]> granicus.if.org Git - postgresql/blob - contrib/pgcrypto/sha2.c
pgindent run for 8.2.
[postgresql] / contrib / pgcrypto / sha2.c
1 /*      $OpenBSD: sha2.c,v 1.6 2004/05/03 02:57:36 millert Exp $        */
2
3 /*
4  * FILE:        sha2.c
5  * AUTHOR:      Aaron D. Gifford <me@aarongifford.com>
6  *
7  * Copyright (c) 2000-2001, Aaron D. Gifford
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *        notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *        notice, this list of conditions and the following disclaimer in the
17  *        documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the copyright holder nor the names of contributors
19  *        may be used to endorse or promote products derived from this software
20  *        without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.      IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35  *
36  * $PostgreSQL: pgsql/contrib/pgcrypto/sha2.c,v 1.8 2006/10/04 00:29:46 momjian Exp $
37  */
38
39 #include "postgres.h"
40
41 #include <sys/param.h>
42
43 #include "sha2.h"
44
45 /*
46  * UNROLLED TRANSFORM LOOP NOTE:
47  * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
48  * loop version for the hash transform rounds (defined using macros
49  * later in this file).  Either define on the command line, for example:
50  *
51  *       cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
52  *
53  * or define below:
54  *
55  *       #define SHA2_UNROLL_TRANSFORM
56  *
57  */
58
59
60 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
61 /*
62  * BYTE_ORDER NOTE:
63  *
64  * Please make sure that your system defines BYTE_ORDER.  If your
65  * architecture is little-endian, make sure it also defines
66  * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
67  * equivilent.
68  *
69  * If your system does not define the above, then you can do so by
70  * hand like this:
71  *
72  *       #define LITTLE_ENDIAN 1234
73  *       #define BIG_ENDIAN    4321
74  *
75  * And for little-endian machines, add:
76  *
77  *       #define BYTE_ORDER LITTLE_ENDIAN
78  *
79  * Or for big-endian machines:
80  *
81  *       #define BYTE_ORDER BIG_ENDIAN
82  *
83  * The FreeBSD machine this was written on defines BYTE_ORDER
84  * appropriately by including <sys/types.h> (which in turn includes
85  * <machine/endian.h> where the appropriate definitions are actually
86  * made).
87  */
88 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
89 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
90 #endif
91
92
93 /*** SHA-256/384/512 Various Length Definitions ***********************/
94 /* NOTE: Most of these are in sha2.h */
95 #define SHA256_SHORT_BLOCK_LENGTH       (SHA256_BLOCK_LENGTH - 8)
96 #define SHA384_SHORT_BLOCK_LENGTH       (SHA384_BLOCK_LENGTH - 16)
97 #define SHA512_SHORT_BLOCK_LENGTH       (SHA512_BLOCK_LENGTH - 16)
98
99
100 /*** ENDIAN REVERSAL MACROS *******************************************/
101 #if BYTE_ORDER == LITTLE_ENDIAN
102 #define REVERSE32(w,x)  { \
103         uint32 tmp = (w); \
104         tmp = (tmp >> 16) | (tmp << 16); \
105         (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
106 }
107 #define REVERSE64(w,x)  { \
108         uint64 tmp = (w); \
109         tmp = (tmp >> 32) | (tmp << 32); \
110         tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
111                   ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
112         (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
113                   ((tmp & 0x0000ffff0000ffffULL) << 16); \
114 }
115 #endif   /* BYTE_ORDER == LITTLE_ENDIAN */
116
117 /*
118  * Macro for incrementally adding the unsigned 64-bit integer n to the
119  * unsigned 128-bit integer (represented using a two-element array of
120  * 64-bit words):
121  */
122 #define ADDINC128(w,n)  { \
123         (w)[0] += (uint64)(n); \
124         if ((w)[0] < (n)) { \
125                 (w)[1]++; \
126         } \
127 }
128
129 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
130 /*
131  * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
132  *
133  *       NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
134  *       S is a ROTATION) because the SHA-256/384/512 description document
135  *       (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
136  *       same "backwards" definition.
