]> granicus.if.org Git - imagemagick/blob - MagickCore/statistic.c
(no commit message)
[imagemagick] / MagickCore / statistic.c
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %                                                                             %
4 %                                                                             %
5 %                                                                             %
6 %        SSSSS  TTTTT   AAA   TTTTT  IIIII  SSSSS  TTTTT  IIIII   CCCC        %
7 %        SS       T    A   A    T      I    SS       T      I    C            %
8 %         SSS     T    AAAAA    T      I     SSS     T      I    C            %
9 %           SS    T    A   A    T      I       SS    T      I    C            %
10 %        SSSSS    T    A   A    T    IIIII  SSSSS    T    IIIII   CCCC        %
11 %                                                                             %
12 %                                                                             %
13 %                     MagickCore Image Statistical Methods                    %
14 %                                                                             %
15 %                              Software Design                                %
16 %                                   Cristy                                    %
17 %                                 July 1992                                   %
18 %                                                                             %
19 %                                                                             %
20 %  Copyright 1999-2014 ImageMagick Studio LLC, a non-profit organization      %
21 %  dedicated to making software imaging solutions freely available.           %
22 %                                                                             %
23 %  You may not use this file except in compliance with the License.  You may  %
24 %  obtain a copy of the License at                                            %
25 %                                                                             %
26 %    http://www.imagemagick.org/script/license.php                            %
27 %                                                                             %
28 %  Unless required by applicable law or agreed to in writing, software        %
29 %  distributed under the License is distributed on an "AS IS" BASIS,          %
30 %  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
31 %  See the License for the specific language governing permissions and        %
32 %  limitations under the License.                                             %
33 %                                                                             %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %
37 %
38 */
39 \f
40 /*
41   Include declarations.
42 */
43 #include "MagickCore/studio.h"
44 #include "MagickCore/property.h"
45 #include "MagickCore/animate.h"
46 #include "MagickCore/blob.h"
47 #include "MagickCore/blob-private.h"
48 #include "MagickCore/cache.h"
49 #include "MagickCore/cache-private.h"
50 #include "MagickCore/cache-view.h"
51 #include "MagickCore/client.h"
52 #include "MagickCore/color.h"
53 #include "MagickCore/color-private.h"
54 #include "MagickCore/colorspace.h"
55 #include "MagickCore/colorspace-private.h"
56 #include "MagickCore/composite.h"
57 #include "MagickCore/composite-private.h"
58 #include "MagickCore/compress.h"
59 #include "MagickCore/constitute.h"
60 #include "MagickCore/display.h"
61 #include "MagickCore/draw.h"
62 #include "MagickCore/enhance.h"
63 #include "MagickCore/exception.h"
64 #include "MagickCore/exception-private.h"
65 #include "MagickCore/gem.h"
66 #include "MagickCore/gem-private.h"
67 #include "MagickCore/geometry.h"
68 #include "MagickCore/list.h"
69 #include "MagickCore/image-private.h"
70 #include "MagickCore/magic.h"
71 #include "MagickCore/magick.h"
72 #include "MagickCore/memory_.h"
73 #include "MagickCore/module.h"
74 #include "MagickCore/monitor.h"
75 #include "MagickCore/monitor-private.h"
76 #include "MagickCore/option.h"
77 #include "MagickCore/paint.h"
78 #include "MagickCore/pixel-accessor.h"
79 #include "MagickCore/profile.h"
80 #include "MagickCore/quantize.h"
81 #include "MagickCore/quantum-private.h"
82 #include "MagickCore/random_.h"
83 #include "MagickCore/random-private.h"
84 #include "MagickCore/resource_.h"
85 #include "MagickCore/segment.h"
86 #include "MagickCore/semaphore.h"
87 #include "MagickCore/signature-private.h"
88 #include "MagickCore/statistic.h"
89 #include "MagickCore/string_.h"
90 #include "MagickCore/thread-private.h"
91 #include "MagickCore/timer.h"
92 #include "MagickCore/utility.h"
93 #include "MagickCore/version.h"
94 \f
95 /*
96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
97 %                                                                             %
98 %                                                                             %
99 %                                                                             %
100 %     E v a l u a t e I m a g e                                               %
101 %                                                                             %
102 %                                                                             %
103 %                                                                             %
104 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105 %
106 %  EvaluateImage() applies a value to the image with an arithmetic, relational,
107 %  or logical operator to an image. Use these operations to lighten or darken
108 %  an image, to increase or decrease contrast in an image, or to produce the
109 %  "negative" of an image.
110 %
111 %  The format of the EvaluateImage method is:
112 %
113 %      MagickBooleanType EvaluateImage(Image *image,
114 %        const MagickEvaluateOperator op,const double value,
115 %        ExceptionInfo *exception)
116 %      MagickBooleanType EvaluateImages(Image *images,
117 %        const MagickEvaluateOperator op,const double value,
118 %        ExceptionInfo *exception)
119 %
120 %  A description of each parameter follows:
121 %
122 %    o image: the image.
123 %
124 %    o op: A channel op.
125 %
126 %    o value: A value value.
127 %
128 %    o exception: return any errors or warnings in this structure.
129 %
130 */
131
132 typedef struct _PixelChannels
133 {
134   double
135     channel[CompositePixelChannel];
136 } PixelChannels;
137
138 static PixelChannels **DestroyPixelThreadSet(PixelChannels **pixels)
139 {
140   register ssize_t
141     i;
142
143   assert(pixels != (PixelChannels **) NULL);
144   for (i=0; i < (ssize_t) GetMagickResourceLimit(ThreadResource); i++)
145     if (pixels[i] != (PixelChannels *) NULL)
146       pixels[i]=(PixelChannels *) RelinquishMagickMemory(pixels[i]);
147   pixels=(PixelChannels **) RelinquishMagickMemory(pixels);
148   return(pixels);
149 }
150
151 static PixelChannels **AcquirePixelThreadSet(const Image *image,
152   const size_t number_images)
153 {
154   register ssize_t
155     i;
156
157   PixelChannels
158     **pixels;
159
160   size_t
161     length,
162     number_threads;
163
164   number_threads=(size_t) GetMagickResourceLimit(ThreadResource);
165   pixels=(PixelChannels **) AcquireQuantumMemory(number_threads,
166     sizeof(*pixels));
167   if (pixels == (PixelChannels **) NULL)
168     return((PixelChannels **) NULL);
169   (void) ResetMagickMemory(pixels,0,number_threads*sizeof(*pixels));
170   for (i=0; i < (ssize_t) number_threads; i++)
171   {
172     register ssize_t
173       j;
174
175     length=image->columns;
176     if (length < number_images)
177       length=number_images;
178     pixels[i]=(PixelChannels *) AcquireQuantumMemory(length,sizeof(**pixels));
179     if (pixels[i] == (PixelChannels *) NULL)
180       return(DestroyPixelThreadSet(pixels));
181     for (j=0; j < (ssize_t) length; j++)
182     {
183       register ssize_t
184         k;
185
186       for (k=0; k < MaxPixelChannels; k++)
187         pixels[i][j].channel[k]=0.0;
188     }
189   }
190   return(pixels);
191 }
192
193 static inline double EvaluateMax(const double x,const double y)
194 {
195   if (x > y)
196     return(x);
197   return(y);
198 }
199
200 #if defined(__cplusplus) || defined(c_plusplus)
201 extern "C" {
202 #endif
203
204 static int IntensityCompare(const void *x,const void *y)
205 {
206   const PixelChannels
207     *color_1,
208     *color_2;
209
210   double
211     distance;
212
213   register ssize_t
214     i;
215
216   color_1=(const PixelChannels *) x;
217   color_2=(const PixelChannels *) y;
218   distance=0.0;
219   for (i=0; i < MaxPixelChannels; i++)
220     distance+=color_1->channel[i]-(double) color_2->channel[i];
221   return(distance < 0 ? -1 : distance > 0 ? 1 : 0);
222 }
223
224 #if defined(__cplusplus) || defined(c_plusplus)
225 }
226 #endif
227
228 static inline double MagickMin(const double x,const double y)
229 {
230   if (x < y)
231     return(x);
232   return(y);
233 }
234
235 static double ApplyEvaluateOperator(RandomInfo *random_info,const Quantum pixel,
236   const MagickEvaluateOperator op,const double value)
237 {
238   double
239     result;
240
241   result=0.0;
242   switch (op)
243   {
244     case UndefinedEvaluateOperator:
245       break;
246     case AbsEvaluateOperator:
247     {
248       result=(double) fabs((double) (pixel+value));
249       break;
250     }
251     case AddEvaluateOperator:
252     {
253       result=(double) (pixel+value);
254       break;
255     }
256     case AddModulusEvaluateOperator:
257     {
258       /*
259         This returns a 'floored modulus' of the addition which is a positive
260         result.  It differs from % or fmod() that returns a 'truncated modulus'
261         result, where floor() is replaced by trunc() and could return a
262         negative result (which is clipped).
