
3284
3285   return nullptr;
3286 }
3287
3288 bool Expr::refersToVectorElement() const {
3289   const Expr *E = this->IgnoreParens();
3290   
3291   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3292     if (ICE->getValueKind() != VK_RValue &&
3293         ICE->getCastKind() == CK_NoOp)
3294       E = ICE->getSubExpr()->IgnoreParens();
3295     else
3296       break;
3297   }
3298   
3299   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3300     return ASE->getBase()->getType()->isVectorType();
3301
3302   if (isa<ExtVectorElementExpr>(E))
3303     return true;
3304
3305   return false;
3306 }
3307
3308 /// isArrow - Return true if the base expression is a pointer to vector,
3309 /// return false if the base expression is a vector.
3310 bool ExtVectorElementExpr::isArrow() const {
3311   return getBase()->getType()->isPointerType();
3312 }
3313
3314 unsigned ExtVectorElementExpr::getNumElements() const {
3315   if (const VectorType *VT = getType()->getAs<VectorType>())
3316     return VT->getNumElements();
3317   return 1;
3318 }
3319
3320 /// containsDuplicateElements - Return true if any element access is repeated.
3321 bool ExtVectorElementExpr::containsDuplicateElements() const {
3322   // FIXME: Refactor this code to an accessor on the AST node which returns the
3323   // "type" of component access, and share with code below and in Sema.
3324   StringRef Comp = Accessor->getName();
3325
3326   // Halving swizzles do not contain duplicate elements.
3327   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3328     return false;
3329
3330   // Advance past s-char prefix on hex swizzles.
3331   if (Comp[0] == 's' || Comp[0] == 'S')
3332     Comp = Comp.substr(1);
3333
3334   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3335     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3336         return true;
3337
3338   return false;
3339 }
3340
3341 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3342 void ExtVectorElementExpr::getEncodedElementAccess(
3343                                   SmallVectorImpl<unsigned> &Elts) const {
3344   StringRef Comp = Accessor->getName();
3345   if (Comp[0] == 's' || Comp[0] == 'S')
3346     Comp = Comp.substr(1);
3347
3348   bool isHi =   Comp == "hi";
3349   bool isLo =   Comp == "lo";
3350   bool isEven = Comp == "even";
3351   bool isOdd  = Comp == "odd";
3352
3353   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3354     uint64_t Index;
3355
3356     if (isHi)
3357       Index = e + i;
3358     else if (isLo)
3359       Index = i;
3360     else if (isEven)
3361       Index = 2 * i;
3362     else if (isOdd)
3363       Index = 2 * i + 1;
3364     else
3365       Index = ExtVectorType::getAccessorIdx(Comp[i]);
3366
3367     Elts.push_back(Index);
3368   }
3369 }
3370
3371 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3372                                  ExprValueKind VK,
3373                                  SourceLocation LBracLoc,
3374                                  SourceLocation SuperLoc,
3375                                  bool IsInstanceSuper,
3376                                  QualType SuperType,
3377                                  Selector Sel, 
3378                                  ArrayRef<SourceLocation> SelLocs,
3379                                  SelectorLocationsKind SelLocsK,
3380                                  ObjCMethodDecl *Method,
3381                                  ArrayRef<Expr *> Args,
3382                                  SourceLocation RBracLoc,
3383                                  bool isImplicit)
3384   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3385          /*TypeDependent=*/false, /*ValueDependent=*/false,
3386          /*InstantiationDependent=*/false,
3387          /*ContainsUnexpandedParameterPack=*/false),
3388     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3389                                                        : Sel.getAsOpaquePtr())),
3390     Kind(IsInstanceSuper? SuperInstance : SuperClass),
3391     HasMethod(Method != nullptr), IsDelegateInitCall(false),
3392     IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc),
3393     RBracLoc(RBracLoc)
3394 {
3395   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3396   setReceiverPointer(SuperType.getAsOpaquePtr());
3397 }
3398
3399 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3400                                  ExprValueKind VK,
3401                                  SourceLocation LBracLoc,
3402                                  TypeSourceInfo *Receiver,
3403                                  Selector Sel,
3404                                  ArrayRef<SourceLocation> SelLocs,
3405                                  SelectorLocationsKind SelLocsK,
3406                                  ObjCMethodDecl *Method,
3407                                  ArrayRef<Expr *> Args,
3408                                  SourceLocation RBracLoc,
3409                                  bool isImplicit)
3410   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3411          T->isDependentType(), T->isInstantiationDependentType(),
3412          T->containsUnexpandedParameterPack()),
3413     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3414                                                        : Sel.getAsOpaquePtr())),