137  */
138 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
139 #define R(b,x)          ((x) >> (b))
140 /* 32-bit Rotate-right (used in SHA-256): */
141 #define S32(b,x)        (((x) >> (b)) | ((x) << (32 - (b))))
142 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
143 #define S64(b,x)        (((x) >> (b)) | ((x) << (64 - (b))))
144
145 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
146 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
147 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
148
149 /* Four of six logical functions used in SHA-256: */
150 #define Sigma0_256(x)   (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
151 #define Sigma1_256(x)   (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
152 #define sigma0_256(x)   (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
153 #define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
154
155 /* Four of six logical functions used in SHA-384 and SHA-512: */
156 #define Sigma0_512(x)   (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
157 #define Sigma1_512(x)   (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
158 #define sigma0_512(x)   (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
159 #define sigma1_512(x)   (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
160
161 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
162 /* NOTE: These should not be accessed directly from outside this
163  * library -- they are intended for private internal visibility/use
164  * only.
165  */
166 static void SHA512_Last(SHA512_CTX *);
167 static void SHA256_Transform(SHA256_CTX *, const uint8 *);
168 static void SHA512_Transform(SHA512_CTX *, const uint8 *);
169
170
171 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
172 /* Hash constant words K for SHA-256: */
173 static const uint32 K256[64] = {
174         0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
175         0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
176         0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
177         0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
178         0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
179         0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
180         0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
181         0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
182         0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
183         0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
184         0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
185         0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
186         0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
187         0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
188         0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
189         0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
190 };
191
192 /* Initial hash value H for SHA-224: */
193 static const uint32 sha224_initial_hash_value[8] = {
194         0xc1059ed8UL,
195         0x367cd507UL,
196         0x3070dd17UL,
197         0xf70e5939UL,
198         0xffc00b31UL,
199         0x68581511UL,
200         0x64f98fa7UL,
201         0xbefa4fa4UL
202 };
203
204 /* Initial hash value H for SHA-256: */
205 static const uint32 sha256_initial_hash_value[8] = {
206         0x6a09e667UL,
207         0xbb67ae85UL,
208         0x3c6ef372UL,
209         0xa54ff53aUL,
210         0x510e527fUL,
211         0x9b05688cUL,
212         0x1f83d9abUL,
213         0x5be0cd19UL
214 };
215
216 /* Hash constant words K for SHA-384 and SHA-512: */
217 static const uint64 K512[80] = {
218         0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
219         0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
220         0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
221         0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
222         0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
223         0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
224         0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
225         0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
226         0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
227         0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
228         0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
229         0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
230         0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
231         0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
232         0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
233         0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
234         0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
235         0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
236         0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
237         0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
238         0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
239         0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