263       */
264       result=pixel+value;
265       result-=(QuantumRange+1.0)*floor((double) result/(QuantumRange+1.0));
266       break;
267     }
268     case AndEvaluateOperator:
269     {
270       result=(double) ((size_t) pixel & (size_t) (value+0.5));
271       break;
272     }
273     case CosineEvaluateOperator:
274     {
275       result=(double) (QuantumRange*(0.5*cos((double) (2.0*MagickPI*
276         QuantumScale*pixel*value))+0.5));
277       break;
278     }
279     case DivideEvaluateOperator:
280     {
281       result=pixel/(value == 0.0 ? 1.0 : value);
282       break;
283     }
284     case ExponentialEvaluateOperator:
285     {
286       result=(double) (QuantumRange*exp((double) (value*QuantumScale*pixel)));
287       break;
288     }
289     case GaussianNoiseEvaluateOperator:
290     {
291       result=(double) GenerateDifferentialNoise(random_info,pixel,
292         GaussianNoise,value);
293       break;
294     }
295     case ImpulseNoiseEvaluateOperator:
296     {
297       result=(double) GenerateDifferentialNoise(random_info,pixel,ImpulseNoise,
298         value);
299       break;
300     }
301     case LaplacianNoiseEvaluateOperator:
302     {
303       result=(double) GenerateDifferentialNoise(random_info,pixel,
304         LaplacianNoise,value);
305       break;
306     }
307     case LeftShiftEvaluateOperator:
308     {
309       result=(double) ((size_t) pixel << (size_t) (value+0.5));
310       break;
311     }
312     case LogEvaluateOperator:
313     {
314       if ((QuantumScale*pixel) >= MagickEpsilon)
315         result=(double) (QuantumRange*log((double) (QuantumScale*value*pixel+
316           1.0))/log((double) (value+1.0)));
317       break;
318     }
319     case MaxEvaluateOperator:
320     {
321       result=(double) EvaluateMax((double) pixel,value);
322       break;
323     }
324     case MeanEvaluateOperator:
325     {
326       result=(double) (pixel+value);
327       break;
328     }
329     case MedianEvaluateOperator:
330     {
331       result=(double) (pixel+value);
332       break;
333     }
334     case MinEvaluateOperator:
335     {
336       result=(double) MagickMin((double) pixel,value);
337       break;
338     }
339     case MultiplicativeNoiseEvaluateOperator:
340     {
341       result=(double) GenerateDifferentialNoise(random_info,pixel,
342         MultiplicativeGaussianNoise,value);
343       break;
344     }
345     case MultiplyEvaluateOperator:
346     {
347       result=(double) (value*pixel);
348       break;
349     }
350     case OrEvaluateOperator:
351     {
352       result=(double) ((size_t) pixel | (size_t) (value+0.5));
353       break;
354     }
355     case PoissonNoiseEvaluateOperator:
356     {
357       result=(double) GenerateDifferentialNoise(random_info,pixel,PoissonNoise,
358         value);
359       break;
360     }
361     case PowEvaluateOperator:
362     {
363       result=(double) (QuantumRange*pow((double) (QuantumScale*pixel),(double)
364         value));
365       break;
366     }
367     case RightShiftEvaluateOperator:
368     {
369       result=(double) ((size_t) pixel >> (size_t) (value+0.5));
370       break;
371     }
372     case SetEvaluateOperator:
373     {
374       result=value;
375       break;
376     }
377     case SineEvaluateOperator:
378     {
379       result=(double) (QuantumRange*(0.5*sin((double) (2.0*MagickPI*
380         QuantumScale*pixel*value))+0.5));
381       break;
382     }
383     case SubtractEvaluateOperator:
384     {
385       result=(double) (pixel-value);
386       break;
387     }
388     case SumEvaluateOperator:
389     {
390       result=(double) (pixel+value);
391       break;
392     }
393     case ThresholdEvaluateOperator:
394     {
395       result=(double) (((double) pixel <= value) ? 0 : QuantumRange);
396       break;
397     }
398     case ThresholdBlackEvaluateOperator:
399     {
400       result=(double) (((double) pixel <= value) ? 0 : pixel);
401       break;
402     }
403     case ThresholdWhiteEvaluateOperator:
404     {
405       result=(double) (((double) pixel > value) ? QuantumRange : pixel);
406       break;
407     }
408     case UniformNoiseEvaluateOperator:
409     {
410       result=(double) GenerateDifferentialNoise(random_info,pixel,UniformNoise,
411         value);
412       break;
413     }
414     case XorEvaluateOperator:
415     {
416       result=(double) ((size_t) pixel ^ (size_t) (value+0.5));
417       break;
418     }
419   }
420   return(result);
421 }
422
423 MagickExport Image *EvaluateImages(const Image *images,
424   const MagickEvaluateOperator op,ExceptionInfo *exception)
425 {
426 #define EvaluateImageTag  "Evaluate/Image"
427
428   CacheView
429     *evaluate_view;
430
431   Image
432     *image;
433
434   MagickBooleanType
435     status;
436
437   MagickOffsetType
438     progress;
439
440   PixelChannels
441     **restrict evaluate_pixels;
442
443   RandomInfo
444     **restrict random_info;
445
446   size_t
447     number_images;
448
449   ssize_t
450     y;
451
452 #if defined(MAGICKCORE_OPENMP_SUPPORT)
453   unsigned long
454     key;
455 #endif
456
457   assert(images != (Image *) NULL);
458   assert(images->signature == MagickSignature);
459   if (images->debug != MagickFalse)
460     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
461   assert(exception != (ExceptionInfo *) NULL);
462   assert(exception->signature == MagickSignature);
463   image=CloneImage(images,images->columns,images->rows,MagickTrue,
464     exception);
465   if (image == (Image *) NULL)
466     return((Image *) NULL);
467   if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
468     {
469       image=DestroyImage(image);
470       return((Image *) NULL);
471     }
472   number_images=GetImageListLength(images);
473   evaluate_pixels=AcquirePixelThreadSet(images,number_images);
474   if (evaluate_pixels == (PixelChannels **) NULL)
475     {
476       image=DestroyImage(image);
477       (void) ThrowMagickException(exception,GetMagickModule(),
478         ResourceLimitError,"MemoryAllocationFailed","`%s'",images->filename);
479       return((Image *) NULL);
480     }
481   /*
482     Evaluate image pixels.
483   */
484   status=MagickTrue;
485   progress=0;
486   random_info=AcquireRandomInfoThreadSet();
487 #if defined(MAGICKCORE_OPENMP_SUPPORT)
488   key=GetRandomSecretKey(random_info[0]);
489 #endif
490   evaluate_view=AcquireAuthenticCacheView(image,exception);
491   if (op == MedianEvaluateOperator)
492     {
493 #if defined(MAGICKCORE_OPENMP_SUPPORT)
494       #pragma omp parallel for schedule(static,4) shared(progress,status) \
495         magick_threads(image,images,image->rows,key == ~0UL)
496 #endif
497       for (y=0; y < (ssize_t) image->rows; y++)
498       {
499         CacheView
500           *image_view;
501
502         const Image
503           *next;
504
505         const int
506           id = GetOpenMPThreadId();
507
508         register PixelChannels
509           *evaluate_pixel;
510
511         register Quantum
512           *restrict q;
513
514         register ssize_t
515           x;
516
517         if (status == MagickFalse)
518           continue;
519         q=QueueCacheViewAuthenticPixels(evaluate_view,0,y,image->columns,1,
520           exception);
521         if (q == (Quantum *) NULL)
522           {
523             status=MagickFalse;
524             continue;
525           }
526         evaluate_pixel=evaluate_pixels[id];
527         for (x=0; x < (ssize_t) image->columns; x++)
528         {
529           register ssize_t
530             j,
531             k;
532
533           for (j=0; j < (ssize_t) number_images; j++)
534             for (k=0; k < MaxPixelChannels; k++)
535               evaluate_pixel[j].channel[k]=0.0;
536           next=images;
537           for (j=0; j < (ssize_t) number_images; j++)
538           {
539             register const Quantum
540               *p;
541
542             register ssize_t
543               i;
544
545             image_view=AcquireVirtualCacheView(next,exception);
546             p=GetCacheViewVirtualPixels(image_view,x,y,1,1,exception);
547             if (p == (const Quantum *) NULL)
548               {
549                 image_view=DestroyCacheView(image_view);
550                 break;
551               }
552             for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
553             {
554               PixelChannel channel=GetPixelChannelChannel(image,i);
555               PixelTrait evaluate_traits=GetPixelChannelTraits(image,channel);
556               PixelTrait traits=GetPixelChannelTraits(next,channel);
557               if ((traits == UndefinedPixelTrait) ||
558                   (evaluate_traits == UndefinedPixelTrait))
559                 continue;
560               if ((evaluate_traits & UpdatePixelTrait) == 0)
561                 continue;
562               evaluate_pixel[j].channel[i]=ApplyEvaluateOperator(
563                 random_info[id],GetPixelChannel(image,channel,p),op,
564                 evaluate_pixel[j].channel[i]);
565             }
566             image_view=DestroyCacheView(image_view);
567             next=GetNextImageInList(next);
568           }
569           qsort((void *) evaluate_pixel,number_images,sizeof(*evaluate_pixel),
570             IntensityCompare);
571           for (k=0; k < (ssize_t) GetPixelChannels(image); k++)
572             q[k]=ClampToQuantum(evaluate_pixel[j/2].channel[k]);
573           q+=GetPixelChannels(image);
574         }
575         if (SyncCacheViewAuthenticPixels(evaluate_view,exception) == MagickFalse)
576           status=MagickFalse;
577         if (images->progress_monitor != (MagickProgressMonitor) NULL)
578           {
579             MagickBooleanType
580               proceed;
581
582 #if   defined(MAGICKCORE_OPENMP_SUPPORT)
583             #pragma omp critical (MagickCore_EvaluateImages)
584 #endif
585             proceed=SetImageProgress(images,EvaluateImageTag,progress++,
586               image->rows);
587             if (proceed == MagickFalse)
588               status=MagickFalse;
589           }
590       }
591     }
592   else
593     {
594 #if defined(MAGICKCORE_OPENMP_SUPPORT)
595       #pragma omp parallel for schedule(static,4) shared(progress,status) \
596         magick_threads(image,images,image->rows,key == ~0UL)
597 #endif
598       for (y=0; y < (ssize_t) image->rows; y++)
599       {
600         CacheView
601           *image_view;
602
603         const Image
604           *next;
605
606         const int
607           id = GetOpenMPThreadId();
608
609         register ssize_t
610           i,
611           x;
612
613         register PixelChannels
614           *evaluate_pixel;
615
616         register Quantum
617           *restrict q;
618
619         ssize_t
620           j;
621
622         if (status == MagickFalse)
623           continue;
624         q=QueueCacheViewAuthenticPixels(evaluate_view,0,y,image->columns,1,
625           exception);
626         if (q == (Quantum *) NULL)
627           {
628             status=MagickFalse;
629             continue;
630           }
631         evaluate_pixel=evaluate_pixels[id];
632         for (j=0; j < (ssize_t) image->columns; j++)
633           for (i=0; i < MaxPixelChannels; i++)
634             evaluate_pixel[j].channel[i]=0.0;
635         next=images;
636         for (j=0; j < (ssize_t) number_images; j++)
637         {
638           register const Quantum
639             *p;
640
641           image_view=AcquireVirtualCacheView(next,exception);
642           p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception);
643           if (p == (const Quantum *) NULL)
644             {
645               image_view=DestroyCacheView(image_view);
646               break;
647             }
648           for (x=0; x < (ssize_t) next->columns; x++)
649           {
650             register ssize_t
651               i;
652
653             if (GetPixelReadMask(next,p) == 0)
654               {
655                 p+=GetPixelChannels(next);
656                 continue;
657               }
658             for (i=0; i < (ssize_t) GetPixelChannels(next); i++)
659             {
660               PixelChannel channel=GetPixelChannelChannel(image,i);
661               PixelTrait  traits=GetPixelChannelTraits(next,channel);
662               PixelTrait  evaluate_traits=GetPixelChannelTraits(image,channel);
663               if ((traits == UndefinedPixelTrait) ||
664                   (evaluate_traits == UndefinedPixelTrait))
665                 continue;
666               if ((traits & UpdatePixelTrait) == 0)
667                 continue;
668               evaluate_pixel[x].channel[i]=ApplyEvaluateOperator(
669                 random_info[id],GetPixelChannel(image,channel,p),j == 0 ?