3415     Kind(Class),
3416     HasMethod(Method != nullptr), IsDelegateInitCall(false),
3417     IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3418 {
3419   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3420   setReceiverPointer(Receiver);
3421 }
3422
3423 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3424                                  ExprValueKind VK,
3425                                  SourceLocation LBracLoc,
3426                                  Expr *Receiver,
3427                                  Selector Sel, 
3428                                  ArrayRef<SourceLocation> SelLocs,
3429                                  SelectorLocationsKind SelLocsK,
3430                                  ObjCMethodDecl *Method,
3431                                  ArrayRef<Expr *> Args,
3432                                  SourceLocation RBracLoc,
3433                                  bool isImplicit)
3434   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3435          Receiver->isTypeDependent(),
3436          Receiver->isInstantiationDependent(),
3437          Receiver->containsUnexpandedParameterPack()),
3438     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3439                                                        : Sel.getAsOpaquePtr())),
3440     Kind(Instance),
3441     HasMethod(Method != nullptr), IsDelegateInitCall(false),
3442     IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3443 {
3444   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3445   setReceiverPointer(Receiver);
3446 }
3447
3448 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3449                                          ArrayRef<SourceLocation> SelLocs,
3450                                          SelectorLocationsKind SelLocsK) {
3451   setNumArgs(Args.size());
3452   Expr **MyArgs = getArgs();
3453   for (unsigned I = 0; I != Args.size(); ++I) {
3454     if (Args[I]->isTypeDependent())
3455       ExprBits.TypeDependent = true;
3456     if (Args[I]->isValueDependent())
3457       ExprBits.ValueDependent = true;
3458     if (Args[I]->isInstantiationDependent())
3459       ExprBits.InstantiationDependent = true;
3460     if (Args[I]->containsUnexpandedParameterPack())
3461       ExprBits.ContainsUnexpandedParameterPack = true;
3462   
3463     MyArgs[I] = Args[I];
3464   }
3465
3466   SelLocsKind = SelLocsK;
3467   if (!isImplicit()) {
3468     if (SelLocsK == SelLoc_NonStandard)
3469       std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3470   }
3471 }
3472
3473 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3474                                          ExprValueKind VK,
3475                                          SourceLocation LBracLoc,
3476                                          SourceLocation SuperLoc,
3477                                          bool IsInstanceSuper,
3478                                          QualType SuperType,
3479                                          Selector Sel, 
3480                                          ArrayRef<SourceLocation> SelLocs,
3481                                          ObjCMethodDecl *Method,
3482                                          ArrayRef<Expr *> Args,
3483                                          SourceLocation RBracLoc,
3484                                          bool isImplicit) {
3485   assert((!SelLocs.empty() || isImplicit) &&
3486          "No selector locs for non-implicit message");
3487   ObjCMessageExpr *Mem;
3488   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3489   if (isImplicit)
3490     Mem = alloc(Context, Args.size(), 0);
3491   else
3492     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3493   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3494                                    SuperType, Sel, SelLocs, SelLocsK,
3495                                    Method, Args, RBracLoc, isImplicit);
3496 }
3497
3498 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3499                                          ExprValueKind VK,
3500                                          SourceLocation LBracLoc,
3501                                          TypeSourceInfo *Receiver,
3502                                          Selector Sel, 
3503                                          ArrayRef<SourceLocation> SelLocs,
3504                                          ObjCMethodDecl *Method,
3505                                          ArrayRef<Expr *> Args,
3506                                          SourceLocation RBracLoc,
3507                                          bool isImplicit) {
3508   assert((!SelLocs.empty() || isImplicit) &&
3509          "No selector locs for non-implicit message");
3510   ObjCMessageExpr *Mem;
3511   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3512   if (isImplicit)
3513     Mem = alloc(Context, Args.size(), 0);
3514   else
3515     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3516   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3517                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
3518                                    isImplicit);
3519 }
3520
3521 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3522                                          ExprValueKind VK,