240         0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
241         0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
242         0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
243         0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
244         0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
245         0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
246         0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
247         0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
248         0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
249         0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
250         0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
251         0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
252         0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
253         0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
254         0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
255         0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
256         0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
257         0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
258 };
259
260 /* Initial hash value H for SHA-384 */
261 static const uint64 sha384_initial_hash_value[8] = {
262         0xcbbb9d5dc1059ed8ULL,
263         0x629a292a367cd507ULL,
264         0x9159015a3070dd17ULL,
265         0x152fecd8f70e5939ULL,
266         0x67332667ffc00b31ULL,
267         0x8eb44a8768581511ULL,
268         0xdb0c2e0d64f98fa7ULL,
269         0x47b5481dbefa4fa4ULL
270 };
271
272 /* Initial hash value H for SHA-512 */
273 static const uint64 sha512_initial_hash_value[8] = {
274         0x6a09e667f3bcc908ULL,
275         0xbb67ae8584caa73bULL,
276         0x3c6ef372fe94f82bULL,
277         0xa54ff53a5f1d36f1ULL,
278         0x510e527fade682d1ULL,
279         0x9b05688c2b3e6c1fULL,
280         0x1f83d9abfb41bd6bULL,
281         0x5be0cd19137e2179ULL
282 };
283
284
285 /*** SHA-256: *********************************************************/
286 void
287 SHA256_Init(SHA256_CTX * context)
288 {
289         if (context == NULL)
290                 return;
291         memcpy(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
292         memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
293         context->bitcount = 0;
294 }
295
296 #ifdef SHA2_UNROLL_TRANSFORM
297
298 /* Unrolled SHA-256 round macros: */
299
300 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {                                  \
301         W256[j] = (uint32)data[3] | ((uint32)data[2] << 8) |            \
302                 ((uint32)data[1] << 16) | ((uint32)data[0] << 24);              \
303         data += 4;                                                              \
304         T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
305         (d) += T1;                                                              \
306         (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));                        \
307         j++;                                                                    \
308 } while(0)
309
310 #define ROUND256(a,b,c,d,e,f,g,h) do {                                          \
311         s0 = W256[(j+1)&0x0f];                                                  \
312         s0 = sigma0_256(s0);                                                    \
313         s1 = W256[(j+14)&0x0f];                                                 \
314         s1 = sigma1_256(s1);                                                    \
315         T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +              \
316                  (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);                  \
317         (d) += T1;                                                              \
318         (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));                        \
319         j++;                                                                    \
320 } while(0)
321
322 static void
323 SHA256_Transform(SHA256_CTX * context, const uint8 *data)
324 {
325         uint32          a,
326                                 b,
327                                 c,
328                                 d,
329                                 e,
330                                 f,
331                                 g,
332                                 h,
333                                 s0,
334                                 s1;
335         uint32          T1,
336                            *W256;
337         int                     j;
338
339         W256 = (uint32 *) context->buffer;
340
341         /* Initialize registers with the prev. intermediate value */
342         a = context->state[0];
343         b = context->state[1];
344         c = context->state[2];
345         d = context->state[3];
346         e = context->state[4];
347         f = context->state[5];
348         g = context->state[6];
349         h = context->state[7];
350
351         j = 0;
352         do
353         {
354                 /* Rounds 0 to 15 (unrolled): */