670                 AddEvaluateOperator : op,evaluate_pixel[x].channel[i]);
671             }
672             p+=GetPixelChannels(next);
673           }
674           image_view=DestroyCacheView(image_view);
675           next=GetNextImageInList(next);
676         }
677         for (x=0; x < (ssize_t) image->columns; x++)
678         {
679           register ssize_t
680              i;
681
682           switch (op)
683           {
684             case MeanEvaluateOperator:
685             {
686               for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
687                 evaluate_pixel[x].channel[i]/=(double) number_images;
688               break;
689             }
690             case MultiplyEvaluateOperator:
691             {
692               for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
693               {
694                 register ssize_t
695                   j;
696
697                 for (j=0; j < (ssize_t) (number_images-1); j++)
698                   evaluate_pixel[x].channel[i]*=QuantumScale;
699               }
700               break;
701             }
702             default:
703               break;
704           }
705         }
706         for (x=0; x < (ssize_t) image->columns; x++)
707         {
708           register ssize_t
709             i;
710
711           if (GetPixelReadMask(image,q) == 0)
712             {
713               q+=GetPixelChannels(image);
714               continue;
715             }
716           for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
717           {
718             PixelChannel channel=GetPixelChannelChannel(image,i);
719             PixelTrait traits=GetPixelChannelTraits(image,channel);
720             if (traits == UndefinedPixelTrait)
721               continue;
722             if ((traits & UpdatePixelTrait) == 0)
723               continue;
724             q[i]=ClampToQuantum(evaluate_pixel[x].channel[i]);
725           }
726           q+=GetPixelChannels(image);
727         }
728         if (SyncCacheViewAuthenticPixels(evaluate_view,exception) == MagickFalse)
729           status=MagickFalse;
730         if (images->progress_monitor != (MagickProgressMonitor) NULL)
731           {
732             MagickBooleanType
733               proceed;
734
735 #if   defined(MAGICKCORE_OPENMP_SUPPORT)
736             #pragma omp critical (MagickCore_EvaluateImages)
737 #endif
738             proceed=SetImageProgress(images,EvaluateImageTag,progress++,
739               image->rows);
740             if (proceed == MagickFalse)
741               status=MagickFalse;
742           }
743       }
744     }
745   evaluate_view=DestroyCacheView(evaluate_view);
746   evaluate_pixels=DestroyPixelThreadSet(evaluate_pixels);
747   random_info=DestroyRandomInfoThreadSet(random_info);
748   if (status == MagickFalse)
749     image=DestroyImage(image);
750   return(image);
751 }
752
753 MagickExport MagickBooleanType EvaluateImage(Image *image,
754   const MagickEvaluateOperator op,const double value,ExceptionInfo *exception)
755 {
756   CacheView
757     *image_view;
758
759   MagickBooleanType
760     status;
761
762   MagickOffsetType
763     progress;
764
765   RandomInfo
766     **restrict random_info;
767
768   ssize_t
769     y;
770
771 #if defined(MAGICKCORE_OPENMP_SUPPORT)
772   unsigned long
773     key;
774 #endif
775
776   assert(image != (Image *) NULL);
777   assert(image->signature == MagickSignature);
778   if (image->debug != MagickFalse)
779     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
780   assert(exception != (ExceptionInfo *) NULL);
781   assert(exception->signature == MagickSignature);
782   if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
783     return(MagickFalse);
784   status=MagickTrue;
785   progress=0;
786   random_info=AcquireRandomInfoThreadSet();
787 #if defined(MAGICKCORE_OPENMP_SUPPORT)
788   key=GetRandomSecretKey(random_info[0]);
789 #endif
790   image_view=AcquireAuthenticCacheView(image,exception);
791 #if defined(MAGICKCORE_OPENMP_SUPPORT)
792   #pragma omp parallel for schedule(static,4) shared(progress,status) \
793     magick_threads(image,image,image->rows,key == ~0UL)
794 #endif
795   for (y=0; y < (ssize_t) image->rows; y++)
796   {
797     const int
798       id = GetOpenMPThreadId();
799
800     register Quantum
801       *restrict q;
802
803     register ssize_t
804       x;
805
806     if (status == MagickFalse)
807       continue;
808     q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
809     if (q == (Quantum *) NULL)
810       {
811         status=MagickFalse;
812         continue;
813       }
814     for (x=0; x < (ssize_t) image->columns; x++)
815     {
816       register ssize_t
817         i;
818
819       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
820       {
821         PixelChannel channel=GetPixelChannelChannel(image,i);
822         PixelTrait traits=GetPixelChannelTraits(image,channel);
823         if (traits == UndefinedPixelTrait)
824           continue;
825         if (((traits & CopyPixelTrait) != 0) ||
826             (GetPixelReadMask(image,q) == 0))
827           continue;
828         q[i]=ClampToQuantum(ApplyEvaluateOperator(random_info[id],q[i],op,
829           value));
830       }
831       q+=GetPixelChannels(image);
832     }
833     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
834       status=MagickFalse;
835     if (image->progress_monitor != (MagickProgressMonitor) NULL)
836       {
837         MagickBooleanType
838           proceed;
839
840 #if defined(MAGICKCORE_OPENMP_SUPPORT)
841         #pragma omp critical (MagickCore_EvaluateImage)
842 #endif
843         proceed=SetImageProgress(image,EvaluateImageTag,progress++,image->rows);
844         if (proceed == MagickFalse)
845           status=MagickFalse;
846       }
847   }
848   image_view=DestroyCacheView(image_view);
849   random_info=DestroyRandomInfoThreadSet(random_info);
850   return(status);
851 }
852 \f
853 /*
854 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
855 %                                                                             %
856 %                                                                             %
857 %                                                                             %
858 %     F u n c t i o n I m a g e                                               %
859 %                                                                             %
860 %                                                                             %
861 %                                                                             %
862 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
863 %
864 %  FunctionImage() applies a value to the image with an arithmetic, relational,
865 %  or logical operator to an image. Use these operations to lighten or darken
866 %  an image, to increase or decrease contrast in an image, or to produce the
867 %  "negative" of an image.
868 %
869 %  The format of the FunctionImage method is:
870 %
871 %      MagickBooleanType FunctionImage(Image *image,
872 %        const MagickFunction function,const ssize_t number_parameters,
873 %        const double *parameters,ExceptionInfo *exception)
874 %
875 %  A description of each parameter follows:
876 %
877 %    o image: the image.
878 %
879 %    o function: A channel function.
880 %
881 %    o parameters: one or more parameters.
882 %
883 %    o exception: return any errors or warnings in this structure.
884 %
885 */
886
887 static Quantum ApplyFunction(Quantum pixel,const MagickFunction function,
888   const size_t number_parameters,const double *parameters,
889   ExceptionInfo *exception)
890 {
891   double
892     result;
893
894   register ssize_t
895     i;
896
897   (void) exception;
898   result=0.0;
899   switch (function)
900   {
901     case PolynomialFunction:
902     {
903       /*
904         Polynomial: polynomial constants, highest to lowest order (e.g. c0*x^3+
905         c1*x^2+c2*x+c3).
906       */
907       result=0.0;
908       for (i=0; i < (ssize_t) number_parameters; i++)
909         result=result*QuantumScale*pixel+parameters[i];
910       result*=QuantumRange;
911       break;
912     }
913     case SinusoidFunction:
914     {
915       double
916         amplitude,
917         bias,
918         frequency,
919         phase;
920
921       /*
922         Sinusoid: frequency, phase, amplitude, bias.
923       */
924       frequency=(number_parameters >= 1) ? parameters[0] : 1.0;
925       phase=(number_parameters >= 2) ? parameters[1] : 0.0;
926       amplitude=(number_parameters >= 3) ? parameters[2] : 0.5;
927       bias=(number_parameters >= 4) ? parameters[3] : 0.5;
928       result=(double) (QuantumRange*(amplitude*sin((double) (2.0*
929         MagickPI*(frequency*QuantumScale*pixel+phase/360.0)))+bias));
930       break;
931     }
932     case ArcsinFunction:
933     {
934       double
935         bias,
936         center,
937         range,
938         width;
939
940       /*
941         Arcsin (peged at range limits for invalid results): width, center,
942         range, and bias.
943       */
944       width=(number_parameters >= 1) ? parameters[0] : 1.0;
945       center=(number_parameters >= 2) ? parameters[1] : 0.5;
946       range=(number_parameters >= 3) ? parameters[2] : 1.0;
947       bias=(number_parameters >= 4) ? parameters[3] : 0.5;
948       result=2.0/width*(QuantumScale*pixel-center);
949       if ( result <= -1.0 )
950         result=bias-range/2.0;
951       else
952         if (result >= 1.0)
953           result=bias+range/2.0;
954         else
955           result=(double) (range/MagickPI*asin((double) result)+bias);
956       result*=QuantumRange;
957       break;
958     }
959     case ArctanFunction:
960     {
961       double
962         center,
963         bias,
964         range,
965         slope;
966
967       /*
968         Arctan: slope, center, range, and bias.
969       */
970       slope=(number_parameters >= 1) ? parameters[0] : 1.0;
971       center=(number_parameters >= 2) ? parameters[1] : 0.5;
972       range=(number_parameters >= 3) ? parameters[2] : 1.0;
973       bias=(number_parameters >= 4) ? parameters[3] : 0.5;
974       result=(double) (MagickPI*slope*(QuantumScale*pixel-center));
975       result=(double) (QuantumRange*(range/MagickPI*atan((double)
976         result)+bias));
977       break;
978     }
979     case UndefinedFunction:
980       break;
981   }
982   return(ClampToQuantum(result));
983 }
984
985 MagickExport MagickBooleanType FunctionImage(Image *image,
986   const MagickFunction function,const size_t number_parameters,
987   const double *parameters,ExceptionInfo *exception)
988 {
989 #define FunctionImageTag  "Function/Image "
990
991   CacheView
992     *image_view;
993
994   MagickBooleanType
995     status;
996
997   MagickOffsetType
998     progress;
999
1000   ssize_t
1001     y;
1002
1003   assert(image != (Image *) NULL);
1004   assert(image->signature == MagickSignature);
1005   if (image->debug != MagickFalse)
1006     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1007   assert(exception != (ExceptionInfo *) NULL);
1008   assert(exception->signature == MagickSignature);
1009   if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
1010     return(MagickFalse);
1011   status=MagickTrue;
1012   progress=0;
1013   image_view=AcquireAuthenticCacheView(image,exception);
1014 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1015   #pragma omp parallel for schedule(static,4) shared(progress,status) \
1016     magick_threads(image,image,image->rows,1)
1017 #endif
1018   for (y=0; y < (ssize_t) image->rows; y++)
1019   {
1020     register Quantum
1021       *restrict q;
1022
1023     register ssize_t
1024       x;
1025
1026     if (status == MagickFalse)
1027       continue;
1028     q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
1029     if (q == (Quantum *) NULL)
1030       {
1031         status=MagickFalse;
1032         continue;
1033       }
1034     for (x=0; x < (ssize_t) image->columns; x++)
1035     {
1036       register ssize_t
1037         i;
1038
1039       if (GetPixelReadMask(image,q) == 0)
1040         {
1041           q+=GetPixelChannels(image);
1042           continue;
1043         }
1044       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1045       {
1046         PixelChannel channel=GetPixelChannelChannel(image,i);
1047         PixelTrait traits=GetPixelChannelTraits(image,channel);
1048         if (traits == UndefinedPixelTrait)
1049           continue;
1050         if ((traits & UpdatePixelTrait) == 0)
1051           continue;
1052         q[i]=ApplyFunction(q[i],function,number_parameters,parameters,
1053           exception);
1054       }
1055       q+=GetPixelChannels(image);
1056     }
1057     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
1058       status=MagickFalse;
1059     if (image->progress_monitor != (MagickProgressMonitor) NULL)
1060       {
1061         MagickBooleanType
1062           proceed;
1063
1064 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1065         #pragma omp critical (MagickCore_FunctionImage)
1066 #endif
1067         proceed=SetImageProgress(image,FunctionImageTag,progress++,image->rows);
1068         if (proceed == MagickFalse)
1069           status=MagickFalse;
1070       }
1071   }
1072   image_view=DestroyCacheView(image_view);
1073   return(status);
1074 }
1075 \f
1076 /*
1077 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1078 %                                                                             %
1079 %                                                                             %
1080 %                                                                             %
1081 %   G e t I m a g e E x t r e m a                                             %
1082 %                                                                             %
1083 %                                                                             %
1084 %                                                                             %
1085 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1086 %
1087 %  GetImageExtrema() returns the extrema of one or more image channels.
