]> granicus.if.org Git - clang/blob - docs/ControlFlowIntegrityDesign.rst
When dumping documentation for AST matchers, do something more useful with \see doxyg...
[clang] / docs / ControlFlowIntegrityDesign.rst
1 ===========================================
2 Control Flow Integrity Design Documentation
3 ===========================================
4
5 This page documents the design of the :doc:`ControlFlowIntegrity` schemes
6 supported by Clang.
7
8 Forward-Edge CFI for Virtual Calls
9 ==================================
10
11 This scheme works by allocating, for each static type used to make a virtual
12 call, a region of read-only storage in the object file holding a bit vector
13 that maps onto to the region of storage used for those virtual tables. Each
14 set bit in the bit vector corresponds to the `address point`_ for a virtual
15 table compatible with the static type for which the bit vector is being built.
16
17 For example, consider the following three C++ classes:
18
19 .. code-block:: c++
20
21   struct A {
22     virtual void f1();
23     virtual void f2();
24     virtual void f3();
25   };
26
27   struct B : A {
28     virtual void f1();
29     virtual void f2();
30     virtual void f3();
31   };
32
33   struct C : A {
34     virtual void f1();
35     virtual void f2();
36     virtual void f3();
37   };
38
39 The scheme will cause the virtual tables for A, B and C to be laid out
40 consecutively:
41
42 .. csv-table:: Virtual Table Layout for A, B, C
43   :header: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
44
45   A::offset-to-top, &A::rtti, &A::f1, &A::f2, &A::f3, B::offset-to-top, &B::rtti, &B::f1, &B::f2, &B::f3, C::offset-to-top, &C::rtti, &C::f1, &C::f2, &C::f3
46
47 The bit vector for static types A, B and C will look like this:
48
49 .. csv-table:: Bit Vectors for A, B, C
50   :header: Class, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
51
52   A, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0
53   B, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
54   C, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
55
56 Bit vectors are represented in the object file as byte arrays. By loading
57 from indexed offsets into the byte array and applying a mask, a program can
58 test bits from the bit set with a relatively short instruction sequence. Bit
59 vectors may overlap so long as they use different bits. For the full details,
60 see the `ByteArrayBuilder`_ class.
61
62 In this case, assuming A is laid out at offset 0 in bit 0, B at offset 0 in
63 bit 1 and C at offset 0 in bit 2, the byte array would look like this:
64
65 .. code-block:: c++
66
67   char bits[] = { 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0 };
68
69 To emit a virtual call, the compiler will assemble code that checks that
70 the object's virtual table pointer is in-bounds and aligned and that the
71 relevant bit is set in the bit vector.
72
73 For example on x86 a typical virtual call may look like this:
74
75 .. code-block:: none
76
77   ca7fbb:       48 8b 0f                mov    (%rdi),%rcx
78   ca7fbe:       48 8d 15 c3 42 fb 07    lea    0x7fb42c3(%rip),%rdx
79   ca7fc5:       48 89 c8                mov    %rcx,%rax
80   ca7fc8:       48 29 d0                sub    %rdx,%rax
81   ca7fcb:       48 c1 c0 3d             rol    $0x3d,%rax
82   ca7fcf:       48 3d 7f 01 00 00       cmp    $0x17f,%rax
83   ca7fd5:       0f 87 36 05 00 00       ja     ca8511
84   ca7fdb:       48 8d 15 c0 0b f7 06    lea    0x6f70bc0(%rip),%rdx
85   ca7fe2:       f6 04 10 10             testb  $0x10,(%rax,%rdx,1)
86   ca7fe6:       0f 84 25 05 00 00       je     ca8511
87   ca7fec:       ff 91 98 00 00 00       callq  *0x98(%rcx)
88     [...]
89   ca8511:       0f 0b                   ud2
90
91 The compiler relies on co-operation from the linker in order to assemble
92 the bit vectors for the whole program. It currently does this using LLVM's
93 `bit sets`_ mechanism together with link-time optimization.