355                 ROUND256_0_TO_15(a, b, c, d, e, f, g, h);
356                 ROUND256_0_TO_15(h, a, b, c, d, e, f, g);
357                 ROUND256_0_TO_15(g, h, a, b, c, d, e, f);
358                 ROUND256_0_TO_15(f, g, h, a, b, c, d, e);
359                 ROUND256_0_TO_15(e, f, g, h, a, b, c, d);
360                 ROUND256_0_TO_15(d, e, f, g, h, a, b, c);
361                 ROUND256_0_TO_15(c, d, e, f, g, h, a, b);
362                 ROUND256_0_TO_15(b, c, d, e, f, g, h, a);
363         } while (j < 16);
364
365         /* Now for the remaining rounds to 64: */
366         do
367         {
368                 ROUND256(a, b, c, d, e, f, g, h);
369                 ROUND256(h, a, b, c, d, e, f, g);
370                 ROUND256(g, h, a, b, c, d, e, f);
371                 ROUND256(f, g, h, a, b, c, d, e);
372                 ROUND256(e, f, g, h, a, b, c, d);
373                 ROUND256(d, e, f, g, h, a, b, c);
374                 ROUND256(c, d, e, f, g, h, a, b);
375                 ROUND256(b, c, d, e, f, g, h, a);
376         } while (j < 64);
377
378         /* Compute the current intermediate hash value */
379         context->state[0] += a;
380         context->state[1] += b;
381         context->state[2] += c;
382         context->state[3] += d;
383         context->state[4] += e;
384         context->state[5] += f;
385         context->state[6] += g;
386         context->state[7] += h;
387
388         /* Clean up */
389         a = b = c = d = e = f = g = h = T1 = 0;
390 }
391 #else                                                   /* SHA2_UNROLL_TRANSFORM */
392
393 static void
394 SHA256_Transform(SHA256_CTX * context, const uint8 *data)
395 {
396         uint32          a,
397                                 b,
398                                 c,
399                                 d,
400                                 e,
401                                 f,
402                                 g,
403                                 h,
404                                 s0,
405                                 s1;
406         uint32          T1,
407                                 T2,
408                            *W256;
409         int                     j;
410
411         W256 = (uint32 *) context->buffer;
412
413         /* Initialize registers with the prev. intermediate value */
414         a = context->state[0];
415         b = context->state[1];
416         c = context->state[2];
417         d = context->state[3];
418         e = context->state[4];
419         f = context->state[5];
420         g = context->state[6];
421         h = context->state[7];
422
423         j = 0;
424         do
425         {
426                 W256[j] = (uint32) data[3] | ((uint32) data[2] << 8) |
427                         ((uint32) data[1] << 16) | ((uint32) data[0] << 24);
428                 data += 4;
429                 /* Apply the SHA-256 compression function to update a..h */
430                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
431                 T2 = Sigma0_256(a) + Maj(a, b, c);
432                 h = g;
433                 g = f;
434                 f = e;
435                 e = d + T1;
436                 d = c;
437                 c = b;
438                 b = a;
439                 a = T1 + T2;
440
441                 j++;
442         } while (j < 16);
443
444         do
445         {
446                 /* Part of the message block expansion: */
447                 s0 = W256[(j + 1) & 0x0f];
448                 s0 = sigma0_256(s0);
449                 s1 = W256[(j + 14) & 0x0f];
450                 s1 = sigma1_256(s1);
451
452                 /* Apply the SHA-256 compression function to update a..h */
453                 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
454                         (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0);
455                 T2 = Sigma0_256(a) + Maj(a, b, c);
456                 h = g;
457                 g = f;
458                 f = e;
459                 e = d + T1;
460                 d = c;
461                 c = b;
462                 b = a;
463                 a = T1 + T2;
464
465                 j++;
466         } while (j < 64);
467
468         /* Compute the current intermediate hash value */
469         context->state[0] += a;
470         context->state[1] += b;
471         context->state[2] += c;
472         context->state[3] += d;
473         context->state[4] += e;
474         context->state[5] += f;
475         context->state[6] += g;
476         context->state[7] += h;
477
478         /* Clean up */
479         a = b = c = d = e = f = g = h = T1 = T2 = 0;
480 }
481 #endif   /* SHA2_UNROLL_TRANSFORM */
482
483 void
484 SHA256_Update(SHA256_CTX * context, const uint8 *data, size_t len)
485 {
486         size_t          freespace,
487                                 usedspace;
488
489         /* Calling with no data is valid (we do nothing) */
490         if (len == 0)
491                 return;
492
493         usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
494         if (usedspace > 0)
