]> granicus.if.org Git - zfs/blob - cmd/zpool/zpool_vdev.c
OpenZFS 8966 - Source file zfs_acl.c, function zfs_aclset_common contains a use after...
[zfs] / cmd / zpool / zpool_vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
25  * Copyright (c) 2016 Intel Corporation.
26  * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
27  */
28
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  *      Device vdevs
34  *              disk=(path=..., devid=...)
35  *              file=(path=...)
36  *
37  *      Group vdevs
38  *              raidz[1|2]=(...)
39  *              mirror=(...)
40  *
41  *      Hot spares
42  *
43  * While the underlying implementation supports it, group vdevs cannot contain
44  * other group vdevs.  All userland verification of devices is contained within
45  * this file.  If successful, the nvlist returned can be passed directly to the
46  * kernel; we've done as much verification as possible in userland.
47  *
48  * Hot spares are a special case, and passed down as an array of disk vdevs, at
49  * the same level as the root of the vdev tree.
50  *
51  * The only function exported by this file is 'make_root_vdev'.  The
52  * function performs several passes:
53  *
54  *      1. Construct the vdev specification.  Performs syntax validation and
55  *         makes sure each device is valid.
56  *      2. Check for devices in use.  Using libblkid to make sure that no
57  *         devices are also in use.  Some can be overridden using the 'force'
58  *         flag, others cannot.
59  *      3. Check for replication errors if the 'force' flag is not specified.
60  *         validates that the replication level is consistent across the
61  *         entire pool.
62  *      4. Call libzfs to label any whole disks with an EFI label.
63  */
64
65 #include <assert.h>
66 #include <ctype.h>
67 #include <devid.h>
68 #include <errno.h>
69 #include <fcntl.h>
70 #include <libintl.h>
71 #include <libnvpair.h>
72 #include <limits.h>
73 #include <sys/spa.h>
74 #include <scsi/scsi.h>
75 #include <scsi/sg.h>
76 #include <stdio.h>
77 #include <string.h>
78 #include <unistd.h>
79 #include <sys/efi_partition.h>
80 #include <sys/stat.h>
81 #include <sys/vtoc.h>
82 #include <sys/mntent.h>
83 #include <uuid/uuid.h>
84 #include <blkid/blkid.h>
85 #include "zpool_util.h"
86 #include <sys/zfs_context.h>
87
88 /*
89  * For any given vdev specification, we can have multiple errors.  The
90  * vdev_error() function keeps track of whether we have seen an error yet, and
91  * prints out a header if its the first error we've seen.
92  */
93 boolean_t error_seen;
94 boolean_t is_force;
95
96 typedef struct vdev_disk_db_entry
97 {
98         char id[24];
99         int sector_size;
100 } vdev_disk_db_entry_t;
101
102 /*
103  * Database of block devices that lie about physical sector sizes.  The
104  * identification string must be precisely 24 characters to avoid false
105  * negatives
106  */
107 static vdev_disk_db_entry_t vdev_disk_database[] = {
108         {"ATA     ADATA SSD S396 3", 8192},
109         {"ATA     APPLE SSD SM128E", 8192},
110         {"ATA     APPLE SSD SM256E", 8192},
111         {"ATA     APPLE SSD SM512E", 8192},
112         {"ATA     APPLE SSD SM768E", 8192},
113         {"ATA     C400-MTFDDAC064M", 8192},
114         {"ATA     C400-MTFDDAC128M", 8192},
115         {"ATA     C400-MTFDDAC256M", 8192},
116         {"ATA     C400-MTFDDAC512M", 8192},
117         {"ATA     Corsair Force 3 ", 8192},
118         {"ATA     Corsair Force GS", 8192},
119         {"ATA     INTEL SSDSA2CT04", 8192},
120         {"ATA     INTEL SSDSA2BZ10", 8192},
121         {"ATA     INTEL SSDSA2BZ20", 8192},
122         {"ATA     INTEL SSDSA2BZ30", 8192},
123         {"ATA     INTEL SSDSA2CW04", 8192},
124         {"ATA     INTEL SSDSA2CW08", 8192},
125         {"ATA     INTEL SSDSA2CW12", 8192},
126         {"ATA     INTEL SSDSA2CW16", 8192},
127         {"ATA     INTEL SSDSA2CW30", 8192},
128         {"ATA     INTEL SSDSA2CW60", 8192},
129         {"ATA     INTEL SSDSC2CT06", 8192},
130         {"ATA     INTEL SSDSC2CT12", 8192},
131         {"ATA     INTEL SSDSC2CT18", 8192},
132         {"ATA     INTEL SSDSC2CT24", 8192},
133         {"ATA     INTEL SSDSC2CW06", 8192},
134         {"ATA     INTEL SSDSC2CW12", 8192},
135         {"ATA     INTEL SSDSC2CW18", 8192},
136         {"ATA     INTEL SSDSC2CW24", 8192},
137         {"ATA     INTEL SSDSC2CW48", 8192},
138         {"ATA     KINGSTON SH100S3", 8192},
139         {"ATA     KINGSTON SH103S3", 8192},
140         {"ATA     M4-CT064M4SSD2  ", 8192},
141         {"ATA     M4-CT128M4SSD2  ", 8192},
142         {"ATA     M4-CT256M4SSD2  ", 8192},
143         {"ATA     M4-CT512M4SSD2  ", 8192},
144         {"ATA     OCZ-AGILITY2    ", 8192},
145         {"ATA     OCZ-AGILITY3    ", 8192},
146         {"ATA     OCZ-VERTEX2 3.5 ", 8192},
147         {"ATA     OCZ-VERTEX3     ", 8192},
148         {"ATA     OCZ-VERTEX3 LT  ", 8192},
149         {"ATA     OCZ-VERTEX3 MI  ", 8192},
150         {"ATA     OCZ-VERTEX4     ", 8192},
151         {"ATA     SAMSUNG MZ7WD120", 8192},
152         {"ATA     SAMSUNG MZ7WD240", 8192},
153         {"ATA     SAMSUNG MZ7WD480", 8192},
154         {"ATA     SAMSUNG MZ7WD960", 8192},
155         {"ATA     SAMSUNG SSD 830 ", 8192},
156         {"ATA     Samsung SSD 840 ", 8192},
157         {"ATA     SanDisk SSD U100", 8192},
158         {"ATA     TOSHIBA THNSNH06", 8192},
159         {"ATA     TOSHIBA THNSNH12", 8192},
160         {"ATA     TOSHIBA THNSNH25", 8192},
161         {"ATA     TOSHIBA THNSNH51", 8192},
162         {"ATA     APPLE SSD TS064C", 4096},
163         {"ATA     APPLE SSD TS128C", 4096},
164         {"ATA     APPLE SSD TS256C", 4096},
165         {"ATA     APPLE SSD TS512C", 4096},
166         {"ATA     INTEL SSDSA2M040", 4096},
167         {"ATA     INTEL SSDSA2M080", 4096},
168         {"ATA     INTEL SSDSA2M160", 4096},
169         {"ATA     INTEL SSDSC2MH12", 4096},
170         {"ATA     INTEL SSDSC2MH25", 4096},
171         {"ATA     OCZ CORE_SSD    ", 4096},
172         {"ATA     OCZ-VERTEX      ", 4096},
173         {"ATA     SAMSUNG MCCOE32G", 4096},
174         {"ATA     SAMSUNG MCCOE64G", 4096},
175         {"ATA     SAMSUNG SSD PM80", 4096},
176         /* Flash drives optimized for 4KB IOs on larger pages */
177         {"ATA     INTEL SSDSC2BA10", 4096},
178         {"ATA     INTEL SSDSC2BA20", 4096},
179         {"ATA     INTEL SSDSC2BA40", 4096},
180         {"ATA     INTEL SSDSC2BA80", 4096},
181         {"ATA     INTEL SSDSC2BB08", 4096},
182         {"ATA     INTEL SSDSC2BB12", 4096},
183         {"ATA     INTEL SSDSC2BB16", 4096},
184         {"ATA     INTEL SSDSC2BB24", 4096},
185         {"ATA     INTEL SSDSC2BB30", 4096},
186         {"ATA     INTEL SSDSC2BB40", 4096},
187         {"ATA     INTEL SSDSC2BB48", 4096},
188         {"ATA     INTEL SSDSC2BB60", 4096},
189         {"ATA     INTEL SSDSC2BB80", 4096},
190         {"ATA     INTEL SSDSC2BW24", 4096},
191         {"ATA     INTEL SSDSC2BP24", 4096},
192         {"ATA     INTEL SSDSC2BP48", 4096},
193         {"NA      SmrtStorSDLKAE9W", 4096},
194         /* Imported from Open Solaris */
195         {"ATA     MARVELL SD88SA02", 4096},
196         /* Advanced format Hard drives */