3523                                          SourceLocation LBracLoc,
3524                                          Expr *Receiver,
3525                                          Selector Sel,
3526                                          ArrayRef<SourceLocation> SelLocs,
3527                                          ObjCMethodDecl *Method,
3528                                          ArrayRef<Expr *> Args,
3529                                          SourceLocation RBracLoc,
3530                                          bool isImplicit) {
3531   assert((!SelLocs.empty() || isImplicit) &&
3532          "No selector locs for non-implicit message");
3533   ObjCMessageExpr *Mem;
3534   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3535   if (isImplicit)
3536     Mem = alloc(Context, Args.size(), 0);
3537   else
3538     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3539   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3540                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
3541                                    isImplicit);
3542 }
3543
3544 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context,
3545                                               unsigned NumArgs,
3546                                               unsigned NumStoredSelLocs) {
3547   ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3548   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3549 }
3550
3551 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3552                                         ArrayRef<Expr *> Args,
3553                                         SourceLocation RBraceLoc,
3554                                         ArrayRef<SourceLocation> SelLocs,
3555                                         Selector Sel,
3556                                         SelectorLocationsKind &SelLocsK) {
3557   SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3558   unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3559                                                                : 0;
3560   return alloc(C, Args.size(), NumStoredSelLocs);
3561 }
3562
3563 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3564                                         unsigned NumArgs,
3565                                         unsigned NumStoredSelLocs) {
3566   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 
3567     NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3568   return (ObjCMessageExpr *)C.Allocate(Size,
3569                                      llvm::AlignOf<ObjCMessageExpr>::Alignment);
3570 }
3571
3572 void ObjCMessageExpr::getSelectorLocs(
3573                                SmallVectorImpl<SourceLocation> &SelLocs) const {
3574   for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3575     SelLocs.push_back(getSelectorLoc(i));
3576 }
3577
3578 SourceRange ObjCMessageExpr::getReceiverRange() const {
3579   switch (getReceiverKind()) {
3580   case Instance:
3581     return getInstanceReceiver()->getSourceRange();
3582
3583   case Class:
3584     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3585
3586   case SuperInstance:
3587   case SuperClass:
3588     return getSuperLoc();
3589   }
3590
3591   llvm_unreachable("Invalid ReceiverKind!");
3592 }
3593
3594 Selector ObjCMessageExpr::getSelector() const {
3595   if (HasMethod)
3596     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3597                                                                ->getSelector();
3598   return Selector(SelectorOrMethod); 
3599 }
3600
3601 QualType ObjCMessageExpr::getReceiverType() const {
3602   switch (getReceiverKind()) {
3603   case Instance:
3604     return getInstanceReceiver()->getType();
3605   case Class:
3606     return getClassReceiver();
3607   case SuperInstance:
3608   case SuperClass:
3609     return getSuperType();
3610   }
3611
3612   llvm_unreachable("unexpected receiver kind");
3613 }
3614
3615 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3616   QualType T = getReceiverType();
3617
3618   if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3619     return Ptr->getInterfaceDecl();
3620
3621   if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3622     return Ty->getInterface();
3623
3624   return nullptr;
3625 }
3626
3627 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3628   switch (getBridgeKind()) {
3629   case OBC_Bridge:
3630     return "__bridge";
3631   case OBC_BridgeTransfer:
3632     return "__bridge_transfer";
3633   case OBC_BridgeRetained:
3634     return "__bridge_retained";
3635   }
3636
3637   llvm_unreachable("Invalid BridgeKind!");
3638 }
3639
3640 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
3641                                      QualType Type, SourceLocation BLoc,
3642                                      SourceLocation RP) 
3643    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3644           Type->isDependentType(), Type->isDependentType(),
3645           Type->isInstantiationDependentType(),
3646           Type->containsUnexpandedParameterPack()),
3647      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3648 {
3649   SubExprs = new (C) Stmt*[args.size()];
3650   for (unsigned i = 0; i != args.size(); i++) {
3651     if (args[i]->isTypeDependent())