94
95 .. _address point: https://mentorembedded.github.io/cxx-abi/abi.html#vtable-general
96 .. _bit sets: http://llvm.org/docs/BitSets.html
97 .. _ByteArrayBuilder: http://llvm.org/docs/doxygen/html/structllvm_1_1ByteArrayBuilder.html
98
99 Optimizations
100 -------------
101
102 The scheme as described above is the fully general variant of the scheme.
103 Most of the time we are able to apply one or more of the following
104 optimizations to improve binary size or performance.
105
106 In fact, if you try the above example with the current version of the
107 compiler, you will probably find that it will not use the described virtual
108 table layout or machine instructions. Some of the optimizations we are about
109 to introduce cause the compiler to use a different layout or a different
110 sequence of machine instructions.
111
112 Stripping Leading/Trailing Zeros in Bit Vectors
113 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
114
115 If a bit vector contains leading or trailing zeros, we can strip them from
116 the vector. The compiler will emit code to check if the pointer is in range
117 of the region covered by ones, and perform the bit vector check using a
118 truncated version of the bit vector. For example, the bit vectors for our
119 example class hierarchy will be emitted like this:
120
121 .. csv-table:: Bit Vectors for A, B, C
122   :header: Class, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
123
124   A,  ,  , 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1,  ,  
125   B,  ,  ,  ,  ,  ,  ,  , 1,  ,  ,  ,  ,  ,  ,  
126   C,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , 1,  ,  
127
128 Short Inline Bit Vectors
129 ~~~~~~~~~~~~~~~~~~~~~~~~
130
131 If the vector is sufficiently short, we can represent it as an inline constant
132 on x86. This saves us a few instructions when reading the correct element
133 of the bit vector.
134
135 If the bit vector fits in 32 bits, the code looks like this:
136
137 .. code-block:: none
138
139      dc2:       48 8b 03                mov    (%rbx),%rax
140      dc5:       48 8d 15 14 1e 00 00    lea    0x1e14(%rip),%rdx
141      dcc:       48 89 c1                mov    %rax,%rcx
142      dcf:       48 29 d1                sub    %rdx,%rcx
143      dd2:       48 c1 c1 3d             rol    $0x3d,%rcx
144      dd6:       48 83 f9 03             cmp    $0x3,%rcx
145      dda:       77 2f                   ja     e0b <main+0x9b>
146      ddc:       ba 09 00 00 00          mov    $0x9,%edx
147      de1:       0f a3 ca                bt     %ecx,%edx
148      de4:       73 25                   jae    e0b <main+0x9b>
149      de6:       48 89 df                mov    %rbx,%rdi
150      de9:       ff 10                   callq  *(%rax)
151     [...]
152      e0b:       0f 0b                   ud2    
153
154 Or if the bit vector fits in 64 bits:
155
156 .. code-block:: none
157
158     11a6:       48 8b 03                mov    (%rbx),%rax
159     11a9:       48 8d 15 d0 28 00 00    lea    0x28d0(%rip),%rdx
160     11b0:       48 89 c1                mov    %rax,%rcx
161     11b3:       48 29 d1                sub    %rdx,%rcx
162     11b6:       48 c1 c1 3d             rol    $0x3d,%rcx
163     11ba:       48 83 f9 2a             cmp    $0x2a,%rcx
164     11be:       77 35                   ja     11f5 <main+0xb5>
165     11c0:       48 ba 09 00 00 00 00    movabs $0x40000000009,%rdx
166     11c7:       04 00 00 
167     11ca:       48 0f a3 ca             bt     %rcx,%rdx
168     11ce:       73 25                   jae    11f5 <main+0xb5>
169     11d0:       48 89 df                mov    %rbx,%rdi
170     11d3:       ff 10                   callq  *(%rax)
171     [...]