495         {
496                 /* Calculate how much free space is available in the buffer */
497                 freespace = SHA256_BLOCK_LENGTH - usedspace;
498
499                 if (len >= freespace)
500                 {
501                         /* Fill the buffer completely and process it */
502                         memcpy(&context->buffer[usedspace], data, freespace);
503                         context->bitcount += freespace << 3;
504                         len -= freespace;
505                         data += freespace;
506                         SHA256_Transform(context, context->buffer);
507                 }
508                 else
509                 {
510                         /* The buffer is not yet full */
511                         memcpy(&context->buffer[usedspace], data, len);
512                         context->bitcount += len << 3;
513                         /* Clean up: */
514                         usedspace = freespace = 0;
515                         return;
516                 }
517         }
518         while (len >= SHA256_BLOCK_LENGTH)
519         {
520                 /* Process as many complete blocks as we can */
521                 SHA256_Transform(context, data);
522                 context->bitcount += SHA256_BLOCK_LENGTH << 3;
523                 len -= SHA256_BLOCK_LENGTH;
524                 data += SHA256_BLOCK_LENGTH;
525         }
526         if (len > 0)
527         {
528                 /* There's left-overs, so save 'em */
529                 memcpy(context->buffer, data, len);
530                 context->bitcount += len << 3;
531         }
532         /* Clean up: */
533         usedspace = freespace = 0;
534 }
535
536 static void
537 SHA256_Last(SHA256_CTX * context)
538 {
539         unsigned int usedspace;
540
541         usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
542 #if BYTE_ORDER == LITTLE_ENDIAN
543         /* Convert FROM host byte order */
544         REVERSE64(context->bitcount, context->bitcount);
545 #endif
546         if (usedspace > 0)
547         {
548                 /* Begin padding with a 1 bit: */
549                 context->buffer[usedspace++] = 0x80;
550
551                 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH)
552                 {
553                         /* Set-up for the last transform: */
554                         memset(&context->buffer[usedspace], 0, SHA256_SHORT_BLOCK_LENGTH - usedspace);
555                 }
556                 else
557                 {
558                         if (usedspace < SHA256_BLOCK_LENGTH)
559                         {
560                                 memset(&context->buffer[usedspace], 0, SHA256_BLOCK_LENGTH - usedspace);
561                         }
562                         /* Do second-to-last transform: */
563                         SHA256_Transform(context, context->buffer);
564
565                         /* And set-up for the last transform: */
566                         memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
567                 }
568         }
569         else
570         {
571                 /* Set-up for the last transform: */
572                 memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
573
574                 /* Begin padding with a 1 bit: */
575                 *context->buffer = 0x80;
576         }
577         /* Set the bit count: */
578         *(uint64 *) &context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
579
580         /* Final transform: */
581         SHA256_Transform(context, context->buffer);
582 }
583
584 void
585 SHA256_Final(uint8 digest[], SHA256_CTX * context)
586 {
587         /* If no digest buffer is passed, we don't bother doing this: */
588         if (digest != NULL)
589         {
590                 SHA256_Last(context);
591
592 #if BYTE_ORDER == LITTLE_ENDIAN
593                 {
594                         /* Convert TO host byte order */
595                         int                     j;
596
597                         for (j = 0; j < 8; j++)
598                         {
599                                 REVERSE32(context->state[j], context->state[j]);
600                         }
601                 }
602 #endif
603                 memcpy(digest, context->state, SHA256_DIGEST_LENGTH);
604         }
605
606         /* Clean up state data: */
607         memset(context, 0, sizeof(*context));
608 }
609
610
611 /*** SHA-512: *********************************************************/
612 void
613 SHA512_Init(SHA512_CTX * context)
614 {
615         if (context == NULL)
616                 return;
617         memcpy(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
618         memset(context->buffer, 0, SHA512_BLOCK_LENGTH);
619         context->bitcount[0] = context->bitcount[1] = 0;
620 }
621
622 #ifdef SHA2_UNROLL_TRANSFORM
623
624 /* Unrolled SHA-512 round macros: */
625
626 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {                                  \
627         W512[j] = (uint64)data[7] | ((uint64)data[6] << 8) |            \
628                 ((uint64)data[5] << 16) | ((uint64)data[4] << 24) |             \