3652       ExprBits.TypeDependent = true;
3653     if (args[i]->isValueDependent())
3654       ExprBits.ValueDependent = true;
3655     if (args[i]->isInstantiationDependent())
3656       ExprBits.InstantiationDependent = true;
3657     if (args[i]->containsUnexpandedParameterPack())
3658       ExprBits.ContainsUnexpandedParameterPack = true;
3659
3660     SubExprs[i] = args[i];
3661   }
3662 }
3663
3664 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
3665   if (SubExprs) C.Deallocate(SubExprs);
3666
3667   this->NumExprs = Exprs.size();
3668   SubExprs = new (C) Stmt*[NumExprs];
3669   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3670 }
3671
3672 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3673                                SourceLocation GenericLoc, Expr *ControllingExpr,
3674                                ArrayRef<TypeSourceInfo*> AssocTypes,
3675                                ArrayRef<Expr*> AssocExprs,
3676                                SourceLocation DefaultLoc,
3677                                SourceLocation RParenLoc,
3678                                bool ContainsUnexpandedParameterPack,
3679                                unsigned ResultIndex)
3680   : Expr(GenericSelectionExprClass,
3681          AssocExprs[ResultIndex]->getType(),
3682          AssocExprs[ResultIndex]->getValueKind(),
3683          AssocExprs[ResultIndex]->getObjectKind(),
3684          AssocExprs[ResultIndex]->isTypeDependent(),
3685          AssocExprs[ResultIndex]->isValueDependent(),
3686          AssocExprs[ResultIndex]->isInstantiationDependent(),
3687          ContainsUnexpandedParameterPack),
3688     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3689     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3690     NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3691     GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3692   SubExprs[CONTROLLING] = ControllingExpr;
3693   assert(AssocTypes.size() == AssocExprs.size());
3694   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3695   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3696 }
3697
3698 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3699                                SourceLocation GenericLoc, Expr *ControllingExpr,
3700                                ArrayRef<TypeSourceInfo*> AssocTypes,
3701                                ArrayRef<Expr*> AssocExprs,
3702                                SourceLocation DefaultLoc,
3703                                SourceLocation RParenLoc,
3704                                bool ContainsUnexpandedParameterPack)
3705   : Expr(GenericSelectionExprClass,
3706          Context.DependentTy,
3707          VK_RValue,
3708          OK_Ordinary,
3709          /*isTypeDependent=*/true,
3710          /*isValueDependent=*/true,
3711          /*isInstantiationDependent=*/true,
3712          ContainsUnexpandedParameterPack),
3713     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3714     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3715     NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3716     DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3717   SubExprs[CONTROLLING] = ControllingExpr;
3718   assert(AssocTypes.size() == AssocExprs.size());
3719   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3720   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3721 }
3722
3723 //===----------------------------------------------------------------------===//
3724 //  DesignatedInitExpr
3725 //===----------------------------------------------------------------------===//
3726
3727 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3728   assert(Kind == FieldDesignator && "Only valid on a field designator");
3729   if (Field.NameOrField & 0x01)
3730     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3731   else
3732     return getField()->getIdentifier();
3733 }
3734
3735 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3736                                        unsigned NumDesignators,
3737                                        const Designator *Designators,
3738                                        SourceLocation EqualOrColonLoc,
3739                                        bool GNUSyntax,
3740                                        ArrayRef<Expr*> IndexExprs,
3741                                        Expr *Init)
3742   : Expr(DesignatedInitExprClass, Ty,
3743          Init->getValueKind(), Init->getObjectKind(),
3744          Init->isTypeDependent(), Init->isValueDependent(),
3745          Init->isInstantiationDependent(),
3746          Init->containsUnexpandedParameterPack()),
3747     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3748     NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3749   this->Designators = new (C) Designator[NumDesignators];
3750
3751   // Record the initializer itself.
3752   child_range Child = children();
3753   *Child++ = Init;
3754
3755   // Copy the designators and their subexpressions, computing
3756   // value-dependence along the way.
3757   unsigned IndexIdx = 0;
3758   for (unsigned I = 0; I != NumDesignators; ++I) {
3759     this->Designators[I] = Designators[I];
3760
3761     if (this->Designators[I].isArrayDesignator()) {
3762       // Compute type- and value-dependence.