197         {"ATA     Hitachi HDS5C303", 4096},
198         {"ATA     SAMSUNG HD204UI ", 4096},
199         {"ATA     ST2000DL004 HD20", 4096},
200         {"ATA     WDC WD10EARS-00M", 4096},
201         {"ATA     WDC WD10EARS-00S", 4096},
202         {"ATA     WDC WD10EARS-00Z", 4096},
203         {"ATA     WDC WD15EARS-00M", 4096},
204         {"ATA     WDC WD15EARS-00S", 4096},
205         {"ATA     WDC WD15EARS-00Z", 4096},
206         {"ATA     WDC WD20EARS-00M", 4096},
207         {"ATA     WDC WD20EARS-00S", 4096},
208         {"ATA     WDC WD20EARS-00Z", 4096},
209         {"ATA     WDC WD1600BEVT-0", 4096},
210         {"ATA     WDC WD2500BEVT-0", 4096},
211         {"ATA     WDC WD3200BEVT-0", 4096},
212         {"ATA     WDC WD5000BEVT-0", 4096},
213         /* Virtual disks: Assume zvols with default volblocksize */
214 #if 0
215         {"ATA     QEMU HARDDISK   ", 8192},
216         {"IET     VIRTUAL-DISK    ", 8192},
217         {"OI      COMSTAR         ", 8192},
218         {"SUN     COMSTAR         ", 8192},
219         {"NETAPP  LUN             ", 8192},
220 #endif
221 };
222
223 static const int vdev_disk_database_size =
224         sizeof (vdev_disk_database) / sizeof (vdev_disk_database[0]);
225
226 #define INQ_REPLY_LEN   96
227 #define INQ_CMD_LEN     6
228
229 static boolean_t
230 check_sector_size_database(char *path, int *sector_size)
231 {
232         unsigned char inq_buff[INQ_REPLY_LEN];
233         unsigned char sense_buffer[32];
234         unsigned char inq_cmd_blk[INQ_CMD_LEN] =
235             {INQUIRY, 0, 0, 0, INQ_REPLY_LEN, 0};
236         sg_io_hdr_t io_hdr;
237         int error;
238         int fd;
239         int i;
240
241         /* Prepare INQUIRY command */
242         memset(&io_hdr, 0, sizeof (sg_io_hdr_t));
243         io_hdr.interface_id = 'S';
244         io_hdr.cmd_len = sizeof (inq_cmd_blk);
245         io_hdr.mx_sb_len = sizeof (sense_buffer);
246         io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
247         io_hdr.dxfer_len = INQ_REPLY_LEN;
248         io_hdr.dxferp = inq_buff;
249         io_hdr.cmdp = inq_cmd_blk;
250         io_hdr.sbp = sense_buffer;
251         io_hdr.timeout = 10;            /* 10 milliseconds is ample time */
252
253         if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
254                 return (B_FALSE);
255
256         error = ioctl(fd, SG_IO, (unsigned long) &io_hdr);
257
258         (void) close(fd);
259
260         if (error < 0)
261                 return (B_FALSE);
262
263         if ((io_hdr.info & SG_INFO_OK_MASK) != SG_INFO_OK)
264                 return (B_FALSE);
265
266         for (i = 0; i < vdev_disk_database_size; i++) {
267                 if (memcmp(inq_buff + 8, vdev_disk_database[i].id, 24))
268                         continue;
269
270                 *sector_size = vdev_disk_database[i].sector_size;
271                 return (B_TRUE);
272         }
273
274         return (B_FALSE);
275 }
276
277 /*PRINTFLIKE1*/
278 static void
279 vdev_error(const char *fmt, ...)
280 {
281         va_list ap;
282
283         if (!error_seen) {
284                 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
285                 if (!is_force)
286                         (void) fprintf(stderr, gettext("use '-f' to override "
287                             "the following errors:\n"));
288                 else
289                         (void) fprintf(stderr, gettext("the following errors "
290                             "must be manually repaired:\n"));
291                 error_seen = B_TRUE;
292         }
293
294         va_start(ap, fmt);
295         (void) vfprintf(stderr, fmt, ap);
296         va_end(ap);
297 }
298
299 /*
300  * Check that a file is valid.  All we can do in this case is check that it's
301  * not in use by another pool, and not in use by swap.
302  */
303 static int
304 check_file(const char *file, boolean_t force, boolean_t isspare)
305 {
306         char  *name;
307         int fd;
308         int ret = 0;
309         pool_state_t state;
310         boolean_t inuse;
311
312         if ((fd = open(file, O_RDONLY)) < 0)
313                 return (0);
314
315         if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
316                 const char *desc;
317
318                 switch (state) {
319                 case POOL_STATE_ACTIVE:
320                         desc = gettext("active");
321                         break;
322
323                 case POOL_STATE_EXPORTED:
324                         desc = gettext("exported");
325                         break;
326
327                 case POOL_STATE_POTENTIALLY_ACTIVE:
328                         desc = gettext("potentially active");
329                         break;
330
331                 default:
332                         desc = gettext("unknown");
333                         break;
334                 }
335
336                 /*
337                  * Allow hot spares to be shared between pools.
338                  */
339                 if (state == POOL_STATE_SPARE && isspare) {
340                         free(name);
341                         (void) close(fd);
342                         return (0);
343                 }
344
345                 if (state == POOL_STATE_ACTIVE ||
346                     state == POOL_STATE_SPARE || !force) {
347                         switch (state) {
348                         case POOL_STATE_SPARE:
349                                 vdev_error(gettext("%s is reserved as a hot "
350                                     "spare for pool %s\n"), file, name);
351                                 break;
352                         default:
353                                 vdev_error(gettext("%s is part of %s pool "
354                                     "'%s'\n"), file, desc, name);
355                                 break;
356                         }
357                         ret = -1;
358                 }
359
360                 free(name);
361         }
362
363         (void) close(fd);
364         return (ret);
365 }
366
367 static int
368 check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare)
369 {
370         int err;
371         char *value;
372
373         /* No valid type detected device is safe to use */
374         value = blkid_get_tag_value(cache, "TYPE", path);
375         if (value == NULL)
376                 return (0);
377
378         /*
379          * If libblkid detects a ZFS device, we check the device
380          * using check_file() to see if it's safe.  The one safe
381          * case is a spare device shared between multiple pools.
382          */
383         if (strcmp(value, "zfs_member") == 0) {
384                 err = check_file(path, force, isspare);
385         } else {
386                 if (force) {
387                         err = 0;
388                 } else {
389                         err = -1;
390                         vdev_error(gettext("%s contains a filesystem of "
391                             "type '%s'\n"), path, value);
392                 }
393         }
394
395         free(value);
396
397         return (err);
398 }
399
400 /*
401  * Validate that a disk including all partitions are safe to use.