629                 ((uint64)data[3] << 32) | ((uint64)data[2] << 40) |             \
630                 ((uint64)data[1] << 48) | ((uint64)data[0] << 56);              \
631         data += 8;                                                              \
632         T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
633         (d) += T1;                                                              \
634         (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));                        \
635         j++;                                                                    \
636 } while(0)
637
638
639 #define ROUND512(a,b,c,d,e,f,g,h) do {                                          \
640         s0 = W512[(j+1)&0x0f];                                                  \
641         s0 = sigma0_512(s0);                                                    \
642         s1 = W512[(j+14)&0x0f];                                                 \
643         s1 = sigma1_512(s1);                                                    \
644         T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +              \
645                          (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);                  \
646         (d) += T1;                                                              \
647         (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));                        \
648         j++;                                                                    \
649 } while(0)
650
651 static void
652 SHA512_Transform(SHA512_CTX * context, const uint8 *data)
653 {
654         uint64          a,
655                                 b,
656                                 c,
657                                 d,
658                                 e,
659                                 f,
660                                 g,
661                                 h,
662                                 s0,
663                                 s1;
664         uint64          T1,
665                            *W512 = (uint64 *) context->buffer;
666         int                     j;
667
668         /* Initialize registers with the prev. intermediate value */
669         a = context->state[0];
670         b = context->state[1];
671         c = context->state[2];
672         d = context->state[3];
673         e = context->state[4];
674         f = context->state[5];
675         g = context->state[6];
676         h = context->state[7];
677
678         j = 0;
679         do
680         {
681                 ROUND512_0_TO_15(a, b, c, d, e, f, g, h);
682                 ROUND512_0_TO_15(h, a, b, c, d, e, f, g);
683                 ROUND512_0_TO_15(g, h, a, b, c, d, e, f);
684                 ROUND512_0_TO_15(f, g, h, a, b, c, d, e);
685                 ROUND512_0_TO_15(e, f, g, h, a, b, c, d);
686                 ROUND512_0_TO_15(d, e, f, g, h, a, b, c);
687                 ROUND512_0_TO_15(c, d, e, f, g, h, a, b);
688                 ROUND512_0_TO_15(b, c, d, e, f, g, h, a);
689         } while (j < 16);
690
691         /* Now for the remaining rounds up to 79: */
692         do
693         {
694                 ROUND512(a, b, c, d, e, f, g, h);
695                 ROUND512(h, a, b, c, d, e, f, g);
696                 ROUND512(g, h, a, b, c, d, e, f);
697                 ROUND512(f, g, h, a, b, c, d, e);
698                 ROUND512(e, f, g, h, a, b, c, d);
699                 ROUND512(d, e, f, g, h, a, b, c);
700                 ROUND512(c, d, e, f, g, h, a, b);
701                 ROUND512(b, c, d, e, f, g, h, a);
702         } while (j < 80);
703
704         /* Compute the current intermediate hash value */
705         context->state[0] += a;
706         context->state[1] += b;
707         context->state[2] += c;
708         context->state[3] += d;
709         context->state[4] += e;
710         context->state[5] += f;
711         context->state[6] += g;
712         context->state[7] += h;
713
714         /* Clean up */
715         a = b = c = d = e = f = g = h = T1 = 0;
716 }
717 #else                                                   /* SHA2_UNROLL_TRANSFORM */
718
719 static void
720 SHA512_Transform(SHA512_CTX * context, const uint8 *data)
721 {
722         uint64          a,
723                                 b,
724                                 c,
725                                 d,
726                                 e,
727                                 f,
728                                 g,
729                                 h,
730                                 s0,
731                                 s1;
732         uint64          T1,
733                                 T2,
734                            *W512 = (uint64 *) context->buffer;
735         int                     j;
736
737         /* Initialize registers with the prev. intermediate value */
738         a = context->state[0];
739         b = context->state[1];
740         c = context->state[2];
741         d = context->state[3];
742         e = context->state[4];
743         f = context->state[5];