3763       Expr *Index = IndexExprs[IndexIdx];
3764       if (Index->isTypeDependent() || Index->isValueDependent())
3765         ExprBits.ValueDependent = true;
3766       if (Index->isInstantiationDependent())
3767         ExprBits.InstantiationDependent = true;
3768       // Propagate unexpanded parameter packs.
3769       if (Index->containsUnexpandedParameterPack())
3770         ExprBits.ContainsUnexpandedParameterPack = true;
3771
3772       // Copy the index expressions into permanent storage.
3773       *Child++ = IndexExprs[IndexIdx++];
3774     } else if (this->Designators[I].isArrayRangeDesignator()) {
3775       // Compute type- and value-dependence.
3776       Expr *Start = IndexExprs[IndexIdx];
3777       Expr *End = IndexExprs[IndexIdx + 1];
3778       if (Start->isTypeDependent() || Start->isValueDependent() ||
3779           End->isTypeDependent() || End->isValueDependent()) {
3780         ExprBits.ValueDependent = true;
3781         ExprBits.InstantiationDependent = true;
3782       } else if (Start->isInstantiationDependent() || 
3783                  End->isInstantiationDependent()) {
3784         ExprBits.InstantiationDependent = true;
3785       }
3786                  
3787       // Propagate unexpanded parameter packs.
3788       if (Start->containsUnexpandedParameterPack() ||
3789           End->containsUnexpandedParameterPack())
3790         ExprBits.ContainsUnexpandedParameterPack = true;
3791
3792       // Copy the start/end expressions into permanent storage.
3793       *Child++ = IndexExprs[IndexIdx++];
3794       *Child++ = IndexExprs[IndexIdx++];
3795     }
3796   }
3797
3798   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3799 }
3800
3801 DesignatedInitExpr *
3802 DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
3803                            unsigned NumDesignators,
3804                            ArrayRef<Expr*> IndexExprs,
3805                            SourceLocation ColonOrEqualLoc,
3806                            bool UsesColonSyntax, Expr *Init) {
3807   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3808                          sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3809   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3810                                       ColonOrEqualLoc, UsesColonSyntax,
3811                                       IndexExprs, Init);
3812 }
3813
3814 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
3815                                                     unsigned NumIndexExprs) {
3816   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3817                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3818   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3819 }
3820
3821 void DesignatedInitExpr::setDesignators(const ASTContext &C,
3822                                         const Designator *Desigs,
3823                                         unsigned NumDesigs) {
3824   Designators = new (C) Designator[NumDesigs];
3825   NumDesignators = NumDesigs;
3826   for (unsigned I = 0; I != NumDesigs; ++I)
3827     Designators[I] = Desigs[I];
3828 }
3829
3830 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3831   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3832   if (size() == 1)
3833     return DIE->getDesignator(0)->getSourceRange();
3834   return SourceRange(DIE->getDesignator(0)->getLocStart(),
3835                      DIE->getDesignator(size()-1)->getLocEnd());
3836 }
3837
3838 SourceLocation DesignatedInitExpr::getLocStart() const {
3839   SourceLocation StartLoc;
3840   Designator &First =
3841     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3842   if (First.isFieldDesignator()) {
3843     if (GNUSyntax)
3844       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3845     else
3846       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3847   } else
3848     StartLoc =
3849       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3850   return StartLoc;
3851 }
3852
3853 SourceLocation DesignatedInitExpr::getLocEnd() const {
3854   return getInit()->getLocEnd();
3855 }
3856
3857 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3858   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3859   Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3860   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3861 }
3862
3863 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3864   assert(D.Kind == Designator::ArrayRangeDesignator &&
3865          "Requires array range designator");
3866   Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3867   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3868 }
3869
3870 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3871   assert(D.Kind == Designator::ArrayRangeDesignator &&
3872          "Requires array range designator");
3873   Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3874   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3875 }
3876
3877 /// \brief Replaces the designator at index @p Idx with the series
3878 /// of designators in [First, Last).