402  *
403  * For EFI labeled disks this can done relatively easily with the libefi
404  * library.  The partition numbers are extracted from the label and used
405  * to generate the expected /dev/ paths.  Each partition can then be
406  * checked for conflicts.
407  *
408  * For non-EFI labeled disks (MBR/EBR/etc) the same process is possible
409  * but due to the lack of a readily available libraries this scanning is
410  * not implemented.  Instead only the device path as given is checked.
411  */
412 static int
413 check_disk(const char *path, blkid_cache cache, int force,
414     boolean_t isspare, boolean_t iswholedisk)
415 {
416         struct dk_gpt *vtoc;
417         char slice_path[MAXPATHLEN];
418         int err = 0;
419         int fd, i;
420
421         if (!iswholedisk)
422                 return (check_slice(path, cache, force, isspare));
423
424         if ((fd = open(path, O_RDONLY|O_DIRECT|O_EXCL)) < 0) {
425                 char *value = blkid_get_tag_value(cache, "TYPE", path);
426                 (void) fprintf(stderr, gettext("%s is in use and contains "
427                     "a %s filesystem.\n"), path, value ? value : "unknown");
428                 return (-1);
429         }
430
431         /*
432          * Expected to fail for non-EFI labled disks.  Just check the device
433          * as given and do not attempt to detect and scan partitions.
434          */
435         err = efi_alloc_and_read(fd, &vtoc);
436         if (err) {
437                 (void) close(fd);
438                 return (check_slice(path, cache, force, isspare));
439         }
440
441         /*
442          * The primary efi partition label is damaged however the secondary
443          * label at the end of the device is intact.  Rather than use this
444          * label we should play it safe and treat this as a non efi device.
445          */
446         if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) {
447                 efi_free(vtoc);
448                 (void) close(fd);
449
450                 if (force) {
451                         /* Partitions will now be created using the backup */
452                         return (0);
453                 } else {
454                         vdev_error(gettext("%s contains a corrupt primary "
455                             "EFI label.\n"), path);
456                         return (-1);
457                 }
458         }
459
460         for (i = 0; i < vtoc->efi_nparts; i++) {
461
462                 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED ||
463                     uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
464                         continue;
465
466                 if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
467                         (void) snprintf(slice_path, sizeof (slice_path),
468                             "%s%s%d", path, "-part", i+1);
469                 else
470                         (void) snprintf(slice_path, sizeof (slice_path),
471                             "%s%s%d", path, isdigit(path[strlen(path)-1]) ?
472                             "p" : "", i+1);
473
474                 err = check_slice(slice_path, cache, force, isspare);
475                 if (err)
476                         break;
477         }
478
479         efi_free(vtoc);
480         (void) close(fd);
481
482         return (err);
483 }
484
485 static int
486 check_device(const char *path, boolean_t force,
487     boolean_t isspare, boolean_t iswholedisk)
488 {
489         blkid_cache cache;
490         int error;
491
492         error = blkid_get_cache(&cache, NULL);
493         if (error != 0) {
494                 (void) fprintf(stderr, gettext("unable to access the blkid "
495                     "cache.\n"));
496                 return (-1);
497         }
498
499         error = check_disk(path, cache, force, isspare, iswholedisk);
500         blkid_put_cache(cache);
501
502         return (error);
503 }
504
505 /*
506  * This may be a shorthand device path or it could be total gibberish.
507  * Check to see if it is a known device available in zfs_vdev_paths.
508  * As part of this check, see if we've been given an entire disk
509  * (minus the slice number).
510  */
511 static int
512 is_shorthand_path(const char *arg, char *path, size_t path_size,
513     struct stat64 *statbuf, boolean_t *wholedisk)
514 {
515         int error;
516
517         error = zfs_resolve_shortname(arg, path, path_size);
518         if (error == 0) {
519                 *wholedisk = zfs_dev_is_whole_disk(path);
520                 if (*wholedisk || (stat64(path, statbuf) == 0))
521                         return (0);
522         }
523
524         strlcpy(path, arg, path_size);
525         memset(statbuf, 0, sizeof (*statbuf));
526         *wholedisk = B_FALSE;
527
528         return (error);
529 }
530
531 /*
532  * Determine if the given path is a hot spare within the given configuration.
533  * If no configuration is given we rely solely on the label.
534  */
535 static boolean_t
536 is_spare(nvlist_t *config, const char *path)
537 {
538         int fd;
539         pool_state_t state;
540         char *name = NULL;
541         nvlist_t *label;
542         uint64_t guid, spareguid;
543         nvlist_t *nvroot;
544         nvlist_t **spares;
545         uint_t i, nspares;
546         boolean_t inuse;
547
548         if ((fd = open(path, O_RDONLY)) < 0)
549                 return (B_FALSE);
550
551         if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
552             !inuse ||
553             state != POOL_STATE_SPARE ||
554             zpool_read_label(fd, &label, NULL) != 0) {
555                 free(name);
556                 (void) close(fd);
557                 return (B_FALSE);
558         }
559         free(name);
560         (void) close(fd);
561
562         if (config == NULL) {
563                 nvlist_free(label);
564                 return (B_TRUE);
565         }
566
567         verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
568         nvlist_free(label);
569
570         verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
571             &nvroot) == 0);
572         if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
573             &spares, &nspares) == 0) {
574                 for (i = 0; i < nspares; i++) {
575                         verify(nvlist_lookup_uint64(spares[i],
576                             ZPOOL_CONFIG_GUID, &spareguid) == 0);
577                         if (spareguid == guid)
578                                 return (B_TRUE);
579                 }
580         }
581
582         return (B_FALSE);
583 }
584
585 /*
586  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
587  * device, fill in the device id to make a complete nvlist.  Valid forms for a
588  * leaf vdev are:
589  *
590  *      /dev/xxx        Complete disk path
591  *      /xxx            Full path to file
592  *      xxx             Shorthand for <zfs_vdev_paths>/xxx
593  */
594 static nvlist_t *
595 make_leaf_vdev(nvlist_t *props, const char *arg, uint64_t is_log)
596 {
597         char path[MAXPATHLEN];
598         struct stat64 statbuf;
599         nvlist_t *vdev = NULL;
600         char *type = NULL;
601         boolean_t wholedisk = B_FALSE;
602         uint64_t ashift = 0;
603         int err;
604
605         /*
606          * Determine what type of vdev this is, and put the full path into
607          * 'path'.  We detect whether this is a device of file afterwards by
608          * checking the st_mode of the file.
609          */
610         if (arg[0] == '/') {
611                 /*
612                  * Complete device or file path.  Exact type is determined by
613                  * examining the file descriptor afterwards.  Symbolic links
614                  * are resolved to their real paths to determine whole disk
615                  * and S_ISBLK/S_ISREG type checks.  However, we are careful
616                  * to store the given path as ZPOOL_CONFIG_PATH to ensure we
617                  * can leverage udev's persistent device labels.
618                  */
619                 if (realpath(arg, path) == NULL) {
620                         (void) fprintf(stderr,
621                             gettext("cannot resolve path '%s'\n"), arg);
622                         return (NULL);
623                 }
624
625                 wholedisk = zfs_dev_is_whole_disk(path);
626                 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
627                         (void) fprintf(stderr,
628                             gettext("cannot open '%s': %s\n"),
629                             path, strerror(errno));
630                         return (NULL);
631                 }
632
633                 /* After whole disk check restore original passed path */
634                 strlcpy(path, arg, sizeof (path));
635         } else {
636                 err = is_shorthand_path(arg, path, sizeof (path),
637                     &statbuf, &wholedisk);
638                 if (err != 0) {
639                         /*
640                          * If we got ENOENT, then the user gave us
641                          * gibberish, so try to direct them with a
642                          * reasonable error message.  Otherwise,
643                          * regurgitate strerror() since it's the best we
644                          * can do.