744         g = context->state[6];
745         h = context->state[7];
746
747         j = 0;
748         do
749         {
750                 W512[j] = (uint64) data[7] | ((uint64) data[6] << 8) |
751                         ((uint64) data[5] << 16) | ((uint64) data[4] << 24) |
752                         ((uint64) data[3] << 32) | ((uint64) data[2] << 40) |
753                         ((uint64) data[1] << 48) | ((uint64) data[0] << 56);
754                 data += 8;
755                 /* Apply the SHA-512 compression function to update a..h */
756                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
757                 T2 = Sigma0_512(a) + Maj(a, b, c);
758                 h = g;
759                 g = f;
760                 f = e;
761                 e = d + T1;
762                 d = c;
763                 c = b;
764                 b = a;
765                 a = T1 + T2;
766
767                 j++;
768         } while (j < 16);
769
770         do
771         {
772                 /* Part of the message block expansion: */
773                 s0 = W512[(j + 1) & 0x0f];
774                 s0 = sigma0_512(s0);
775                 s1 = W512[(j + 14) & 0x0f];
776                 s1 = sigma1_512(s1);
777
778                 /* Apply the SHA-512 compression function to update a..h */
779                 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
780                         (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
781                 T2 = Sigma0_512(a) + Maj(a, b, c);
782                 h = g;
783                 g = f;
784                 f = e;
785                 e = d + T1;
786                 d = c;
787                 c = b;
788                 b = a;
789                 a = T1 + T2;
790
791                 j++;
792         } while (j < 80);
793
794         /* Compute the current intermediate hash value */
795         context->state[0] += a;
796         context->state[1] += b;
797         context->state[2] += c;
798         context->state[3] += d;
799         context->state[4] += e;
800         context->state[5] += f;
801         context->state[6] += g;
802         context->state[7] += h;
803
804         /* Clean up */
805         a = b = c = d = e = f = g = h = T1 = T2 = 0;
806 }
807 #endif   /* SHA2_UNROLL_TRANSFORM */
808
809 void
810 SHA512_Update(SHA512_CTX * context, const uint8 *data, size_t len)
811 {
812         size_t          freespace,
813                                 usedspace;
814
815         /* Calling with no data is valid (we do nothing) */
816         if (len == 0)
817                 return;
818
819         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
820         if (usedspace > 0)
821         {
822                 /* Calculate how much free space is available in the buffer */
823                 freespace = SHA512_BLOCK_LENGTH - usedspace;
824
825                 if (len >= freespace)
826                 {
827                         /* Fill the buffer completely and process it */
828                         memcpy(&context->buffer[usedspace], data, freespace);
829                         ADDINC128(context->bitcount, freespace << 3);
830                         len -= freespace;
831                         data += freespace;
832                         SHA512_Transform(context, context->buffer);
833                 }
834                 else
835                 {
836                         /* The buffer is not yet full */
837                         memcpy(&context->buffer[usedspace], data, len);
838                         ADDINC128(context->bitcount, len << 3);
839                         /* Clean up: */
840                         usedspace = freespace = 0;
841                         return;
842                 }
843         }
844         while (len >= SHA512_BLOCK_LENGTH)
845         {
846                 /* Process as many complete blocks as we can */
847                 SHA512_Transform(context, data);
848                 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
849                 len -= SHA512_BLOCK_LENGTH;
850                 data += SHA512_BLOCK_LENGTH;
851         }
852         if (len > 0)
853         {
854                 /* There's left-overs, so save 'em */
855                 memcpy(context->buffer, data, len);
856                 ADDINC128(context->bitcount, len << 3);
857         }
858         /* Clean up: */
859         usedspace = freespace = 0;
860 }
861
862 static void
863 SHA512_Last(SHA512_CTX * context)
864 {
865         unsigned int usedspace;
866
867         usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
868 #if BYTE_ORDER == LITTLE_ENDIAN
869         /* Convert FROM host byte order */
870         REVERSE64(context->bitcount[0], context->bitcount[0]);
871         REVERSE64(context->bitcount[1], context->bitcount[1]);
872 #endif
873         if (usedspace > 0)
874         {
875                 /* Begin padding with a 1 bit: */
876                 context->buffer[usedspace++] = 0x80;
877
878                 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH)
879                 {
880                         /* Set-up for the last transform: */