3879 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
3880                                           const Designator *First,
3881                                           const Designator *Last) {
3882   unsigned NumNewDesignators = Last - First;
3883   if (NumNewDesignators == 0) {
3884     std::copy_backward(Designators + Idx + 1,
3885                        Designators + NumDesignators,
3886                        Designators + Idx);
3887     --NumNewDesignators;
3888     return;
3889   } else if (NumNewDesignators == 1) {
3890     Designators[Idx] = *First;
3891     return;
3892   }
3893
3894   Designator *NewDesignators
3895     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3896   std::copy(Designators, Designators + Idx, NewDesignators);
3897   std::copy(First, Last, NewDesignators + Idx);
3898   std::copy(Designators + Idx + 1, Designators + NumDesignators,
3899             NewDesignators + Idx + NumNewDesignators);
3900   Designators = NewDesignators;
3901   NumDesignators = NumDesignators - 1 + NumNewDesignators;
3902 }
3903
3904 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
3905                              ArrayRef<Expr*> exprs,
3906                              SourceLocation rparenloc)
3907   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3908          false, false, false, false),
3909     NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3910   Exprs = new (C) Stmt*[exprs.size()];
3911   for (unsigned i = 0; i != exprs.size(); ++i) {
3912     if (exprs[i]->isTypeDependent())
3913       ExprBits.TypeDependent = true;
3914     if (exprs[i]->isValueDependent())
3915       ExprBits.ValueDependent = true;
3916     if (exprs[i]->isInstantiationDependent())
3917       ExprBits.InstantiationDependent = true;
3918     if (exprs[i]->containsUnexpandedParameterPack())
3919       ExprBits.ContainsUnexpandedParameterPack = true;
3920
3921     Exprs[i] = exprs[i];
3922   }
3923 }
3924
3925 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3926   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3927     e = ewc->getSubExpr();
3928   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3929     e = m->GetTemporaryExpr();
3930   e = cast<CXXConstructExpr>(e)->getArg(0);
3931   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3932     e = ice->getSubExpr();
3933   return cast<OpaqueValueExpr>(e);
3934 }
3935
3936 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
3937                                            EmptyShell sh,
3938                                            unsigned numSemanticExprs) {
3939   void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3940                                     (1 + numSemanticExprs) * sizeof(Expr*),
3941                                   llvm::alignOf<PseudoObjectExpr>());
3942   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3943 }
3944
3945 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3946   : Expr(PseudoObjectExprClass, shell) {
3947   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3948 }
3949
3950 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
3951                                            ArrayRef<Expr*> semantics,
3952                                            unsigned resultIndex) {
3953   assert(syntax && "no syntactic expression!");
3954   assert(semantics.size() && "no semantic expressions!");
3955
3956   QualType type;
3957   ExprValueKind VK;
3958   if (resultIndex == NoResult) {
3959     type = C.VoidTy;
3960     VK = VK_RValue;
3961   } else {
3962     assert(resultIndex < semantics.size());
3963     type = semantics[resultIndex]->getType();
3964     VK = semantics[resultIndex]->getValueKind();
3965     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3966   }
3967
3968   void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3969                               (1 + semantics.size()) * sizeof(Expr*),
3970                             llvm::alignOf<PseudoObjectExpr>());
3971   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3972                                       resultIndex);
3973 }
3974
3975 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3976                                    Expr *syntax, ArrayRef<Expr*> semantics,
3977                                    unsigned resultIndex)
3978   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3979          /*filled in at end of ctor*/ false, false, false, false) {
3980   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3981   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3982
3983   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3984     Expr *E = (i == 0 ? syntax : semantics[i-1]);
3985     getSubExprsBuffer()[i] = E;
3986
3987     if (E->isTypeDependent())
3988       ExprBits.TypeDependent = true;
3989     if (E->isValueDependent())
3990       ExprBits.ValueDependent = true;
3991     if (E->isInstantiationDependent())
3992       ExprBits.InstantiationDependent = true;
3993     if (E->containsUnexpandedParameterPack())
3994       ExprBits.ContainsUnexpandedParameterPack = true;
3995
3996     if (isa<OpaqueValueExpr>(E))
3997       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
3998              "opaque-value semantic expressions for pseudo-object "
3999              "operations must have sources");
4000   }
4001 }
4002
4003 //===----------------------------------------------------------------------===//
4004 //  ExprIterator.