1088 %
1089 %  The format of the GetImageExtrema method is:
1090 %
1091 %      MagickBooleanType GetImageExtrema(const Image *image,size_t *minima,
1092 %        size_t *maxima,ExceptionInfo *exception)
1093 %
1094 %  A description of each parameter follows:
1095 %
1096 %    o image: the image.
1097 %
1098 %    o minima: the minimum value in the channel.
1099 %
1100 %    o maxima: the maximum value in the channel.
1101 %
1102 %    o exception: return any errors or warnings in this structure.
1103 %
1104 */
1105 MagickExport MagickBooleanType GetImageExtrema(const Image *image,
1106   size_t *minima,size_t *maxima,ExceptionInfo *exception)
1107 {
1108   double
1109     max,
1110     min;
1111
1112   MagickBooleanType
1113     status;
1114
1115   assert(image != (Image *) NULL);
1116   assert(image->signature == MagickSignature);
1117   if (image->debug != MagickFalse)
1118     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1119   status=GetImageRange(image,&min,&max,exception);
1120   *minima=(size_t) ceil(min-0.5);
1121   *maxima=(size_t) floor(max+0.5);
1122   return(status);
1123 }
1124 \f
1125 /*
1126 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1127 %                                                                             %
1128 %                                                                             %
1129 %                                                                             %
1130 %   G e t I m a g e K u r t o s i s                                           %
1131 %                                                                             %
1132 %                                                                             %
1133 %                                                                             %
1134 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1135 %
1136 %  GetImageKurtosis() returns the kurtosis and skewness of one or more image
1137 %  channels.
1138 %
1139 %  The format of the GetImageKurtosis method is:
1140 %
1141 %      MagickBooleanType GetImageKurtosis(const Image *image,double *kurtosis,
1142 %        double *skewness,ExceptionInfo *exception)
1143 %
1144 %  A description of each parameter follows:
1145 %
1146 %    o image: the image.
1147 %
1148 %    o kurtosis: the kurtosis of the channel.
1149 %
1150 %    o skewness: the skewness of the channel.
1151 %
1152 %    o exception: return any errors or warnings in this structure.
1153 %
1154 */
1155 MagickExport MagickBooleanType GetImageKurtosis(const Image *image,
1156   double *kurtosis,double *skewness,ExceptionInfo *exception)
1157 {
1158   CacheView
1159     *image_view;
1160
1161   double
1162     area,
1163     mean,
1164     standard_deviation,
1165     sum_squares,
1166     sum_cubes,
1167     sum_fourth_power;
1168
1169   MagickBooleanType
1170     status;
1171
1172   ssize_t
1173     y;
1174
1175   assert(image != (Image *) NULL);
1176   assert(image->signature == MagickSignature);
1177   if (image->debug != MagickFalse)
1178     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1179   status=MagickTrue;
1180   *kurtosis=0.0;
1181   *skewness=0.0;
1182   area=0.0;
1183   mean=0.0;
1184   standard_deviation=0.0;
1185   sum_squares=0.0;
1186   sum_cubes=0.0;
1187   sum_fourth_power=0.0;
1188   image_view=AcquireVirtualCacheView(image,exception);
1189 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1190   #pragma omp parallel for schedule(static,4) shared(status) \
1191     magick_threads(image,image,image->rows,1)
1192 #endif
1193   for (y=0; y < (ssize_t) image->rows; y++)
1194   {
1195     register const Quantum
1196       *restrict p;
1197
1198     register ssize_t
1199       x;
1200
1201     if (status == MagickFalse)
1202       continue;
1203     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1204     if (p == (const Quantum *) NULL)
1205       {
1206         status=MagickFalse;
1207         continue;
1208       }
1209     for (x=0; x < (ssize_t) image->columns; x++)
1210     {
1211       register ssize_t
1212         i;
1213
1214       if (GetPixelReadMask(image,p) == 0)
1215         {
1216           p+=GetPixelChannels(image);
1217           continue;
1218         }
1219       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1220       {
1221         PixelChannel channel=GetPixelChannelChannel(image,i);
1222         PixelTrait traits=GetPixelChannelTraits(image,channel);
1223         if (traits == UndefinedPixelTrait)
1224           continue;
1225         if ((traits & UpdatePixelTrait) == 0)
1226           continue;
1227 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1228         #pragma omp critical (MagickCore_GetImageKurtosis)
1229 #endif
1230         {
1231           mean+=p[i];
1232           sum_squares+=(double) p[i]*p[i];
1233           sum_cubes+=(double) p[i]*p[i]*p[i];
1234           sum_fourth_power+=(double) p[i]*p[i]*p[i]*p[i];
1235           area++;
1236         }
1237       }
1238       p+=GetPixelChannels(image);
1239     }
1240   }
1241   image_view=DestroyCacheView(image_view);
1242   if (area != 0.0)
1243     {
1244       mean/=area;
1245       sum_squares/=area;
1246       sum_cubes/=area;
1247       sum_fourth_power/=area;
1248     }
1249   standard_deviation=sqrt(sum_squares-(mean*mean));
1250   if (standard_deviation != 0.0)
1251     {
1252       *kurtosis=sum_fourth_power-4.0*mean*sum_cubes+6.0*mean*mean*sum_squares-
1253         3.0*mean*mean*mean*mean;
1254       *kurtosis/=standard_deviation*standard_deviation*standard_deviation*
1255         standard_deviation;
1256       *kurtosis-=3.0;
1257       *skewness=sum_cubes-3.0*mean*sum_squares+2.0*mean*mean*mean;
1258       *skewness/=standard_deviation*standard_deviation*standard_deviation;
1259     }
1260   return(status);
1261 }
1262 \f
1263 /*
1264 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1265 %                                                                             %
1266 %                                                                             %
1267 %                                                                             %
1268 %   G e t I m a g e M e a n                                                   %
1269 %                                                                             %
1270 %                                                                             %
1271 %                                                                             %
1272 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1273 %
1274 %  GetImageMean() returns the mean and standard deviation of one or more image
1275 %  channels.
1276 %
1277 %  The format of the GetImageMean method is:
1278 %
1279 %      MagickBooleanType GetImageMean(const Image *image,double *mean,
1280 %        double *standard_deviation,ExceptionInfo *exception)
1281 %
1282 %  A description of each parameter follows:
1283 %
1284 %    o image: the image.
1285 %
1286 %    o mean: the average value in the channel.
1287 %
1288 %    o standard_deviation: the standard deviation of the channel.
1289 %
1290 %    o exception: return any errors or warnings in this structure.
1291 %
1292 */
1293 MagickExport MagickBooleanType GetImageMean(const Image *image,double *mean,
1294   double *standard_deviation,ExceptionInfo *exception)
1295 {
1296   double
1297     area;
1298
1299   ChannelStatistics
1300     *channel_statistics;
1301
1302   register ssize_t
1303     i;
1304
1305   assert(image != (Image *) NULL);
1306   assert(image->signature == MagickSignature);
1307   if (image->debug != MagickFalse)
1308     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1309   channel_statistics=GetImageStatistics(image,exception);
1310   if (channel_statistics == (ChannelStatistics *) NULL)
1311     return(MagickFalse);
1312   area=0.0;
1313   channel_statistics[CompositePixelChannel].mean=0.0;
1314   channel_statistics[CompositePixelChannel].standard_deviation=0.0;
1315   for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1316   {
1317     PixelChannel channel=GetPixelChannelChannel(image,i);
1318     PixelTrait traits=GetPixelChannelTraits(image,channel);
1319     if (traits == UndefinedPixelTrait)
1320       continue;
1321     if ((traits & UpdatePixelTrait) == 0)
1322       continue;
1323     channel_statistics[CompositePixelChannel].mean+=channel_statistics[i].mean;
1324     channel_statistics[CompositePixelChannel].standard_deviation+=
1325       channel_statistics[i].variance-channel_statistics[i].mean*
1326       channel_statistics[i].mean;
1327     area++;
1328   }
1329   channel_statistics[CompositePixelChannel].mean/=area;
1330   channel_statistics[CompositePixelChannel].standard_deviation=
1331     sqrt(channel_statistics[CompositePixelChannel].standard_deviation/area);
1332   *mean=channel_statistics[CompositePixelChannel].mean;
1333   *standard_deviation=
1334     channel_statistics[CompositePixelChannel].standard_deviation;
1335   channel_statistics=(ChannelStatistics *) RelinquishMagickMemory(
1336     channel_statistics);
1337   return(MagickTrue);
1338 }
1339 \f
1340 /*
1341 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1342 %                                                                             %
1343 %                                                                             %
1344 %                                                                             %
1345 %   G e t I m a g e M o m e n t s                                             %
1346 %                                                                             %
1347 %                                                                             %
1348 %                                                                             %
1349 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1350 %
1351 %  GetImageMoments() returns the moments of one or more image channels.
1352 %
1353 %  The format of the GetImageMoments method is:
1354 %
1355 %      ChannelMoments *GetImageMoments(const Image *image,
1356 %        ExceptionInfo *exception)
1357 %
1358 %  A description of each parameter follows:
1359 %
1360 %    o image: the image.
1361 %
1362 %    o exception: return any errors or warnings in this structure.