172     11f5:       0f 0b                   ud2    
173
174 If the bit vector consists of a single bit, there is only one possible
175 virtual table, and the check can consist of a single equality comparison:
176
177 .. code-block:: none
178
179      9a2:   48 8b 03                mov    (%rbx),%rax
180      9a5:   48 8d 0d a4 13 00 00    lea    0x13a4(%rip),%rcx
181      9ac:   48 39 c8                cmp    %rcx,%rax
182      9af:   75 25                   jne    9d6 <main+0x86>
183      9b1:   48 89 df                mov    %rbx,%rdi
184      9b4:   ff 10                   callq  *(%rax)
185      [...]
186      9d6:   0f 0b                   ud2
187
188 Virtual Table Layout
189 ~~~~~~~~~~~~~~~~~~~~
190
191 The compiler lays out classes of disjoint hierarchies in separate regions
192 of the object file. At worst, bit vectors in disjoint hierarchies only
193 need to cover their disjoint hierarchy. But the closer that classes in
194 sub-hierarchies are laid out to each other, the smaller the bit vectors for
195 those sub-hierarchies need to be (see "Stripping Leading/Trailing Zeros in Bit
196 Vectors" above). The `GlobalLayoutBuilder`_ class is responsible for laying
197 out the globals efficiently to minimize the sizes of the underlying bitsets.
198
199 .. _GlobalLayoutBuilder: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Transforms/IPO/LowerBitSets.h?view=markup
200
201 Alignment
202 ~~~~~~~~~
203
204 If all gaps between address points in a particular bit vector are multiples
205 of powers of 2, the compiler can compress the bit vector by strengthening
206 the alignment requirements of the virtual table pointer. For example, given
207 this class hierarchy:
208
209 .. code-block:: c++
210
211   struct A {
212     virtual void f1();
213     virtual void f2();
214   };
215
216   struct B : A {
217     virtual void f1();
218     virtual void f2();
219     virtual void f3();
220     virtual void f4();
221     virtual void f5();
222     virtual void f6();
223   };
224
225   struct C : A {
226     virtual void f1();
227     virtual void f2();
228   };
229
230 The virtual tables will be laid out like this:
231
232 .. csv-table:: Virtual Table Layout for A, B, C
233   :header: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
234
235   A::offset-to-top, &A::rtti, &A::f1, &A::f2, B::offset-to-top, &B::rtti, &B::f1, &B::f2, &B::f3, &B::f4, &B::f5, &B::f6, C::offset-to-top, &C::rtti, &C::f1, &C::f2
236
237 Notice that each address point for A is separated by 4 words. This lets us
238 emit a compressed bit vector for A that looks like this:
239
240 .. csv-table::
241   :header: 2, 6, 10, 14
242
243   1, 1, 0, 1
244
245 At call sites, the compiler will strengthen the alignment requirements by
246 using a different rotate count. For example, on a 64-bit machine where the
247 address points are 4-word aligned (as in A from our example), the ``rol``
248 instruction may look like this:
249
250 .. code-block:: none
251
252      dd2:       48 c1 c1 3b             rol    $0x3b,%rcx
253
254 Padding to Powers of 2
255 ~~~~~~~~~~~~~~~~~~~~~~
256
257 Of course, this alignment scheme works best if the address points are
258 in fact aligned correctly. To make this more likely to happen, we insert
259 padding between virtual tables that in many cases aligns address points to
260 a power of 2. Specifically, our padding aligns virtual tables to the next
261 highest power of 2 bytes; because address points for specific base classes
262 normally appear at fixed offsets within the virtual table, this normally
263 has the effect of aligning the address points as well.
264
265 This scheme introduces tradeoffs between decreased space overhead for
266 instructions and bit vectors and increased overhead in the form of padding. We
267 therefore limit the amount of padding so that we align to no more than 128
268 bytes. This number was found experimentally to provide a good tradeoff.
269
270 Eliminating Bit Vector Checks for All-Ones Bit Vectors
271 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
272
273 If the bit vector is all ones, the bit vector check is redundant; we simply
274 need to check that the address is in range and well aligned. This is more
275 likely to occur if the virtual tables are padded.