4005 //===----------------------------------------------------------------------===//
4006
4007 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
4008 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
4009 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
4010 const Expr* ConstExprIterator::operator[](size_t idx) const {
4011   return cast<Expr>(I[idx]);
4012 }
4013 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
4014 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
4015
4016 //===----------------------------------------------------------------------===//
4017 //  Child Iterators for iterating over subexpressions/substatements
4018 //===----------------------------------------------------------------------===//
4019
4020 // UnaryExprOrTypeTraitExpr
4021 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4022   // If this is of a type and the type is a VLA type (and not a typedef), the
4023   // size expression of the VLA needs to be treated as an executable expression.
4024   // Why isn't this weirdness documented better in StmtIterator?
4025   if (isArgumentType()) {
4026     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
4027                                    getArgumentType().getTypePtr()))
4028       return child_range(child_iterator(T), child_iterator());
4029     return child_range();
4030   }
4031   return child_range(&Argument.Ex, &Argument.Ex + 1);
4032 }
4033
4034 // ObjCMessageExpr
4035 Stmt::child_range ObjCMessageExpr::children() {
4036   Stmt **begin;
4037   if (getReceiverKind() == Instance)
4038     begin = reinterpret_cast<Stmt **>(this + 1);
4039   else
4040     begin = reinterpret_cast<Stmt **>(getArgs());
4041   return child_range(begin,
4042                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
4043 }
4044
4045 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements, 
4046                                    QualType T, ObjCMethodDecl *Method,
4047                                    ObjCMethodDecl *AllocMethod,
4048                                    SourceRange SR)
4049   : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary, 
4050          false, false, false, false), 
4051     NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method),
4052     ArrayAllocMethod(AllocMethod)
4053 {
4054   Expr **SaveElements = getElements();
4055   for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
4056     if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
4057       ExprBits.ValueDependent = true;
4058     if (Elements[I]->isInstantiationDependent())
4059       ExprBits.InstantiationDependent = true;
4060     if (Elements[I]->containsUnexpandedParameterPack())
4061       ExprBits.ContainsUnexpandedParameterPack = true;
4062     
4063     SaveElements[I] = Elements[I];
4064   }
4065 }
4066
4067 ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C,
4068                                            ArrayRef<Expr *> Elements,
4069                                            QualType T, ObjCMethodDecl * Method,
4070                                            ObjCMethodDecl *allocMethod,
4071                                            SourceRange SR) {
4072   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) 
4073                          + Elements.size() * sizeof(Expr *));
4074   return new (Mem) ObjCArrayLiteral(Elements, T, Method, allocMethod, SR);
4075 }
4076
4077 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C,
4078                                                 unsigned NumElements) {
4079   
4080   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) 
4081                          + NumElements * sizeof(Expr *));
4082   return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
4083 }
4084
4085 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
4086                                              ArrayRef<ObjCDictionaryElement> VK, 
4087                                              bool HasPackExpansions,
4088                                              QualType T, ObjCMethodDecl *method,
4089                                              ObjCMethodDecl *allocMethod,
4090                                              SourceRange SR)
4091   : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
4092          false, false),
4093     NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR), 
4094     DictWithObjectsMethod(method),
4095     DictAllocMethod(allocMethod)
4096 {
4097   KeyValuePair *KeyValues = getKeyValues();
4098   ExpansionData *Expansions = getExpansionData();
4099   for (unsigned I = 0; I < NumElements; I++) {
4100     if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
4101         VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
4102       ExprBits.ValueDependent = true;
4103     if (VK[I].Key->isInstantiationDependent() ||
4104         VK[I].Value->isInstantiationDependent())
4105       ExprBits.InstantiationDependent = true;
4106     if (VK[I].EllipsisLoc.isInvalid() &&