1363 %
1364 */
1365 MagickExport ChannelMoments *GetImageMoments(const Image *image,
1366   ExceptionInfo *exception)
1367 {
1368 #define MaxNumberImageMoments  8
1369
1370   CacheView
1371     *image_view;
1372
1373   ChannelMoments
1374     *channel_moments;
1375
1376   double
1377     M00[MaxPixelChannels+1],
1378     M01[MaxPixelChannels+1],
1379     M02[MaxPixelChannels+1],
1380     M03[MaxPixelChannels+1],
1381     M10[MaxPixelChannels+1],
1382     M11[MaxPixelChannels+1],
1383     M12[MaxPixelChannels+1],
1384     M20[MaxPixelChannels+1],
1385     M21[MaxPixelChannels+1],
1386     M22[MaxPixelChannels+1],
1387     M30[MaxPixelChannels+1],
1388     scale;
1389
1390   PointInfo
1391     centroid[MaxPixelChannels+1];
1392
1393   ssize_t
1394     channel,
1395     y;
1396
1397   assert(image != (Image *) NULL);
1398   assert(image->signature == MagickSignature);
1399   if (image->debug != MagickFalse)
1400     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1401   channel_moments=(ChannelMoments *) AcquireQuantumMemory(MaxPixelChannels+1,
1402     sizeof(*channel_moments));
1403   if (channel_moments == (ChannelMoments *) NULL)
1404     return(channel_moments);
1405   (void) ResetMagickMemory(channel_moments,0,(MaxPixelChannels+1)*
1406     sizeof(*channel_moments));
1407   (void) ResetMagickMemory(centroid,0,sizeof(centroid));
1408   (void) ResetMagickMemory(M00,0,sizeof(M00));
1409   (void) ResetMagickMemory(M01,0,sizeof(M01));
1410   (void) ResetMagickMemory(M02,0,sizeof(M02));
1411   (void) ResetMagickMemory(M03,0,sizeof(M03));
1412   (void) ResetMagickMemory(M10,0,sizeof(M10));
1413   (void) ResetMagickMemory(M11,0,sizeof(M11));
1414   (void) ResetMagickMemory(M12,0,sizeof(M12));
1415   (void) ResetMagickMemory(M20,0,sizeof(M20));
1416   (void) ResetMagickMemory(M21,0,sizeof(M21));
1417   (void) ResetMagickMemory(M22,0,sizeof(M22));
1418   (void) ResetMagickMemory(M30,0,sizeof(M30));
1419   scale=(double) ((1UL << image->depth)-1)/QuantumRange;
1420   image_view=AcquireVirtualCacheView(image,exception);
1421   for (y=0; y < (ssize_t) image->rows; y++)
1422   {
1423     register const Quantum
1424       *restrict p;
1425
1426     register ssize_t
1427       x;
1428
1429     /*
1430       Compute center of mass (centroid).
1431     */
1432     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1433     if (p == (const Quantum *) NULL)
1434       break;
1435     for (x=0; x < (ssize_t) image->columns; x++)
1436     {
1437       register ssize_t
1438         i;
1439
1440       if (GetPixelReadMask(image,p) == 0)
1441         {
1442           p+=GetPixelChannels(image);
1443           continue;
1444         }
1445       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1446       {
1447         PixelChannel channel=GetPixelChannelChannel(image,i);
1448         PixelTrait traits=GetPixelChannelTraits(image,channel);
1449         if (traits == UndefinedPixelTrait)
1450           continue;
1451         if ((traits & UpdatePixelTrait) == 0)
1452           continue;
1453         M00[channel]+=scale*p[i];
1454         M10[channel]+=x*scale*p[i];
1455         M01[channel]+=y*scale*p[i];
1456       }
1457       p+=GetPixelChannels(image);
1458     }
1459   }
1460   for (channel=0; channel <= MaxPixelChannels; channel++)
1461   {
1462     /*
1463        Compute center of mass (centroid).
1464     */
1465     if (M00[channel] < MagickEpsilon)
1466       {
1467         M00[channel]+=MagickEpsilon;
1468         centroid[channel].x=image->columns/2.0;
1469         centroid[channel].y=image->rows/2.0;
1470         continue;
1471       }
1472     M00[channel]+=MagickEpsilon;
1473     centroid[channel].x=M10[channel]/M00[channel];
1474     centroid[channel].y=M01[channel]/M00[channel];
1475   }
1476   for (y=0; y < (ssize_t) image->rows; y++)
1477   {
1478     register const Quantum
1479       *restrict p;
1480
1481     register ssize_t
1482       x;
1483
1484     /*
1485       Compute the image moments.
1486     */
1487     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1488     if (p == (const Quantum *) NULL)
1489       break;
1490     for (x=0; x < (ssize_t) image->columns; x++)
1491     {
1492       register ssize_t
1493         i;
1494
1495       if (GetPixelReadMask(image,p) == 0)
1496         {
1497           p+=GetPixelChannels(image);
1498           continue;
1499         }
1500       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1501       {
1502         PixelChannel channel=GetPixelChannelChannel(image,i);
1503         PixelTrait traits=GetPixelChannelTraits(image,channel);
1504         if (traits == UndefinedPixelTrait)
1505           continue;
1506         if ((traits & UpdatePixelTrait) == 0)
1507           continue;
1508         M11[channel]+=(x-centroid[channel].x)*(y-centroid[channel].y)*
1509           scale*p[i];
1510         M20[channel]+=(x-centroid[channel].x)*(x-centroid[channel].x)*
1511           scale*p[i];
1512         M02[channel]+=(y-centroid[channel].y)*(y-centroid[channel].y)*
1513           scale*p[i];
1514         M21[channel]+=(x-centroid[channel].x)*(x-centroid[channel].x)*
1515           (y-centroid[channel].y)*scale*p[i];
1516         M12[channel]+=(x-centroid[channel].x)*(y-centroid[channel].y)*
1517           (y-centroid[channel].y)*scale*p[i];
1518         M22[channel]+=(x-centroid[channel].x)*(x-centroid[channel].x)*
1519           (y-centroid[channel].y)*(y-centroid[channel].y)*scale*p[i];
1520         M30[channel]+=(x-centroid[channel].x)*(x-centroid[channel].x)*
1521           (x-centroid[channel].x)*scale*p[i];
1522         M03[channel]+=(y-centroid[channel].y)*(y-centroid[channel].y)*
1523           (y-centroid[channel].y)*scale*p[i];
1524       }
1525       p+=GetPixelChannels(image);
1526     }
1527   }
1528   for (channel=0; channel <= MaxPixelChannels; channel++)
1529   {
1530     /*
1531       Compute elliptical angle, major and minor axes, eccentricity, & intensity.
1532     */
1533     channel_moments[channel].centroid=centroid[channel];
1534     channel_moments[channel].ellipse_axis.x=sqrt((2.0/M00[channel])*
1535       ((M20[channel]+M02[channel])+sqrt(4.0*M11[channel]*M11[channel]+
1536       (M20[channel]-M02[channel])*(M20[channel]-M02[channel]))));
1537     channel_moments[channel].ellipse_axis.y=sqrt((2.0/M00[channel])*
1538       ((M20[channel]+M02[channel])-sqrt(4.0*M11[channel]*M11[channel]+
1539       (M20[channel]-M02[channel])*(M20[channel]-M02[channel]))));
1540     channel_moments[channel].ellipse_angle=RadiansToDegrees(0.5*atan(2.0*
1541       M11[channel]/(M20[channel]-M02[channel]+MagickEpsilon)));
1542     channel_moments[channel].ellipse_eccentricity=sqrt(1.0-(
1543       channel_moments[channel].ellipse_axis.y/
1544       (channel_moments[channel].ellipse_axis.x+MagickEpsilon)));
1545     channel_moments[channel].ellipse_intensity=M00[channel]/
1546       (MagickPI*channel_moments[channel].ellipse_axis.x*
1547       channel_moments[channel].ellipse_axis.y+MagickEpsilon);
1548   }
1549   for (channel=0; channel <= MaxPixelChannels; channel++)
1550   {
1551     /*
1552       Normalize image moments.
1553     */
1554     M10[channel]=0.0;
1555     M01[channel]=0.0;
1556     M11[channel]/=pow(M00[channel],1.0+(1.0+1.0)/2.0);
1557     M20[channel]/=pow(M00[channel],1.0+(2.0+0.0)/2.0);
1558     M02[channel]/=pow(M00[channel],1.0+(0.0+2.0)/2.0);
1559     M21[channel]/=pow(M00[channel],1.0+(2.0+1.0)/2.0);
1560     M12[channel]/=pow(M00[channel],1.0+(1.0+2.0)/2.0);
1561     M22[channel]/=pow(M00[channel],1.0+(2.0+2.0)/2.0);
1562     M30[channel]/=pow(M00[channel],1.0+(3.0+0.0)/2.0);
1563     M03[channel]/=pow(M00[channel],1.0+(0.0+3.0)/2.0);
1564     M00[channel]=1.0;
1565   }
1566   image_view=DestroyCacheView(image_view);
1567   for (channel=0; channel <= MaxPixelChannels; channel++)
1568   {
1569     /*
1570       Compute Hu invariant moments.
1571     */
1572     channel_moments[channel].I[0]=M20[channel]+M02[channel];
1573     channel_moments[channel].I[1]=(M20[channel]-M02[channel])*
1574       (M20[channel]-M02[channel])+4.0*M11[channel]*M11[channel];
1575     channel_moments[channel].I[2]=(M30[channel]-3.0*M12[channel])*
1576       (M30[channel]-3.0*M12[channel])+(3.0*M21[channel]-M03[channel])*
1577       (3.0*M21[channel]-M03[channel]);
1578     channel_moments[channel].I[3]=(M30[channel]+M12[channel])*
1579       (M30[channel]+M12[channel])+(M21[channel]+M03[channel])*
1580       (M21[channel]+M03[channel]);
1581     channel_moments[channel].I[4]=(M30[channel]-3.0*M12[channel])*
1582       (M30[channel]+M12[channel])*((M30[channel]+M12[channel])*
1583       (M30[channel]+M12[channel])-3.0*(M21[channel]+M03[channel])*
1584       (M21[channel]+M03[channel]))+(3.0*M21[channel]-M03[channel])*
1585       (M21[channel]+M03[channel])*(3.0*(M30[channel]+M12[channel])*
1586       (M30[channel]+M12[channel])-(M21[channel]+M03[channel])*
1587       (M21[channel]+M03[channel]));
1588     channel_moments[channel].I[5]=(M20[channel]-M02[channel])*
1589       ((M30[channel]+M12[channel])*(M30[channel]+M12[channel])-
1590       (M21[channel]+M03[channel])*(M21[channel]+M03[channel]))+
1591       4.0*M11[channel]*(M30[channel]+M12[channel])*(M21[channel]+M03[channel]);
1592     channel_moments[channel].I[6]=(3.0*M21[channel]-M03[channel])*
1593       (M30[channel]+M12[channel])*((M30[channel]+M12[channel])*
1594       (M30[channel]+M12[channel])-3.0*(M21[channel]+M03[channel])*
1595       (M21[channel]+M03[channel]))-(M30[channel]-3*M12[channel])*
1596       (M21[channel]+M03[channel])*(3.0*(M30[channel]+M12[channel])*
1597       (M30[channel]+M12[channel])-(M21[channel]+M03[channel])*
1598       (M21[channel]+M03[channel]));
1599     channel_moments[channel].I[7]=M11[channel]*((M30[channel]+M12[channel])*
1600       (M30[channel]+M12[channel])-(M03[channel]+M21[channel])*
1601       (M03[channel]+M21[channel]))-(M20[channel]-M02[channel])*
1602       (M30[channel]+M12[channel])*(M03[channel]+M21[channel]);
1603   }
1604   if (y < (ssize_t) image->rows)
1605     channel_moments=(ChannelMoments *) RelinquishMagickMemory(channel_moments);
1606   return(channel_moments);
1607 }
1608 \f
1609 /*
1610 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1611 %                                                                             %
1612 %                                                                             %
1613 %                                                                             %
1614 %   G e t I m a g e R a n g e                                                 %
1615 %                                                                             %
1616 %                                                                             %
1617 %                                                                             %
1618 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1619 %
1620 %  GetImageRange() returns the range of one or more image channels.
1621 %
1622 %  The format of the GetImageRange method is:
1623 %
1624 %      MagickBooleanType GetImageRange(const Image *image,double *minima,
1625 %        double *maxima,ExceptionInfo *exception)
1626 %
1627 %  A description of each parameter follows:
1628 %
1629 %    o image: the image.
1630 %
1631 %    o minima: the minimum value in the channel.
1632 %
1633 %    o maxima: the maximum value in the channel.
1634 %
1635 %    o exception: return any errors or warnings in this structure.