276
277 Forward-Edge CFI for Indirect Function Calls
278 ============================================
279
280 Under forward-edge CFI for indirect function calls, each unique function
281 type has its own bit vector, and at each call site we need to check that the
282 function pointer is a member of the function type's bit vector. This scheme
283 works in a similar way to forward-edge CFI for virtual calls, the distinction
284 being that we need to build bit vectors of function entry points rather than
285 of virtual tables.
286
287 Unlike when re-arranging global variables, we cannot re-arrange functions
288 in a particular order and base our calculations on the layout of the
289 functions' entry points, as we have no idea how large a particular function
290 will end up being (the function sizes could even depend on how we arrange
291 the functions). Instead, we build a jump table, which is a block of code
292 consisting of one branch instruction for each of the functions in the bit
293 set that branches to the target function, and redirect any taken function
294 addresses to the corresponding jump table entry. In this way, the distance
295 between function entry points is predictable and controllable. In the object
296 file's symbol table, the symbols for the target functions also refer to the
297 jump table entries, so that addresses taken outside the module will pass
298 any verification done inside the module.
299
300 In more concrete terms, suppose we have three functions ``f``, ``g``, ``h``
301 which are members of a single bitset, and a function foo that returns their
302 addresses:
303
304 .. code-block:: none
305
306   f:
307   mov 0, %eax
308   ret
309
310   g:
311   mov 1, %eax
312   ret
313
314   h:
315   mov 2, %eax
316   ret
317
318   foo:
319   mov f, %eax
320   mov g, %edx
321   mov h, %ecx
322   ret
323
324 Our jump table will (conceptually) look like this:
325
326 .. code-block:: none
327
328   f:
329   jmp .Ltmp0 ; 5 bytes
330   int3       ; 1 byte
331   int3       ; 1 byte
332   int3       ; 1 byte
333
334   g:
335   jmp .Ltmp1 ; 5 bytes
336   int3       ; 1 byte
337   int3       ; 1 byte
338   int3       ; 1 byte
339
340   h:
341   jmp .Ltmp2 ; 5 bytes
342   int3       ; 1 byte
343   int3       ; 1 byte
344   int3       ; 1 byte
345
346   .Ltmp0:
347   mov 0, %eax
348   ret
349
350   .Ltmp1:
351   mov 1, %eax
352   ret
353
354   .Ltmp2:
355   mov 2, %eax
356   ret
357
358   foo:
359   mov f, %eax
360   mov g, %edx
361   mov h, %ecx
362   ret
363
364 Because the addresses of ``f``, ``g``, ``h`` are evenly spaced at a power of
365 2, and function types do not overlap (unlike class types with base classes),
366 we can normally apply the `Alignment`_ and `Eliminating Bit Vector Checks
367 for All-Ones Bit Vectors`_ optimizations thus simplifying the check at each
368 call site to a range and alignment check.
369
370 Shared library support
371 ======================
372
373 **EXPERIMENTAL**
374
375 The basic CFI mode described above assumes that the application is a
376 monolithic binary; at least that all possible virtual/indirect call
377 targets and the entire class hierarchy are known at link time. The
378 cross-DSO mode, enabled with **-f[no-]sanitize-cfi-cross-dso** relaxes
379 this requirement by allowing virtual and indirect calls to cross the
380 DSO boundary.
381
382 Assuming the following setup: the binary consists of several
383 instrumented and several uninstrumented DSOs. Some of them may be
384 dlopen-ed/dlclose-d periodically, even frequently.
385
386   - Calls made from uninstrumented DSOs are not checked and just work.
387   - Calls inside any instrumented DSO are fully protected.
388   - Calls between different instrumented DSOs are also protected, with
389      a performance penalty (in addition to the monolithic CFI
390      overhead).