645                          */
646                         if (err == ENOENT) {
647                                 (void) fprintf(stderr,
648                                     gettext("cannot open '%s': no such "
649                                     "device in %s\n"), arg, DISK_ROOT);
650                                 (void) fprintf(stderr,
651                                     gettext("must be a full path or "
652                                     "shorthand device name\n"));
653                                 return (NULL);
654                         } else {
655                                 (void) fprintf(stderr,
656                                     gettext("cannot open '%s': %s\n"),
657                                     path, strerror(errno));
658                                 return (NULL);
659                         }
660                 }
661         }
662
663         /*
664          * Determine whether this is a device or a file.
665          */
666         if (wholedisk || S_ISBLK(statbuf.st_mode)) {
667                 type = VDEV_TYPE_DISK;
668         } else if (S_ISREG(statbuf.st_mode)) {
669                 type = VDEV_TYPE_FILE;
670         } else {
671                 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
672                     "block device or regular file\n"), path);
673                 return (NULL);
674         }
675
676         /*
677          * Finally, we have the complete device or file, and we know that it is
678          * acceptable to use.  Construct the nvlist to describe this vdev.  All
679          * vdevs have a 'path' element, and devices also have a 'devid' element.
680          */
681         verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
682         verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
683         verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
684         verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
685         if (strcmp(type, VDEV_TYPE_DISK) == 0)
686                 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
687                     (uint64_t)wholedisk) == 0);
688
689         /*
690          * Override defaults if custom properties are provided.
691          */
692         if (props != NULL) {
693                 char *value = NULL;
694
695                 if (nvlist_lookup_string(props,
696                     zpool_prop_to_name(ZPOOL_PROP_ASHIFT), &value) == 0) {
697                         if (zfs_nicestrtonum(NULL, value, &ashift) != 0) {
698                                 (void) fprintf(stderr,
699                                     gettext("ashift must be a number.\n"));
700                                 return (NULL);
701                         }
702                         if (ashift != 0 &&
703                             (ashift < ASHIFT_MIN || ashift > ASHIFT_MAX)) {
704                                 (void) fprintf(stderr,
705                                     gettext("invalid 'ashift=%" PRIu64 "' "
706                                     "property: only values between %" PRId32 " "
707                                     "and %" PRId32 " are allowed.\n"),
708                                     ashift, ASHIFT_MIN, ASHIFT_MAX);
709                                 return (NULL);
710                         }
711                 }
712         }
713
714         /*
715          * If the device is known to incorrectly report its physical sector
716          * size explicitly provide the known correct value.
717          */
718         if (ashift == 0) {
719                 int sector_size;
720
721                 if (check_sector_size_database(path, &sector_size) == B_TRUE)
722                         ashift = highbit64(sector_size) - 1;
723         }
724
725         if (ashift > 0)
726                 (void) nvlist_add_uint64(vdev, ZPOOL_CONFIG_ASHIFT, ashift);
727
728         return (vdev);
729 }
730
731 /*
732  * Go through and verify the replication level of the pool is consistent.
733  * Performs the following checks:
734  *
735  *      For the new spec, verifies that devices in mirrors and raidz are the
736  *      same size.
737  *
738  *      If the current configuration already has inconsistent replication
739  *      levels, ignore any other potential problems in the new spec.
740  *
741  *      Otherwise, make sure that the current spec (if there is one) and the new
742  *      spec have consistent replication levels.
743  */
744 typedef struct replication_level {
745         char *zprl_type;
746         uint64_t zprl_children;
747         uint64_t zprl_parity;
748 } replication_level_t;
749
750 #define ZPOOL_FUZZ      (16 * 1024 * 1024)
751
752 static boolean_t
753 is_raidz_mirror(replication_level_t *a, replication_level_t *b,
754     replication_level_t **raidz, replication_level_t **mirror)
755 {
756         if (strcmp(a->zprl_type, "raidz") == 0 &&
757             strcmp(b->zprl_type, "mirror") == 0) {
758                 *raidz = a;
759                 *mirror = b;
760                 return (B_TRUE);
761         }
762         return (B_FALSE);
763 }
764
765 /*
766  * Given a list of toplevel vdevs, return the current replication level.  If
767  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
768  * an error message will be displayed for each self-inconsistent vdev.
769  */
770 static replication_level_t *
771 get_replication(nvlist_t *nvroot, boolean_t fatal)
772 {
773         nvlist_t **top;
774         uint_t t, toplevels;
775         nvlist_t **child;
776         uint_t c, children;
777         nvlist_t *nv;
778         char *type;
779         replication_level_t lastrep = {0};
780         replication_level_t rep;
781         replication_level_t *ret;
782         replication_level_t *raidz, *mirror;
783         boolean_t dontreport;
784
785         ret = safe_malloc(sizeof (replication_level_t));
786
787         verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
788             &top, &toplevels) == 0);
789
790         for (t = 0; t < toplevels; t++) {
791                 uint64_t is_log = B_FALSE;
792
793                 nv = top[t];
794
795                 /*
796                  * For separate logs we ignore the top level vdev replication
797                  * constraints.
798                  */
799                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
800                 if (is_log)
801                         continue;
802
803                 /* Ignore holes introduced by removing aux devices */
804                 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
805                 if (strcmp(type, VDEV_TYPE_HOLE) == 0)
806                         continue;
807
808                 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
809                     &child, &children) != 0) {
810                         /*
811                          * This is a 'file' or 'disk' vdev.
812                          */
813                         rep.zprl_type = type;
814                         rep.zprl_children = 1;
815                         rep.zprl_parity = 0;
816                 } else {
817                         uint64_t vdev_size;
818
819                         /*
820                          * This is a mirror or RAID-Z vdev.  Go through and make
821                          * sure the contents are all the same (files vs. disks),
822                          * keeping track of the number of elements in the
823                          * process.
824                          *
825                          * We also check that the size of each vdev (if it can
826                          * be determined) is the same.
827                          */
828                         rep.zprl_type = type;
829                         rep.zprl_children = 0;
830
831                         if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
832                                 verify(nvlist_lookup_uint64(nv,
833                                     ZPOOL_CONFIG_NPARITY,
834                                     &rep.zprl_parity) == 0);
835                                 assert(rep.zprl_parity != 0);
836                         } else {
837                                 rep.zprl_parity = 0;
838                         }
839
840                         /*
841                          * The 'dontreport' variable indicates that we've
842                          * already reported an error for this spec, so don't
843                          * bother doing it again.
844                          */
845                         type = NULL;
846                         dontreport = 0;
847                         vdev_size = -1ULL;
848                         for (c = 0; c < children; c++) {
849                                 nvlist_t *cnv = child[c];
850                                 char *path;
851                                 struct stat64 statbuf;
852                                 uint64_t size = -1ULL;
853                                 char *childtype;
854                                 int fd, err;
855
856                                 rep.zprl_children++;
857
858                                 verify(nvlist_lookup_string(cnv,
859                                     ZPOOL_CONFIG_TYPE, &childtype) == 0);
860
861                                 /*
862                                  * If this is a replacing or spare vdev, then
863                                  * get the real first child of the vdev: do this
864                                  * in a loop because replacing and spare vdevs
865                                  * can be nested.