1636 %
1637 */
1638 MagickExport MagickBooleanType GetImageRange(const Image *image,double *minima,
1639   double *maxima,ExceptionInfo *exception)
1640 {
1641   CacheView
1642     *image_view;
1643
1644   MagickBooleanType
1645     initialize,
1646     status;
1647
1648   ssize_t
1649     y;
1650
1651   assert(image != (Image *) NULL);
1652   assert(image->signature == MagickSignature);
1653   if (image->debug != MagickFalse)
1654     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1655   status=MagickTrue;
1656   initialize=MagickTrue;
1657   *maxima=0.0;
1658   *minima=0.0;
1659   image_view=AcquireVirtualCacheView(image,exception);
1660 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1661   #pragma omp parallel for schedule(static,4) shared(status,initialize) \
1662     magick_threads(image,image,image->rows,1)
1663 #endif
1664   for (y=0; y < (ssize_t) image->rows; y++)
1665   {
1666     register const Quantum
1667       *restrict p;
1668
1669     register ssize_t
1670       x;
1671
1672     if (status == MagickFalse)
1673       continue;
1674     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1675     if (p == (const Quantum *) NULL)
1676       {
1677         status=MagickFalse;
1678         continue;
1679       }
1680     for (x=0; x < (ssize_t) image->columns; x++)
1681     {
1682       register ssize_t
1683         i;
1684
1685       if (GetPixelReadMask(image,p) == 0)
1686         {
1687           p+=GetPixelChannels(image);
1688           continue;
1689         }
1690       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1691       {
1692         PixelChannel channel=GetPixelChannelChannel(image,i);
1693         PixelTrait traits=GetPixelChannelTraits(image,channel);
1694         if (traits == UndefinedPixelTrait)
1695           continue;
1696         if ((traits & UpdatePixelTrait) == 0)
1697           continue;
1698 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1699         #pragma omp critical (MagickCore_GetImageRange)
1700 #endif
1701         {
1702           if (initialize != MagickFalse)
1703             {
1704               *minima=(double) p[i];
1705               *maxima=(double) p[i];
1706               initialize=MagickFalse;
1707             }
1708           else
1709             {
1710               if ((double) p[i] < *minima)
1711                 *minima=(double) p[i];
1712               if ((double) p[i] > *maxima)
1713                 *maxima=(double) p[i];
1714            }
1715         }
1716       }
1717       p+=GetPixelChannels(image);
1718     }
1719   }
1720   image_view=DestroyCacheView(image_view);
1721   return(status);
1722 }
1723 \f
1724 /*
1725 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1726 %                                                                             %
1727 %                                                                             %
1728 %                                                                             %
1729 %   G e t I m a g e S t a t i s t i c s                                       %
1730 %                                                                             %
1731 %                                                                             %
1732 %                                                                             %
1733 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1734 %
1735 %  GetImageStatistics() returns statistics for each channel in the image.  The
1736 %  statistics include the channel depth, its minima, maxima, mean, standard
1737 %  deviation, kurtosis and skewness.  You can access the red channel mean, for
1738 %  example, like this:
1739 %
1740 %      channel_statistics=GetImageStatistics(image,exception);
1741 %      red_mean=channel_statistics[RedPixelChannel].mean;
1742 %
1743 %  Use MagickRelinquishMemory() to free the statistics buffer.
1744 %
1745 %  The format of the GetImageStatistics method is:
1746 %
1747 %      ChannelStatistics *GetImageStatistics(const Image *image,
1748 %        ExceptionInfo *exception)
1749 %
1750 %  A description of each parameter follows:
1751 %
1752 %    o image: the image.
1753 %
1754 %    o exception: return any errors or warnings in this structure.
1755 %
1756 */
1757
1758 static size_t GetImageChannels(const Image *image)
1759 {
1760   register ssize_t
1761     i;
1762
1763   size_t
1764     channels;
1765
1766   channels=0;
1767   for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1768   {
1769     PixelChannel channel=GetPixelChannelChannel(image,i);
1770     PixelTrait traits=GetPixelChannelTraits(image,channel);
1771     if (traits != UndefinedPixelTrait)
1772       channels++;
1773   }
1774   return(channels);
1775 }
1776
1777 MagickExport ChannelStatistics *GetImageStatistics(const Image *image,
1778   ExceptionInfo *exception)
1779 {
1780   ChannelStatistics
1781     *channel_statistics;
1782
1783   MagickStatusType
1784     status;
1785
1786   QuantumAny
1787     range;
1788
1789   register ssize_t
1790     i;
1791
1792   size_t
1793     channels,
1794     depth;
1795
1796   ssize_t
1797     y;
1798
1799   assert(image != (Image *) NULL);
1800   assert(image->signature == MagickSignature);
1801   if (image->debug != MagickFalse)
1802     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1803   channel_statistics=(ChannelStatistics *) AcquireQuantumMemory(
1804     MaxPixelChannels+1,sizeof(*channel_statistics));
1805   if (channel_statistics == (ChannelStatistics *) NULL)
1806     return(channel_statistics);
1807   (void) ResetMagickMemory(channel_statistics,0,(MaxPixelChannels+1)*
1808     sizeof(*channel_statistics));
1809   for (i=0; i <= (ssize_t) MaxPixelChannels; i++)
1810   {
1811     channel_statistics[i].depth=1;
1812     channel_statistics[i].maxima=(-MagickMaximumValue);
1813     channel_statistics[i].minima=MagickMaximumValue;
1814   }
1815   for (y=0; y < (ssize_t) image->rows; y++)
1816   {
1817     register const Quantum
1818       *restrict p;
1819
1820     register ssize_t
1821       x;
1822
1823     p=GetVirtualPixels(image,0,y,image->columns,1,exception);
1824     if (p == (const Quantum *) NULL)
1825       break;
1826     for (x=0; x < (ssize_t) image->columns; x++)
1827     {
1828       register ssize_t
1829         i;
1830
1831       if (GetPixelReadMask(image,p) == 0)
1832         {
1833           p+=GetPixelChannels(image);
1834           continue;
1835         }
1836       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1837       {
1838         PixelChannel channel=GetPixelChannelChannel(image,i);
1839         PixelTrait traits=GetPixelChannelTraits(image,channel);
1840         if (traits == UndefinedPixelTrait)
1841           continue;
1842         if (channel_statistics[channel].depth != MAGICKCORE_QUANTUM_DEPTH)
1843           {
1844             depth=channel_statistics[channel].depth;
1845             range=GetQuantumRange(depth);
1846             status=p[i] != ScaleAnyToQuantum(ScaleQuantumToAny(p[i],range),
1847               range) ? MagickTrue : MagickFalse;
1848             if (status != MagickFalse)
1849               {
1850                 channel_statistics[channel].depth++;
1851                 i--;
1852                 continue;
1853               }
1854           }
1855         if ((double) p[i] < channel_statistics[channel].minima)
1856           channel_statistics[channel].minima=(double) p[i];
1857         if ((double) p[i] > channel_statistics[channel].maxima)
1858           channel_statistics[channel].maxima=(double) p[i];
1859         channel_statistics[channel].sum+=p[i];
1860         channel_statistics[channel].sum_squared+=(double) p[i]*p[i];
1861         channel_statistics[channel].sum_cubed+=(double) p[i]*p[i]*p[i];
1862         channel_statistics[channel].sum_fourth_power+=(double) p[i]*p[i]*p[i]*
1863           p[i];
1864         channel_statistics[channel].area++;
1865       }
1866       p+=GetPixelChannels(image);
1867     }
1868   }
1869   for (i=0; i < (ssize_t) MaxPixelChannels; i++)
1870   {
1871     double
1872       area;
1873
1874     area=PerceptibleReciprocal(channel_statistics[i].area);
1875     channel_statistics[i].sum*=area;
1876     channel_statistics[i].sum_squared*=area;
1877     channel_statistics[i].sum_cubed*=area;
1878     channel_statistics[i].sum_fourth_power*=area;
1879     channel_statistics[i].mean=channel_statistics[i].sum;
1880     channel_statistics[i].variance=channel_statistics[i].sum_squared;
1881     channel_statistics[i].standard_deviation=sqrt(
1882       channel_statistics[i].variance-(channel_statistics[i].mean*
1883       channel_statistics[i].mean));
1884   }
1885   for (i=0; i < (ssize_t) MaxPixelChannels; i++)
1886   {
1887     channel_statistics[CompositePixelChannel].area+=channel_statistics[i].area;
1888     channel_statistics[CompositePixelChannel].minima=MagickMin(
1889       channel_statistics[CompositePixelChannel].minima,
1890       channel_statistics[i].minima);
1891     channel_statistics[CompositePixelChannel].maxima=EvaluateMax(
1892       channel_statistics[CompositePixelChannel].maxima,
1893       channel_statistics[i].maxima);
1894     channel_statistics[CompositePixelChannel].sum+=channel_statistics[i].sum;
1895     channel_statistics[CompositePixelChannel].sum_squared+=
1896       channel_statistics[i].sum_squared;
1897     channel_statistics[CompositePixelChannel].sum_cubed+=
1898       channel_statistics[i].sum_cubed;
1899     channel_statistics[CompositePixelChannel].sum_fourth_power+=
1900       channel_statistics[i].sum_fourth_power;
1901     channel_statistics[CompositePixelChannel].mean+=channel_statistics[i].mean;
1902     channel_statistics[CompositePixelChannel].variance+=
1903       channel_statistics[i].variance-channel_statistics[i].mean*
1904       channel_statistics[i].mean;
1905     channel_statistics[CompositePixelChannel].standard_deviation+=
1906       channel_statistics[i].variance-channel_statistics[i].mean*
1907       channel_statistics[i].mean;
1908   }
1909   channels=GetImageChannels(image);
1910   channel_statistics[CompositePixelChannel].area/=channels;
1911   channel_statistics[CompositePixelChannel].sum/=channels;
1912   channel_statistics[CompositePixelChannel].sum_squared/=channels;
1913   channel_statistics[CompositePixelChannel].sum_cubed/=channels;
1914   channel_statistics[CompositePixelChannel].sum_fourth_power/=channels;
1915   channel_statistics[CompositePixelChannel].mean/=channels;
1916   channel_statistics[CompositePixelChannel].variance/=channels;
1917   channel_statistics[CompositePixelChannel].standard_deviation=
1918     sqrt(channel_statistics[CompositePixelChannel].standard_deviation/channels);
1919   channel_statistics[CompositePixelChannel].kurtosis/=channels;
1920   channel_statistics[CompositePixelChannel].skewness/=channels;
1921   for (i=0; i <= (ssize_t) MaxPixelChannels; i++)
1922   {
1923     double
1924       standard_deviation;
1925
1926     if (channel_statistics[i].standard_deviation == 0.0)
1927       continue;
1928     standard_deviation=PerceptibleReciprocal(
1929       channel_statistics[i].standard_deviation);
1930     channel_statistics[i].skewness=(channel_statistics[i].sum_cubed-3.0*
1931       channel_statistics[i].mean*channel_statistics[i].sum_squared+2.0*
1932       channel_statistics[i].mean*channel_statistics[i].mean*
1933       channel_statistics[i].mean)*(standard_deviation*standard_deviation*
1934       standard_deviation);
1935     channel_statistics[i].kurtosis=(channel_statistics[i].sum_fourth_power-4.0*
1936       channel_statistics[i].mean*channel_statistics[i].sum_cubed+6.0*
1937       channel_statistics[i].mean*channel_statistics[i].mean*
1938       channel_statistics[i].sum_squared-3.0*channel_statistics[i].mean*
1939       channel_statistics[i].mean*1.0*channel_statistics[i].mean*
1940       channel_statistics[i].mean)*(standard_deviation*standard_deviation*
1941       standard_deviation*standard_deviation)-3.0;
1942   }
1943   if (y < (ssize_t) image->rows)
1944     channel_statistics=(ChannelStatistics *) RelinquishMagickMemory(
1945       channel_statistics);
1946   return(channel_statistics);
1947 }
1948 \f
1949 /*
1950 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1951 %                                                                             %
1952 %                                                                             %
1953 %                                                                             %
1954 %     P o l y n o m i a l I m a g e                                           %
1955 %                                                                             %
1956 %                                                                             %
1957 %                                                                             %
1958 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1959 %
1960 %  PolynomialImage() returns a new image where each pixel is the sum of the
1961 %  pixels in the image sequence after applying its corresponding terms
1962 %  (coefficient and degree pairs).