391   - Calls from an instrumented DSO to an uninstrumented one are
392      unchecked and just work, with performance penalty.
393   - Calls from an instrumented DSO outside of any known DSO are
394      detected as CFI violations.
395
396 In the monolithic scheme a call site is instrumented as
397
398 .. code-block:: none
399
400    if (!InlinedFastCheck(f))
401      abort();
402    call *f
403
404 In the cross-DSO scheme it becomes
405
406 .. code-block:: none
407
408    if (!InlinedFastCheck(f))
409      __cfi_slowpath(CallSiteTypeId, f);
410    call *f
411
412 CallSiteTypeId
413 --------------
414
415 ``CallSiteTypeId`` is a stable process-wide identifier of the
416 call-site type. For a virtual call site, the type in question is the class
417 type; for an indirect function call it is the function signature. The
418 mapping from a type to an identifier is an ABI detail. In the current,
419 experimental, implementation the identifier of type T is calculated as
420 follows:
421
422   -  Obtain the mangled name for "typeinfo name for T".
423   -  Calculate MD5 hash of the name as a string.
424   -  Reinterpret the first 8 bytes of the hash as a little-endian
425      64-bit integer.
426
427 It is possible, but unlikely, that collisions in the
428 ``CallSiteTypeId`` hashing will result in weaker CFI checks that would
429 still be conservatively correct.
430
431 CFI_Check
432 ---------
433
434 In the general case, only the target DSO knows whether the call to
435 function ``f`` with type ``CallSiteTypeId`` is valid or not.  To
436 export this information, every DSO implements
437
438 .. code-block:: none
439
440    void __cfi_check(uint64 CallSiteTypeId, void *TargetAddr)
441
442 This function provides external modules with access to CFI checks for
443 the targets inside this DSO.  For each known ``CallSiteTypeId``, this
444 functions performs an ``llvm.bitset.test`` with the corresponding bit
445 set. It aborts if the type is unknown, or if the check fails.
446
447 The basic implementation is a large switch statement over all values
448 of CallSiteTypeId supported by this DSO, and each case is similar to
449 the InlinedFastCheck() in the basic CFI mode.
450
451 CFI Shadow
452 ----------
453
454 To route CFI checks to the target DSO's __cfi_check function, a
455 mapping from possible virtual / indirect call targets to
456 the corresponding __cfi_check functions is maintained. This mapping is
457 implemented as a sparse array of 2 bytes for every possible page (4096
458 bytes) of memory. The table is kept readonly (FIXME: not yet) most of
459 the time.
460
461 There are 3 types of shadow values:
462
463   -  Address in a CFI-instrumented DSO.
464   -  Unchecked address (a “trusted” non-instrumented DSO). Encoded as
465      value 0xFFFF.
466   -  Invalid address (everything else). Encoded as value 0.
467
468 For a CFI-instrumented DSO, a shadow value encodes the address of the
469 __cfi_check function for all call targets in the corresponding memory
470 page. If Addr is the target address, and V is the shadow value, then
471 the address of __cfi_check is calculated as
472
473 .. code-block:: none
474
475   __cfi_check = AlignUpTo(Addr, 4096) - (V + 1) * 4096
476
477 This works as long as __cfi_check is aligned by 4096 bytes and located
478 below any call targets in its DSO, but not more than 256MB apart from
479 them.
480
481 CFI_SlowPath
482 ------------
483
484 The slow path check is implemented in compiler-rt library as
485
486 .. code-block:: none
487
488   void __cfi_slowpath(uint64 CallSiteTypeId, void *TargetAddr)
489
490 This functions loads a shadow value for ``TargetAddr``, finds the
491 address of __cfi_check as described above and calls that.
492
493 Position-independent executable requirement
494 -------------------------------------------
495
496 Cross-DSO CFI mode requires that the main executable is built as PIE.
497 In non-PIE executables the address of an external function (taken from
498 the main executable) is the address of that function’s PLT record in
499 the main executable. This would break the CFI checks.