866                                  */
867                                 while (strcmp(childtype,
868                                     VDEV_TYPE_REPLACING) == 0 ||
869                                     strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
870                                         nvlist_t **rchild;
871                                         uint_t rchildren;
872
873                                         verify(nvlist_lookup_nvlist_array(cnv,
874                                             ZPOOL_CONFIG_CHILDREN, &rchild,
875                                             &rchildren) == 0);
876                                         assert(rchildren == 2);
877                                         cnv = rchild[0];
878
879                                         verify(nvlist_lookup_string(cnv,
880                                             ZPOOL_CONFIG_TYPE,
881                                             &childtype) == 0);
882                                 }
883
884                                 verify(nvlist_lookup_string(cnv,
885                                     ZPOOL_CONFIG_PATH, &path) == 0);
886
887                                 /*
888                                  * If we have a raidz/mirror that combines disks
889                                  * with files, report it as an error.
890                                  */
891                                 if (!dontreport && type != NULL &&
892                                     strcmp(type, childtype) != 0) {
893                                         if (ret != NULL)
894                                                 free(ret);
895                                         ret = NULL;
896                                         if (fatal)
897                                                 vdev_error(gettext(
898                                                     "mismatched replication "
899                                                     "level: %s contains both "
900                                                     "files and devices\n"),
901                                                     rep.zprl_type);
902                                         else
903                                                 return (NULL);
904                                         dontreport = B_TRUE;
905                                 }
906
907                                 /*
908                                  * According to stat(2), the value of 'st_size'
909                                  * is undefined for block devices and character
910                                  * devices.  But there is no effective way to
911                                  * determine the real size in userland.
912                                  *
913                                  * Instead, we'll take advantage of an
914                                  * implementation detail of spec_size().  If the
915                                  * device is currently open, then we (should)
916                                  * return a valid size.
917                                  *
918                                  * If we still don't get a valid size (indicated
919                                  * by a size of 0 or MAXOFFSET_T), then ignore
920                                  * this device altogether.
921                                  */
922                                 if ((fd = open(path, O_RDONLY)) >= 0) {
923                                         err = fstat64_blk(fd, &statbuf);
924                                         (void) close(fd);
925                                 } else {
926                                         err = stat64(path, &statbuf);
927                                 }
928
929                                 if (err != 0 ||
930                                     statbuf.st_size == 0 ||
931                                     statbuf.st_size == MAXOFFSET_T)
932                                         continue;
933
934                                 size = statbuf.st_size;
935
936                                 /*
937                                  * Also make sure that devices and
938                                  * slices have a consistent size.  If
939                                  * they differ by a significant amount
940                                  * (~16MB) then report an error.
941                                  */
942                                 if (!dontreport &&
943                                     (vdev_size != -1ULL &&
944                                     (labs(size - vdev_size) >
945                                     ZPOOL_FUZZ))) {
946                                         if (ret != NULL)
947                                                 free(ret);
948                                         ret = NULL;
949                                         if (fatal)
950                                                 vdev_error(gettext(
951                                                     "%s contains devices of "
952                                                     "different sizes\n"),
953                                                     rep.zprl_type);
954                                         else
955                                                 return (NULL);
956                                         dontreport = B_TRUE;
957                                 }
958
959                                 type = childtype;
960                                 vdev_size = size;
961                         }
962                 }
963
964                 /*
965                  * At this point, we have the replication of the last toplevel
966                  * vdev in 'rep'.  Compare it to 'lastrep' to see if its
967                  * different.
968                  */
969                 if (lastrep.zprl_type != NULL) {
970                         if (is_raidz_mirror(&lastrep, &rep, &raidz, &mirror) ||
971                             is_raidz_mirror(&rep, &lastrep, &raidz, &mirror)) {
972                                 /*
973                                  * Accepted raidz and mirror when they can
974                                  * handle the same number of disk failures.
975                                  */
976                                 if (raidz->zprl_parity !=
977                                     mirror->zprl_children - 1) {
978                                         if (ret != NULL)
979                                                 free(ret);
980                                         ret = NULL;
981                                         if (fatal)
982                                                 vdev_error(gettext(
983                                                     "mismatched replication "
984                                                     "level: "
985                                                     "%s and %s vdevs with "
986                                                     "different redundancy, "
987                                                     "%llu vs. %llu (%llu-way) "
988                                                     "are present\n"),
989                                                     raidz->zprl_type,
990                                                     mirror->zprl_type,
991                                                     raidz->zprl_parity,
992                                                     mirror->zprl_children - 1,
993                                                     mirror->zprl_children);
994                                         else
995                                                 return (NULL);
996                                 }
997                         } else if (strcmp(lastrep.zprl_type, rep.zprl_type) !=
998                             0) {
999                                 if (ret != NULL)
1000                                         free(ret);
1001                                 ret = NULL;
1002                                 if (fatal)
1003                                         vdev_error(gettext(
1004                                             "mismatched replication level: "
1005                                             "both %s and %s vdevs are "
1006                                             "present\n"),
1007                                             lastrep.zprl_type, rep.zprl_type);
1008                                 else
1009                                         return (NULL);
1010                         } else if (lastrep.zprl_parity != rep.zprl_parity) {
1011                                 if (ret)
1012                                         free(ret);
1013                                 ret = NULL;
1014                                 if (fatal)
1015                                         vdev_error(gettext(
1016                                             "mismatched replication level: "
1017                                             "both %llu and %llu device parity "
1018                                             "%s vdevs are present\n"),
1019                                             lastrep.zprl_parity,
1020                                             rep.zprl_parity,
1021                                             rep.zprl_type);
1022                                 else
1023                                         return (NULL);
1024                         } else if (lastrep.zprl_children != rep.zprl_children) {
1025                                 if (ret)
1026                                         free(ret);
1027                                 ret = NULL;
1028                                 if (fatal)
1029                                         vdev_error(gettext(
1030                                             "mismatched replication level: "
1031                                             "both %llu-way and %llu-way %s "
1032                                             "vdevs are present\n"),
1033                                             lastrep.zprl_children,
1034                                             rep.zprl_children,
1035                                             rep.zprl_type);
1036                                 else
1037                                         return (NULL);
1038                         }
1039                 }
1040                 lastrep = rep;
1041         }
1042
1043         if (ret != NULL)
1044                 *ret = rep;
1045
1046         return (ret);
1047 }
1048
1049 /*
1050  * Check the replication level of the vdev spec against the current pool.  Calls
1051  * get_replication() to make sure the new spec is self-consistent.  If the pool
1052  * has a consistent replication level, then we ignore any errors.  Otherwise,
1053  * report any difference between the two.
1054  */
1055 static int
1056 check_replication(nvlist_t *config, nvlist_t *newroot)
1057 {
1058         nvlist_t **child;
1059         uint_t  children;
1060         replication_level_t *current = NULL, *new;
1061         replication_level_t *raidz, *mirror;
1062         int ret;
1063
1064         /*
1065          * If we have a current pool configuration, check to see if it's
1066          * self-consistent.  If not, simply return success.
1067          */
1068         if (config != NULL) {
1069                 nvlist_t *nvroot;
1070
1071                 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1072                     &nvroot) == 0);
1073                 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
1074                         return (0);
1075         }
1076         /*
1077          * for spares there may be no children, and therefore no
1078          * replication level to check
1079          */
1080         if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
1081             &child, &children) != 0) || (children == 0)) {
1082                 free(current);
1083                 return (0);
1084         }
1085
1086         /*
1087          * If all we have is logs then there's no replication level to check.
1088          */
1089         if (num_logs(newroot) == children) {
1090                 free(current);
1091                 return (0);
1092         }
1093
1094         /*
1095          * Get the replication level of the new vdev spec, reporting any
1096          * inconsistencies found.
1097          */
1098         if ((new = get_replication(newroot, B_TRUE)) == NULL) {
1099                 free(current);
1100                 return (-1);
1101         }
1102
1103         /*
1104          * Check to see if the new vdev spec matches the replication level of
1105          * the current pool.