4107         (VK[I].Key->containsUnexpandedParameterPack() ||
4108          VK[I].Value->containsUnexpandedParameterPack()))
4109       ExprBits.ContainsUnexpandedParameterPack = true;
4110
4111     KeyValues[I].Key = VK[I].Key;
4112     KeyValues[I].Value = VK[I].Value; 
4113     if (Expansions) {
4114       Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
4115       if (VK[I].NumExpansions)
4116         Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
4117       else
4118         Expansions[I].NumExpansionsPlusOne = 0;
4119     }
4120   }
4121 }
4122
4123 ObjCDictionaryLiteral *
4124 ObjCDictionaryLiteral::Create(const ASTContext &C,
4125                               ArrayRef<ObjCDictionaryElement> VK, 
4126                               bool HasPackExpansions,
4127                               QualType T, ObjCMethodDecl *method,
4128                               ObjCMethodDecl *allocMethod,
4129                               SourceRange SR) {
4130   unsigned ExpansionsSize = 0;
4131   if (HasPackExpansions)
4132     ExpansionsSize = sizeof(ExpansionData) * VK.size();
4133     
4134   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + 
4135                          sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
4136   return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T,
4137                                          method, allocMethod, SR);
4138 }
4139
4140 ObjCDictionaryLiteral *
4141 ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements,
4142                                    bool HasPackExpansions) {
4143   unsigned ExpansionsSize = 0;
4144   if (HasPackExpansions)
4145     ExpansionsSize = sizeof(ExpansionData) * NumElements;
4146   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + 
4147                          sizeof(KeyValuePair) * NumElements + ExpansionsSize);
4148   return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements, 
4149                                          HasPackExpansions);
4150 }
4151
4152 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C,
4153                                                    Expr *base,
4154                                                    Expr *key, QualType T, 
4155                                                    ObjCMethodDecl *getMethod,
4156                                                    ObjCMethodDecl *setMethod, 
4157                                                    SourceLocation RB) {
4158   void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
4159   return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue, 
4160                                         OK_ObjCSubscript,
4161                                         getMethod, setMethod, RB);
4162 }
4163
4164 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4165                        QualType t, AtomicOp op, SourceLocation RP)
4166   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4167          false, false, false, false),
4168     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4169 {
4170   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4171   for (unsigned i = 0; i != args.size(); i++) {
4172     if (args[i]->isTypeDependent())
4173       ExprBits.TypeDependent = true;
4174     if (args[i]->isValueDependent())
4175       ExprBits.ValueDependent = true;
4176     if (args[i]->isInstantiationDependent())
4177       ExprBits.InstantiationDependent = true;
4178     if (args[i]->containsUnexpandedParameterPack())
4179       ExprBits.ContainsUnexpandedParameterPack = true;
4180
4181     SubExprs[i] = args[i];
4182   }
4183 }
4184
4185 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4186   switch (Op) {
4187   case AO__c11_atomic_init:
4188   case AO__c11_atomic_load:
4189   case AO__atomic_load_n:
4190     return 2;
4191
4192   case AO__c11_atomic_store:
4193   case AO__c11_atomic_exchange:
4194   case AO__atomic_load:
4195   case AO__atomic_store:
4196   case AO__atomic_store_n:
4197   case AO__atomic_exchange_n:
4198   case AO__c11_atomic_fetch_add:
4199   case AO__c11_atomic_fetch_sub:
4200   case AO__c11_atomic_fetch_and:
4201   case AO__c11_atomic_fetch_or:
4202   case AO__c11_atomic_fetch_xor:
4203   case AO__atomic_fetch_add:
4204   case AO__atomic_fetch_sub:
4205   case AO__atomic_fetch_and:
4206   case AO__atomic_fetch_or:
4207   case AO__atomic_fetch_xor:
4208   case AO__atomic_fetch_nand:
4209   case AO__atomic_add_fetch:
4210   case AO__atomic_sub_fetch:
4211   case AO__atomic_and_fetch:
4212   case AO__atomic_or_fetch:
4213   case AO__atomic_xor_fetch:
4214   case AO__atomic_nand_fetch:
4215     return 3;
4216
4217   case AO__atomic_exchange:
4218     return 4;
4219
4220   case AO__c11_atomic_compare_exchange_strong:
4221   case AO__c11_atomic_compare_exchange_weak:
4222     return 5;
4223
4224   case AO__atomic_compare_exchange:
4225   case AO__atomic_compare_exchange_n:
4226     return 6;
4227   }
4228   llvm_unreachable("unknown atomic op");
4229 }