881                         memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
882                 }
883                 else
884                 {
885                         if (usedspace < SHA512_BLOCK_LENGTH)
886                         {
887                                 memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
888                         }
889                         /* Do second-to-last transform: */
890                         SHA512_Transform(context, context->buffer);
891
892                         /* And set-up for the last transform: */
893                         memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
894                 }
895         }
896         else
897         {
898                 /* Prepare for final transform: */
899                 memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
900
901                 /* Begin padding with a 1 bit: */
902                 *context->buffer = 0x80;
903         }
904         /* Store the length of input data (in bits): */
905         *(uint64 *) &context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
906         *(uint64 *) &context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8] = context->bitcount[0];
907
908         /* Final transform: */
909         SHA512_Transform(context, context->buffer);
910 }
911
912 void
913 SHA512_Final(uint8 digest[], SHA512_CTX * context)
914 {
915         /* If no digest buffer is passed, we don't bother doing this: */
916         if (digest != NULL)
917         {
918                 SHA512_Last(context);
919
920                 /* Save the hash data for output: */
921 #if BYTE_ORDER == LITTLE_ENDIAN
922                 {
923                         /* Convert TO host byte order */
924                         int                     j;
925
926                         for (j = 0; j < 8; j++)
927                         {
928                                 REVERSE64(context->state[j], context->state[j]);
929                         }
930                 }
931 #endif
932                 memcpy(digest, context->state, SHA512_DIGEST_LENGTH);
933         }
934
935         /* Zero out state data */
936         memset(context, 0, sizeof(*context));
937 }
938
939
940 /*** SHA-384: *********************************************************/
941 void
942 SHA384_Init(SHA384_CTX * context)
943 {
944         if (context == NULL)
945                 return;
946         memcpy(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
947         memset(context->buffer, 0, SHA384_BLOCK_LENGTH);
948         context->bitcount[0] = context->bitcount[1] = 0;
949 }
950
951 void
952 SHA384_Update(SHA384_CTX * context, const uint8 *data, size_t len)
953 {
954         SHA512_Update((SHA512_CTX *) context, data, len);
955 }
956
957 void
958 SHA384_Final(uint8 digest[], SHA384_CTX * context)
959 {
960         /* If no digest buffer is passed, we don't bother doing this: */
961         if (digest != NULL)
962         {
963                 SHA512_Last((SHA512_CTX *) context);
964
965                 /* Save the hash data for output: */
966 #if BYTE_ORDER == LITTLE_ENDIAN
967                 {
968                         /* Convert TO host byte order */
969                         int                     j;
970
971                         for (j = 0; j < 6; j++)
972                         {
973                                 REVERSE64(context->state[j], context->state[j]);
974                         }
975                 }
976 #endif
977                 memcpy(digest, context->state, SHA384_DIGEST_LENGTH);
978         }
979
980         /* Zero out state data */
981         memset(context, 0, sizeof(*context));
982 }
983
984 /*** SHA-224: *********************************************************/
985 void
986 SHA224_Init(SHA224_CTX * context)
987 {
988         if (context == NULL)
989                 return;
990         memcpy(context->state, sha224_initial_hash_value, SHA256_DIGEST_LENGTH);
991         memset(context->buffer, 0, SHA256_BLOCK_LENGTH);
992         context->bitcount = 0;
993 }
994
995 void
996 SHA224_Update(SHA224_CTX * context, const uint8 *data, size_t len)
997 {
998         SHA256_Update((SHA256_CTX *) context, data, len);
999 }
1000
1001 void
1002 SHA224_Final(uint8 digest[], SHA224_CTX * context)
1003 {
1004         /* If no digest buffer is passed, we don't bother doing this: */
1005         if (digest != NULL)
1006         {
1007                 SHA256_Last(context);
1008
1009 #if BYTE_ORDER == LITTLE_ENDIAN
1010                 {
1011                         /* Convert TO host byte order */
1012                         int                     j;
1013
1014                         for (j = 0; j < 8; j++)
1015                         {
1016                                 REVERSE32(context->state[j], context->state[j]);
1017                         }
1018                 }
1019 #endif
1020                 memcpy(digest, context->state, SHA224_DIGEST_LENGTH);
1021         }
1022
1023         /* Clean up state data: */
1024         memset(context, 0, sizeof(*context));
1025 }