1106          */
1107         ret = 0;
1108         if (current != NULL) {
1109                 if (is_raidz_mirror(current, new, &raidz, &mirror) ||
1110                     is_raidz_mirror(new, current, &raidz, &mirror)) {
1111                         if (raidz->zprl_parity != mirror->zprl_children - 1) {
1112                                 vdev_error(gettext(
1113                                     "mismatched replication level: pool and "
1114                                     "new vdev with different redundancy, %s "
1115                                     "and %s vdevs, %llu vs. %llu (%llu-way)\n"),
1116                                     raidz->zprl_type,
1117                                     mirror->zprl_type,
1118                                     raidz->zprl_parity,
1119                                     mirror->zprl_children - 1,
1120                                     mirror->zprl_children);
1121                                 ret = -1;
1122                         }
1123                 } else if (strcmp(current->zprl_type, new->zprl_type) != 0) {
1124                         vdev_error(gettext(
1125                             "mismatched replication level: pool uses %s "
1126                             "and new vdev is %s\n"),
1127                             current->zprl_type, new->zprl_type);
1128                         ret = -1;
1129                 } else if (current->zprl_parity != new->zprl_parity) {
1130                         vdev_error(gettext(
1131                             "mismatched replication level: pool uses %llu "
1132                             "device parity and new vdev uses %llu\n"),
1133                             current->zprl_parity, new->zprl_parity);
1134                         ret = -1;
1135                 } else if (current->zprl_children != new->zprl_children) {
1136                         vdev_error(gettext(
1137                             "mismatched replication level: pool uses %llu-way "
1138                             "%s and new vdev uses %llu-way %s\n"),
1139                             current->zprl_children, current->zprl_type,
1140                             new->zprl_children, new->zprl_type);
1141                         ret = -1;
1142                 }
1143         }
1144
1145         free(new);
1146         if (current != NULL)
1147                 free(current);
1148
1149         return (ret);
1150 }
1151
1152 static int
1153 zero_label(char *path)
1154 {
1155         const int size = 4096;
1156         char buf[size];
1157         int err, fd;
1158
1159         if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) {
1160                 (void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
1161                     path, strerror(errno));
1162                 return (-1);
1163         }
1164
1165         memset(buf, 0, size);
1166         err = write(fd, buf, size);
1167         (void) fdatasync(fd);
1168         (void) close(fd);
1169
1170         if (err == -1) {
1171                 (void) fprintf(stderr, gettext("cannot zero first %d bytes "
1172                     "of '%s': %s\n"), size, path, strerror(errno));
1173                 return (-1);
1174         }
1175
1176         if (err != size) {
1177                 (void) fprintf(stderr, gettext("could only zero %d/%d bytes "
1178                     "of '%s'\n"), err, size, path);
1179                 return (-1);
1180         }
1181
1182         return (0);
1183 }
1184
1185 /*
1186  * Go through and find any whole disks in the vdev specification, labelling them
1187  * as appropriate.  When constructing the vdev spec, we were unable to open this
1188  * device in order to provide a devid.  Now that we have labelled the disk and
1189  * know that slice 0 is valid, we can construct the devid now.
1190  *
1191  * If the disk was already labeled with an EFI label, we will have gotten the
1192  * devid already (because we were able to open the whole disk).  Otherwise, we
1193  * need to get the devid after we label the disk.
1194  */
1195 static int
1196 make_disks(zpool_handle_t *zhp, nvlist_t *nv)
1197 {
1198         nvlist_t **child;
1199         uint_t c, children;
1200         char *type, *path;
1201         char devpath[MAXPATHLEN];
1202         char udevpath[MAXPATHLEN];
1203         uint64_t wholedisk;
1204         struct stat64 statbuf;
1205         int is_exclusive = 0;
1206         int fd;
1207         int ret;
1208
1209         verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1210
1211         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1212             &child, &children) != 0) {
1213
1214                 if (strcmp(type, VDEV_TYPE_DISK) != 0)
1215                         return (0);
1216
1217                 /*
1218                  * We have a disk device.  If this is a whole disk write
1219                  * out the efi partition table, otherwise write zero's to
1220                  * the first 4k of the partition.  This is to ensure that
1221                  * libblkid will not misidentify the partition due to a
1222                  * magic value left by the previous filesystem.
1223                  */
1224                 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1225                 verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1226                     &wholedisk));
1227
1228                 if (!wholedisk) {
1229                         /*
1230                          * Update device id string for mpath nodes (Linux only)
1231                          */
1232                         if (is_mpath_whole_disk(path))
1233                                 update_vdev_config_dev_strs(nv);
1234
1235                         if (!is_spare(NULL, path))
1236                                 (void) zero_label(path);
1237                         return (0);
1238                 }
1239
1240                 if (realpath(path, devpath) == NULL) {
1241                         ret = errno;
1242                         (void) fprintf(stderr,
1243                             gettext("cannot resolve path '%s'\n"), path);
1244                         return (ret);
1245                 }
1246
1247                 /*
1248                  * Remove any previously existing symlink from a udev path to
1249                  * the device before labeling the disk.  This ensures that
1250                  * only newly created links are used.  Otherwise there is a
1251                  * window between when udev deletes and recreates the link
1252                  * during which access attempts will fail with ENOENT.
1253                  */
1254                 strlcpy(udevpath, path, MAXPATHLEN);
1255                 (void) zfs_append_partition(udevpath, MAXPATHLEN);
1256
1257                 fd = open(devpath, O_RDWR|O_EXCL);
1258                 if (fd == -1) {
1259                         if (errno == EBUSY)
1260                                 is_exclusive = 1;
1261                 } else {
1262                         (void) close(fd);
1263                 }
1264
1265                 /*
1266                  * If the partition exists, contains a valid spare label,
1267                  * and is opened exclusively there is no need to partition
1268                  * it.  Hot spares have already been partitioned and are
1269                  * held open exclusively by the kernel as a safety measure.
1270                  *
1271                  * If the provided path is for a /dev/disk/ device its
1272                  * symbolic link will be removed, partition table created,
1273                  * and then block until udev creates the new link.
1274                  */
1275                 if (!is_exclusive || !is_spare(NULL, udevpath)) {
1276                         char *devnode = strrchr(devpath, '/') + 1;
1277
1278                         ret = strncmp(udevpath, UDISK_ROOT, strlen(UDISK_ROOT));
1279                         if (ret == 0) {
1280                                 ret = lstat64(udevpath, &statbuf);
1281                                 if (ret == 0 && S_ISLNK(statbuf.st_mode))
1282                                         (void) unlink(udevpath);
1283                         }
1284
1285                         /*
1286                          * When labeling a pool the raw device node name
1287                          * is provided as it appears under /dev/.
1288                          */
1289                         if (zpool_label_disk(g_zfs, zhp, devnode) == -1)
1290                                 return (-1);
1291
1292                         /*
1293                          * Wait for udev to signal the device is available
1294                          * by the provided path.
1295                          */
1296                         ret = zpool_label_disk_wait(udevpath, DISK_LABEL_WAIT);
1297                         if (ret) {
1298                                 (void) fprintf(stderr,
1299                                     gettext("missing link: %s was "
1300                                     "partitioned but %s is missing\n"),
1301                                     devnode, udevpath);
1302                                 return (ret);
1303                         }
1304
1305                         ret = zero_label(udevpath);
1306                         if (ret)
1307                                 return (ret);
1308                 }
1309
1310                 /*
1311                  * Update the path to refer to the partition.  The presence of
1312                  * the 'whole_disk' field indicates to the CLI that we should
1313                  * chop off the partition number when displaying the device in
1314                  * future output.