1963 %
1964 %  The format of the PolynomialImage method is:
1965 %
1966 %      Image *PolynomialImage(const Image *images,const size_t number_terms,
1967 %        const double *terms,ExceptionInfo *exception)
1968 %
1969 %  A description of each parameter follows:
1970 %
1971 %    o images: the image sequence.
1972 %
1973 %    o number_terms: the number of terms in the list.  The actual list length
1974 %      is 2 x number_terms + 1 (the constant).
1975 %
1976 %    o terms: the list of polynomial coefficients and degree pairs and a
1977 %      constant.
1978 %
1979 %    o exception: return any errors or warnings in this structure.
1980 %
1981 */
1982
1983 MagickExport Image *PolynomialImage(const Image *images,
1984   const size_t number_terms,const double *terms,ExceptionInfo *exception)
1985 {
1986 #define PolynomialImageTag  "Polynomial/Image"
1987
1988   CacheView
1989     *polynomial_view;
1990
1991   Image
1992     *image;
1993
1994   MagickBooleanType
1995     status;
1996
1997   MagickOffsetType
1998     progress;
1999
2000   PixelChannels
2001     **restrict polynomial_pixels;
2002
2003   size_t
2004     number_images;
2005
2006   ssize_t
2007     y;
2008
2009   assert(images != (Image *) NULL);
2010   assert(images->signature == MagickSignature);
2011   if (images->debug != MagickFalse)
2012     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
2013   assert(exception != (ExceptionInfo *) NULL);
2014   assert(exception->signature == MagickSignature);
2015   image=CloneImage(images,images->columns,images->rows,MagickTrue,
2016     exception);
2017   if (image == (Image *) NULL)
2018     return((Image *) NULL);
2019   if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
2020     {
2021       image=DestroyImage(image);
2022       return((Image *) NULL);
2023     }
2024   number_images=GetImageListLength(images);
2025   polynomial_pixels=AcquirePixelThreadSet(images,number_images);
2026   if (polynomial_pixels == (PixelChannels **) NULL)
2027     {
2028       image=DestroyImage(image);
2029       (void) ThrowMagickException(exception,GetMagickModule(),
2030         ResourceLimitError,"MemoryAllocationFailed","`%s'",images->filename);
2031       return((Image *) NULL);
2032     }
2033   /*
2034     Polynomial image pixels.
2035   */
2036   status=MagickTrue;
2037   progress=0;
2038   polynomial_view=AcquireAuthenticCacheView(image,exception);
2039 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2040   #pragma omp parallel for schedule(static,4) shared(progress,status) \
2041     magick_threads(image,image,image->rows,1)
2042 #endif
2043   for (y=0; y < (ssize_t) image->rows; y++)
2044   {
2045     CacheView
2046       *image_view;
2047
2048     const Image
2049       *next;
2050
2051     const int
2052       id = GetOpenMPThreadId();
2053
2054     register ssize_t
2055       i,
2056       x;
2057
2058     register PixelChannels
2059       *polynomial_pixel;
2060
2061     register Quantum
2062       *restrict q;
2063
2064     ssize_t
2065       j;
2066
2067     if (status == MagickFalse)
2068       continue;
2069     q=QueueCacheViewAuthenticPixels(polynomial_view,0,y,image->columns,1,
2070       exception);
2071     if (q == (Quantum *) NULL)
2072       {
2073         status=MagickFalse;
2074         continue;
2075       }
2076     polynomial_pixel=polynomial_pixels[id];
2077     for (j=0; j < (ssize_t) image->columns; j++)
2078       for (i=0; i < MaxPixelChannels; i++)
2079         polynomial_pixel[j].channel[i]=0.0;
2080     next=images;
2081     for (j=0; j < (ssize_t) number_images; j++)
2082     {
2083       register const Quantum
2084         *p;
2085
2086       if (j >= (ssize_t) number_terms)
2087         continue;
2088       image_view=AcquireVirtualCacheView(next,exception);
2089       p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
2090       if (p == (const Quantum *) NULL)
2091         {
2092           image_view=DestroyCacheView(image_view);
2093           break;
2094         }
2095       for (x=0; x < (ssize_t) image->columns; x++)
2096       {
2097         register ssize_t
2098           i;
2099
2100         if (GetPixelReadMask(next,p) == 0)
2101           {
2102             p+=GetPixelChannels(next);
2103             continue;
2104           }
2105         for (i=0; i < (ssize_t) GetPixelChannels(next); i++)
2106         {
2107           MagickRealType
2108             coefficient,
2109             degree;
2110
2111           PixelChannel channel=GetPixelChannelChannel(image,i);
2112           PixelTrait traits=GetPixelChannelTraits(next,channel);
2113           PixelTrait polynomial_traits=GetPixelChannelTraits(image,channel);
2114           if ((traits == UndefinedPixelTrait) ||
2115               (polynomial_traits == UndefinedPixelTrait))
2116             continue;
2117           if ((traits & UpdatePixelTrait) == 0)
2118             continue;
2119           coefficient=(MagickRealType) terms[2*i];
2120           degree=(MagickRealType) terms[(i << 1)+1];
2121           polynomial_pixel[x].channel[i]+=coefficient*
2122             pow(QuantumScale*GetPixelChannel(image,channel,p),degree);
2123         }
2124         p+=GetPixelChannels(next);
2125       }
2126       image_view=DestroyCacheView(image_view);
2127       next=GetNextImageInList(next);
2128     }
2129     for (x=0; x < (ssize_t) image->columns; x++)
2130     {
2131       register ssize_t
2132         i;
2133
2134       if (GetPixelReadMask(image,q) == 0)
2135         {
2136           q+=GetPixelChannels(image);
2137           continue;
2138         }
2139       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
2140       {
2141         PixelChannel channel=GetPixelChannelChannel(image,i);
2142         PixelTrait traits=GetPixelChannelTraits(image,channel);
2143         if (traits == UndefinedPixelTrait)
2144           continue;
2145         if ((traits & UpdatePixelTrait) == 0)
2146           continue;
2147         q[i]=ClampToQuantum(QuantumRange*polynomial_pixel[x].channel[i]);
2148       }
2149       q+=GetPixelChannels(image);
2150     }
2151     if (SyncCacheViewAuthenticPixels(polynomial_view,exception) == MagickFalse)
2152       status=MagickFalse;
2153     if (images->progress_monitor != (MagickProgressMonitor) NULL)
2154       {
2155         MagickBooleanType
2156           proceed;
2157
2158 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2159         #pragma omp critical (MagickCore_PolynomialImages)
2160 #endif
2161         proceed=SetImageProgress(images,PolynomialImageTag,progress++,
2162           image->rows);
2163         if (proceed == MagickFalse)
2164           status=MagickFalse;
2165       }
2166   }
2167   polynomial_view=DestroyCacheView(polynomial_view);
2168   polynomial_pixels=DestroyPixelThreadSet(polynomial_pixels);
2169   if (status == MagickFalse)
2170     image=DestroyImage(image);
2171   return(image);
2172 }
2173 \f
2174 /*
2175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2176 %                                                                             %
2177 %                                                                             %
2178 %                                                                             %
2179 %     S t a t i s t i c I m a g e                                             %
2180 %                                                                             %
2181 %                                                                             %
2182 %                                                                             %
2183 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2184 %
2185 %  StatisticImage() makes each pixel the min / max / median / mode / etc. of
2186 %  the neighborhood of the specified width and height.
2187 %
2188 %  The format of the StatisticImage method is:
2189 %
2190 %      Image *StatisticImage(const Image *image,const StatisticType type,
2191 %        const size_t width,const size_t height,ExceptionInfo *exception)
2192 %
2193 %  A description of each parameter follows:
2194 %
2195 %    o image: the image.
2196 %
2197 %    o type: the statistic type (median, mode, etc.).
2198 %
2199 %    o width: the width of the pixel neighborhood.
2200 %
2201 %    o height: the height of the pixel neighborhood.
2202 %
2203 %    o exception: return any errors or warnings in this structure.