1315                  */
1316                 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, udevpath) == 0);
1317
1318                 /*
1319                  * Update device id strings for whole disks (Linux only)
1320                  */
1321                 update_vdev_config_dev_strs(nv);
1322
1323                 return (0);
1324         }
1325
1326         for (c = 0; c < children; c++)
1327                 if ((ret = make_disks(zhp, child[c])) != 0)
1328                         return (ret);
1329
1330         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1331             &child, &children) == 0)
1332                 for (c = 0; c < children; c++)
1333                         if ((ret = make_disks(zhp, child[c])) != 0)
1334                                 return (ret);
1335
1336         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1337             &child, &children) == 0)
1338                 for (c = 0; c < children; c++)
1339                         if ((ret = make_disks(zhp, child[c])) != 0)
1340                                 return (ret);
1341
1342         return (0);
1343 }
1344
1345 /*
1346  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1347  * the majority of this task.
1348  */
1349 static boolean_t
1350 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1351     boolean_t replacing, boolean_t isspare)
1352 {
1353         nvlist_t **child;
1354         uint_t c, children;
1355         char *type, *path;
1356         int ret = 0;
1357         char buf[MAXPATHLEN];
1358         uint64_t wholedisk = B_FALSE;
1359         boolean_t anyinuse = B_FALSE;
1360
1361         verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1362
1363         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1364             &child, &children) != 0) {
1365
1366                 verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path));
1367                 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1368                         verify(!nvlist_lookup_uint64(nv,
1369                             ZPOOL_CONFIG_WHOLE_DISK, &wholedisk));
1370
1371                 /*
1372                  * As a generic check, we look to see if this is a replace of a
1373                  * hot spare within the same pool.  If so, we allow it
1374                  * regardless of what libblkid or zpool_in_use() says.
1375                  */
1376                 if (replacing) {
1377                         (void) strlcpy(buf, path, sizeof (buf));
1378                         if (wholedisk) {
1379                                 ret = zfs_append_partition(buf,  sizeof (buf));
1380                                 if (ret == -1)
1381                                         return (-1);
1382                         }
1383
1384                         if (is_spare(config, buf))
1385                                 return (B_FALSE);
1386                 }
1387
1388                 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1389                         ret = check_device(path, force, isspare, wholedisk);
1390
1391                 else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1392                         ret = check_file(path, force, isspare);
1393
1394                 return (ret != 0);
1395         }
1396
1397         for (c = 0; c < children; c++)
1398                 if (is_device_in_use(config, child[c], force, replacing,
1399                     B_FALSE))
1400                         anyinuse = B_TRUE;
1401
1402         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1403             &child, &children) == 0)
1404                 for (c = 0; c < children; c++)
1405                         if (is_device_in_use(config, child[c], force, replacing,
1406                             B_TRUE))
1407                                 anyinuse = B_TRUE;
1408
1409         if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1410             &child, &children) == 0)
1411                 for (c = 0; c < children; c++)
1412                         if (is_device_in_use(config, child[c], force, replacing,
1413                             B_FALSE))
1414                                 anyinuse = B_TRUE;
1415
1416         return (anyinuse);
1417 }
1418
1419 static const char *
1420 is_grouping(const char *type, int *mindev, int *maxdev)
1421 {
1422         if (strncmp(type, "raidz", 5) == 0) {
1423                 const char *p = type + 5;
1424                 char *end;
1425                 long nparity;
1426
1427                 if (*p == '\0') {
1428                         nparity = 1;
1429                 } else if (*p == '0') {
1430                         return (NULL); /* no zero prefixes allowed */
1431                 } else {
1432                         errno = 0;
1433                         nparity = strtol(p, &end, 10);
1434                         if (errno != 0 || nparity < 1 || nparity >= 255 ||
1435                             *end != '\0')
1436                                 return (NULL);
1437                 }
1438
1439                 if (mindev != NULL)
1440                         *mindev = nparity + 1;
1441                 if (maxdev != NULL)
1442                         *maxdev = 255;
1443                 return (VDEV_TYPE_RAIDZ);
1444         }
1445
1446         if (maxdev != NULL)
1447                 *maxdev = INT_MAX;
1448
1449         if (strcmp(type, "mirror") == 0) {
1450                 if (mindev != NULL)
1451                         *mindev = 2;
1452                 return (VDEV_TYPE_MIRROR);
1453         }
1454
1455         if (strcmp(type, "spare") == 0) {
1456                 if (mindev != NULL)
1457                         *mindev = 1;
1458                 return (VDEV_TYPE_SPARE);
1459         }
1460
1461         if (strcmp(type, "log") == 0) {
1462                 if (mindev != NULL)
1463                         *mindev = 1;
1464                 return (VDEV_TYPE_LOG);
1465         }
1466
1467         if (strcmp(type, "cache") == 0) {
1468                 if (mindev != NULL)
1469                         *mindev = 1;
1470                 return (VDEV_TYPE_L2CACHE);
1471         }
1472
1473         return (NULL);
1474 }
1475
1476 /*
1477  * Construct a syntactically valid vdev specification,
1478  * and ensure that all devices and files exist and can be opened.
1479  * Note: we don't bother freeing anything in the error paths
1480  * because the program is just going to exit anyway.
1481  */
1482 nvlist_t *
1483 construct_spec(nvlist_t *props, int argc, char **argv)
1484 {
1485         nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1486         int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1487         const char *type;
1488         uint64_t is_log;
1489         boolean_t seen_logs;
1490
1491         top = NULL;
1492         toplevels = 0;
1493         spares = NULL;
1494         l2cache = NULL;
1495         nspares = 0;
1496         nlogs = 0;
1497         nl2cache = 0;
1498         is_log = B_FALSE;
1499         seen_logs = B_FALSE;
1500         nvroot = NULL;
1501
1502         while (argc > 0) {
1503                 nv = NULL;
1504
1505                 /*
1506                  * If it's a mirror or raidz, the subsequent arguments are
1507                  * its leaves -- until we encounter the next mirror or raidz.
1508                  */
1509                 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
1510                         nvlist_t **child = NULL;
1511                         int c, children = 0;
1512
1513                         if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1514                                 if (spares != NULL) {
1515                                         (void) fprintf(stderr,
1516                                             gettext("invalid vdev "
1517                                             "specification: 'spare' can be "
1518                                             "specified only once\n"));
1519                                         goto spec_out;
1520                                 }
1521                                 is_log = B_FALSE;
1522                         }
1523
1524                         if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1525                                 if (seen_logs) {
1526                                         (void) fprintf(stderr,
1527                                             gettext("invalid vdev "
1528                                             "specification: 'log' can be "
1529                                             "specified only once\n"));
1530                                         goto spec_out;
1531                                 }
1532                                 seen_logs = B_TRUE;
1533                                 is_log = B_TRUE;
1534                                 argc--;
1535                                 argv++;
1536                                 /*
1537                                  * A log is not a real grouping device.
1538                                  * We just set is_log and continue.
1539                                  */
1540                                 continue;
1541                         }
1542
1543                         if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1544                                 if (l2cache != NULL) {
1545                                         (void) fprintf(stderr,
1546                                             gettext("invalid vdev "
1547                                             "specification: 'cache' can be "
1548                                             "specified only once\n"));
1549                                         goto spec_out;
1550                                 }
1551                                 is_log = B_FALSE;
1552                         }
1553
1554                         if (is_log) {
1555                                 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1556                                         (void) fprintf(stderr,
1557                                             gettext("invalid vdev "
1558                                             "specification: unsupported 'log' "
1559                                             "device: %s\n"), type);
1560                                         goto spec_out;
1561                                 }
1562                                 nlogs++;
1563                         }
1564
1565                         for (c = 1; c < argc; c++) {
1566                                 if (is_grouping(argv[c], NULL, NULL) != NULL)
1567                                         break;
1568                                 children++;
1569                                 child = realloc(child,
1570                                     children * sizeof (nvlist_t *));
1571                                 if (child == NULL)
1572                                         zpool_no_memory();
1573                                 if ((nv = make_leaf_vdev(props, argv[c],
1574                                     B_FALSE)) == NULL) {
1575                                         for (c = 0; c < children - 1; c++)
1576                                                 nvlist_free(child[c]);
1577                                         free(child);
1578                                         goto spec_out;
1579                                 }
1580
1581                                 child[children - 1] = nv;
1582                         }
1583
1584                         if (children < mindev) {
1585                                 (void) fprintf(stderr, gettext("invalid vdev "
1586                                     "specification: %s requires at least %d "
1587                                     "devices\n"), argv[0], mindev);
1588                                 for (c = 0; c < children; c++)
1589                                         nvlist_free(child[c]);
1590                                 free(child);
1591                                 goto spec_out;
1592                         }
1593
1594                         if (children > maxdev) {
1595                                 (void) fprintf(stderr, gettext("invalid vdev "
1596                                     "specification: %s supports no more than "
1597                                     "%d devices\n"), argv[0], maxdev);
1598                                 for (c = 0; c < children; c++)
1599                                         nvlist_free(child[c]);
1600                                 free(child);
1601                                 goto spec_out;
1602                         }
1603
1604                         argc -= c;
1605                         argv += c;
1606
1607                         if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1608                                 spares = child;
1609                                 nspares = children;
1610                                 continue;
1611                         } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1612                                 l2cache = child;
1613                                 nl2cache = children;
1614                                 continue;
1615                         } else {
1616                                 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1617                                     0) == 0);
1618                                 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1619                                     type) == 0);
1620                                 verify(nvlist_add_uint64(nv,
1621                                     ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1622                                 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1623                                         verify(nvlist_add_uint64(nv,
1624                                             ZPOOL_CONFIG_NPARITY,
1625                                             mindev - 1) == 0);
1626                                 }
1627                                 verify(nvlist_add_nvlist_array(nv,
1628                                     ZPOOL_CONFIG_CHILDREN, child,
1629                                     children) == 0);
1630
1631                                 for (c = 0; c < children; c++)
1632                                         nvlist_free(child[c]);
1633                                 free(child);
1634                         }
1635                 } else {
1636                         /*
1637                          * We have a device.  Pass off to make_leaf_vdev() to
1638                          * construct the appropriate nvlist describing the vdev.
1639                          */
1640                         if ((nv = make_leaf_vdev(props, argv[0],
1641                             is_log)) == NULL)
1642                                 goto spec_out;
1643
1644                         if (is_log)
1645                                 nlogs++;
1646                         argc--;
1647                         argv++;
1648                 }
1649
1650                 toplevels++;
1651                 top = realloc(top, toplevels * sizeof (nvlist_t *));
1652                 if (top == NULL)
1653                         zpool_no_memory();
1654                 top[toplevels - 1] = nv;
1655         }
1656
1657         if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1658                 (void) fprintf(stderr, gettext("invalid vdev "
1659                     "specification: at least one toplevel vdev must be "
1660                     "specified\n"));
1661                 goto spec_out;
1662         }
1663
1664         if (seen_logs && nlogs == 0) {
1665                 (void) fprintf(stderr, gettext("invalid vdev specification: "
1666                     "log requires at least 1 device\n"));
1667                 goto spec_out;
1668         }
1669
1670         /*
1671          * Finally, create nvroot and add all top-level vdevs to it.
1672          */
1673         verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1674         verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1675             VDEV_TYPE_ROOT) == 0);
1676         verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1677             top, toplevels) == 0);
1678         if (nspares != 0)
1679                 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1680                     spares, nspares) == 0);
1681         if (nl2cache != 0)
1682                 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1683                     l2cache, nl2cache) == 0);
1684
1685 spec_out:
1686         for (t = 0; t < toplevels; t++)
1687                 nvlist_free(top[t]);
1688         for (t = 0; t < nspares; t++)
1689                 nvlist_free(spares[t]);
1690         for (t = 0; t < nl2cache; t++)
1691                 nvlist_free(l2cache[t]);
1692
1693         free(spares);
1694         free(l2cache);
1695         free(top);
1696
1697         return (nvroot);
1698 }
1699
1700 nvlist_t *
1701 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1702     splitflags_t flags, int argc, char **argv)
1703 {
1704         nvlist_t *newroot = NULL, **child;
1705         uint_t c, children;
1706
1707         if (argc > 0) {
1708                 if ((newroot = construct_spec(props, argc, argv)) == NULL) {
1709                         (void) fprintf(stderr, gettext("Unable to build a "
1710                             "pool from the specified devices\n"));
1711                         return (NULL);
1712                 }
1713
1714                 if (!flags.dryrun && make_disks(zhp, newroot) != 0) {
1715                         nvlist_free(newroot);
1716                         return (NULL);
1717                 }
1718
1719                 /* avoid any tricks in the spec */
1720                 verify(nvlist_lookup_nvlist_array(newroot,
1721                     ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1722                 for (c = 0; c < children; c++) {
1723                         char *path;
1724                         const char *type;
1725                         int min, max;
1726
1727                         verify(nvlist_lookup_string(child[c],
1728                             ZPOOL_CONFIG_PATH, &path) == 0);
1729                         if ((type = is_grouping(path, &min, &max)) != NULL) {
1730                                 (void) fprintf(stderr, gettext("Cannot use "
1731                                     "'%s' as a device for splitting\n"), type);
1732                                 nvlist_free(newroot);
1733                                 return (NULL);
1734                         }
1735                 }
1736         }
1737
1738         if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1739                 nvlist_free(newroot);
1740                 return (NULL);
1741         }
1742
1743         return (newroot);
1744 }
1745
1746 /*
1747  * Get and validate the contents of the given vdev specification.  This ensures
1748  * that the nvlist returned is well-formed, that all the devices exist, and that
1749  * they are not currently in use by any other known consumer.  The 'poolconfig'
1750  * parameter is the current configuration of the pool when adding devices
1751  * existing pool, and is used to perform additional checks, such as changing the
1752  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1753  * new pool.  The 'force' flag controls whether devices should be forcefully
1754  * added, even if they appear in use.
1755  */
1756 nvlist_t *
1757 make_root_vdev(zpool_handle_t *zhp, nvlist_t *props, int force, int check_rep,
1758     boolean_t replacing, boolean_t dryrun, int argc, char **argv)
1759 {
1760         nvlist_t *newroot;
1761         nvlist_t *poolconfig = NULL;
1762         is_force = force;
1763
1764         /*
1765          * Construct the vdev specification.  If this is successful, we know
1766          * that we have a valid specification, and that all devices can be
1767          * opened.
1768          */
1769         if ((newroot = construct_spec(props, argc, argv)) == NULL)
1770                 return (NULL);
1771
1772         if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) {
1773                 nvlist_free(newroot);
1774                 return (NULL);
1775         }
1776
1777         /*
1778          * Validate each device to make sure that its not shared with another
1779          * subsystem.  We do this even if 'force' is set, because there are some
1780          * uses (such as a dedicated dump device) that even '-f' cannot
1781          * override.
1782          */
1783         if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1784                 nvlist_free(newroot);
1785                 return (NULL);
1786         }
1787
1788         /*
1789          * Check the replication level of the given vdevs and report any errors
1790          * found.  We include the existing pool spec, if any, as we need to
1791          * catch changes against the existing replication level.
1792          */
1793         if (check_rep && check_replication(poolconfig, newroot) != 0) {
1794                 nvlist_free(newroot);
1795                 return (NULL);
1796         }
1797
1798         /*
1799          * Run through the vdev specification and label any whole disks found.
1800          */
1801         if (!dryrun && make_disks(zhp, newroot) != 0) {
1802                 nvlist_free(newroot);
1803                 return (NULL);
1804         }
1805
1806         return (newroot);
1807 }