2204 %
2205 */
2206
2207 typedef struct _SkipNode
2208 {
2209   size_t
2210     next[9],
2211     count,
2212     signature;
2213 } SkipNode;
2214
2215 typedef struct _SkipList
2216 {
2217   ssize_t
2218     level;
2219
2220   SkipNode
2221     *nodes;
2222 } SkipList;
2223
2224 typedef struct _PixelList
2225 {
2226   size_t
2227     length,
2228     seed;
2229
2230   SkipList
2231     skip_list;
2232
2233   size_t
2234     signature;
2235 } PixelList;
2236
2237 static PixelList *DestroyPixelList(PixelList *pixel_list)
2238 {
2239   if (pixel_list == (PixelList *) NULL)
2240     return((PixelList *) NULL);
2241   if (pixel_list->skip_list.nodes != (SkipNode *) NULL)
2242     pixel_list->skip_list.nodes=(SkipNode *) RelinquishMagickMemory(
2243       pixel_list->skip_list.nodes);
2244   pixel_list=(PixelList *) RelinquishMagickMemory(pixel_list);
2245   return(pixel_list);
2246 }
2247
2248 static PixelList **DestroyPixelListThreadSet(PixelList **pixel_list)
2249 {
2250   register ssize_t
2251     i;
2252
2253   assert(pixel_list != (PixelList **) NULL);
2254   for (i=0; i < (ssize_t) GetMagickResourceLimit(ThreadResource); i++)
2255     if (pixel_list[i] != (PixelList *) NULL)
2256       pixel_list[i]=DestroyPixelList(pixel_list[i]);
2257   pixel_list=(PixelList **) RelinquishMagickMemory(pixel_list);
2258   return(pixel_list);
2259 }
2260
2261 static PixelList *AcquirePixelList(const size_t width,const size_t height)
2262 {
2263   PixelList
2264     *pixel_list;
2265
2266   pixel_list=(PixelList *) AcquireMagickMemory(sizeof(*pixel_list));
2267   if (pixel_list == (PixelList *) NULL)
2268     return(pixel_list);
2269   (void) ResetMagickMemory((void *) pixel_list,0,sizeof(*pixel_list));
2270   pixel_list->length=width*height;
2271   pixel_list->skip_list.nodes=(SkipNode *) AcquireQuantumMemory(65537UL,
2272     sizeof(*pixel_list->skip_list.nodes));
2273   if (pixel_list->skip_list.nodes == (SkipNode *) NULL)
2274     return(DestroyPixelList(pixel_list));
2275   (void) ResetMagickMemory(pixel_list->skip_list.nodes,0,65537UL*
2276     sizeof(*pixel_list->skip_list.nodes));
2277   pixel_list->signature=MagickSignature;
2278   return(pixel_list);
2279 }
2280
2281 static PixelList **AcquirePixelListThreadSet(const size_t width,
2282   const size_t height)
2283 {
2284   PixelList
2285     **pixel_list;
2286
2287   register ssize_t
2288     i;
2289
2290   size_t
2291     number_threads;
2292
2293   number_threads=(size_t) GetMagickResourceLimit(ThreadResource);
2294   pixel_list=(PixelList **) AcquireQuantumMemory(number_threads,
2295     sizeof(*pixel_list));
2296   if (pixel_list == (PixelList **) NULL)
2297     return((PixelList **) NULL);
2298   (void) ResetMagickMemory(pixel_list,0,number_threads*sizeof(*pixel_list));
2299   for (i=0; i < (ssize_t) number_threads; i++)
2300   {
2301     pixel_list[i]=AcquirePixelList(width,height);
2302     if (pixel_list[i] == (PixelList *) NULL)
2303       return(DestroyPixelListThreadSet(pixel_list));
2304   }
2305   return(pixel_list);
2306 }
2307
2308 static void AddNodePixelList(PixelList *pixel_list,const size_t color)
2309 {
2310   register SkipList
2311     *p;
2312
2313   register ssize_t
2314     level;
2315
2316   size_t
2317     search,
2318     update[9];
2319
2320   /*
2321     Initialize the node.
2322   */
2323   p=(&pixel_list->skip_list);
2324   p->nodes[color].signature=pixel_list->signature;
2325   p->nodes[color].count=1;
2326   /*
2327     Determine where it belongs in the list.
2328   */
2329   search=65536UL;
2330   for (level=p->level; level >= 0; level--)
2331   {
2332     while (p->nodes[search].next[level] < color)
2333       search=p->nodes[search].next[level];
2334     update[level]=search;
2335   }
2336   /*
2337     Generate a pseudo-random level for this node.
2338   */
2339   for (level=0; ; level++)
2340   {
2341     pixel_list->seed=(pixel_list->seed*42893621L)+1L;
2342     if ((pixel_list->seed & 0x300) != 0x300)
2343       break;
2344   }
2345   if (level > 8)
2346     level=8;
2347   if (level > (p->level+2))
2348     level=p->level+2;
2349   /*
2350     If we're raising the list's level, link back to the root node.
2351   */
2352   while (level > p->level)
2353   {
2354     p->level++;
2355     update[p->level]=65536UL;
2356   }
2357   /*
2358     Link the node into the skip-list.
2359   */
2360   do
2361   {
2362     p->nodes[color].next[level]=p->nodes[update[level]].next[level];
2363     p->nodes[update[level]].next[level]=color;
2364   } while (level-- > 0);
2365 }
2366
2367 static inline void GetMaximumPixelList(PixelList *pixel_list,Quantum *pixel)
2368 {
2369   register SkipList
2370     *p;
2371
2372   size_t
2373     color,
2374     maximum;
2375
2376   ssize_t
2377     count;
2378
2379   /*
2380     Find the maximum value for each of the color.
2381   */
2382   p=(&pixel_list->skip_list);
2383   color=65536L;
2384   count=0;
2385   maximum=p->nodes[color].next[0];
2386   do
2387   {
2388     color=p->nodes[color].next[0];
2389     if (color > maximum)
2390       maximum=color;
2391     count+=p->nodes[color].count;
2392   } while (count < (ssize_t) pixel_list->length);
2393   *pixel=ScaleShortToQuantum((unsigned short) maximum);
2394 }
2395
2396 static inline void GetMeanPixelList(PixelList *pixel_list,Quantum *pixel)
2397 {
2398   double
2399     sum;
2400
2401   register SkipList
2402     *p;
2403
2404   size_t
2405     color;
2406
2407   ssize_t
2408     count;
2409
2410   /*
2411     Find the mean value for each of the color.
2412   */
2413   p=(&pixel_list->skip_list);
2414   color=65536L;
2415   count=0;
2416   sum=0.0;
2417   do
2418   {
2419     color=p->nodes[color].next[0];
2420     sum+=(double) p->nodes[color].count*color;
2421     count+=p->nodes[color].count;
2422   } while (count < (ssize_t) pixel_list->length);
2423   sum/=pixel_list->length;
2424   *pixel=ScaleShortToQuantum((unsigned short) sum);
2425 }
2426
2427 static inline void GetMedianPixelList(PixelList *pixel_list,Quantum *pixel)
2428 {
2429   register SkipList
2430     *p;
2431
2432   size_t
2433     color;
2434
2435   ssize_t
2436     count;
2437
2438   /*
2439     Find the median value for each of the color.
2440   */
2441   p=(&pixel_list->skip_list);
2442   color=65536L;
2443   count=0;
2444   do
2445   {
2446     color=p->nodes[color].next[0];
2447     count+=p->nodes[color].count;
2448   } while (count <= (ssize_t) (pixel_list->length >> 1));
2449   *pixel=ScaleShortToQuantum((unsigned short) color);
2450 }
2451
2452 static inline void GetMinimumPixelList(PixelList *pixel_list,Quantum *pixel)
2453 {
2454   register SkipList
2455     *p;
2456
2457   size_t
2458     color,
2459     minimum;
2460
2461   ssize_t
2462     count;
2463
2464   /*
2465     Find the minimum value for each of the color.
2466   */
2467   p=(&pixel_list->skip_list);
2468   count=0;
2469   color=65536UL;
2470   minimum=p->nodes[color].next[0];
2471   do
2472   {
2473     color=p->nodes[color].next[0];
2474     if (color < minimum)
2475       minimum=color;
2476     count+=p->nodes[color].count;
2477   } while (count < (ssize_t) pixel_list->length);
2478   *pixel=ScaleShortToQuantum((unsigned short) minimum);
2479 }
2480
2481 static inline void GetModePixelList(PixelList *pixel_list,Quantum *pixel)
2482 {
2483   register SkipList
2484     *p;
2485
2486   size_t
2487     color,
2488     max_count,
2489     mode;
2490
2491   ssize_t
2492     count;
2493
2494   /*
2495     Make each pixel the 'predominant color' of the specified neighborhood.
2496   */
2497   p=(&pixel_list->skip_list);
2498   color=65536L;
2499   mode=color;
2500   max_count=p->nodes[mode].count;
2501   count=0;
2502   do
2503   {
2504     color=p->nodes[color].next[0];
2505     if (p->nodes[color].count > max_count)
2506       {
2507         mode=color;
2508         max_count=p->nodes[mode].count;
2509       }
2510     count+=p->nodes[color].count;
2511   } while (count < (ssize_t) pixel_list->length);
2512   *pixel=ScaleShortToQuantum((unsigned short) mode);
2513 }
2514
2515 static inline void GetNonpeakPixelList(PixelList *pixel_list,Quantum *pixel)
2516 {
2517   register SkipList
2518     *p;
2519
2520   size_t
2521     color,
2522     next,
2523     previous;
2524
2525   ssize_t
2526     count;
2527
2528   /*
2529     Finds the non peak value for each of the colors.
2530   */
2531   p=(&pixel_list->skip_list);
2532   color=65536L;
2533   next=p->nodes[color].next[0];
2534   count=0;
2535   do
2536   {
2537     previous=color;
2538     color=next;
2539     next=p->nodes[color].next[0];
2540     count+=p->nodes[color].count;
2541   } while (count <= (ssize_t) (pixel_list->length >> 1));
2542   if ((previous == 65536UL) && (next != 65536UL))
2543     color=next;
2544   else
2545     if ((previous != 65536UL) && (next == 65536UL))
2546       color=previous;
2547   *pixel=ScaleShortToQuantum((unsigned short) color);
2548 }
2549
2550 static inline void GetStandardDeviationPixelList(PixelList *pixel_list,
2551   Quantum *pixel)
2552 {
2553   double
2554     sum,
2555     sum_squared;
2556
2557   register SkipList
2558     *p;
2559
2560   size_t
2561     color;
2562
2563   ssize_t
2564     count;
2565
2566   /*
2567     Find the standard-deviation value for each of the color.
2568   */
2569   p=(&pixel_list->skip_list);
2570   color=65536L;
2571   count=0;
2572   sum=0.0;
2573   sum_squared=0.0;
2574   do
2575   {
2576     register ssize_t
2577       i;
2578
2579     color=p->nodes[color].next[0];
2580     sum+=(double) p->nodes[color].count*color;
2581     for (i=0; i < (ssize_t) p->nodes[color].count; i++)
2582       sum_squared+=((double) color)*((double) color);
2583     count+=p->nodes[color].count;
2584   } while (count < (ssize_t) pixel_list->length);
2585   sum/=pixel_list->length;
2586   sum_squared/=pixel_list->length;
2587   *pixel=ScaleShortToQuantum((unsigned short) sqrt(sum_squared-(sum*sum)));
2588 }
2589
2590 static inline void InsertPixelList(const Quantum pixel,PixelList *pixel_list)
2591 {
2592   size_t
2593     signature;
2594
2595   unsigned short
2596     index;
2597
2598   index=ScaleQuantumToShort(pixel);
2599   signature=pixel_list->skip_list.nodes[index].signature;
2600   if (signature == pixel_list->signature)
2601     {
2602       pixel_list->skip_list.nodes[index].count++;
2603       return;
2604     }
2605   AddNodePixelList(pixel_list,index);
2606 }
2607
2608 static inline double MagickAbsoluteValue(const double x)
2609 {
2610   if (x < 0)
2611     return(-x);
2612   return(x);
2613 }
2614
2615 static inline size_t MagickMax(const size_t x,const size_t y)
2616 {
2617   if (x > y)
2618     return(x);
2619   return(y);
2620 }
2621
2622 static void ResetPixelList(PixelList *pixel_list)
2623 {
2624   int
2625     level;
2626
2627   register SkipNode
2628     *root;
2629
2630   register SkipList
2631     *p;
2632
2633   /*
2634     Reset the skip-list.
2635   */
2636   p=(&pixel_list->skip_list);
2637   root=p->nodes+65536UL;
2638   p->level=0;
2639   for (level=0; level < 9; level++)
2640     root->next[level]=65536UL;
2641   pixel_list->seed=pixel_list->signature++;
2642 }
2643
2644 MagickExport Image *StatisticImage(const Image *image,const StatisticType type,
2645   const size_t width,const size_t height,ExceptionInfo *exception)
2646 {
2647 #define StatisticImageTag  "Statistic/Image"
2648
2649   CacheView
2650     *image_view,
2651     *statistic_view;
2652
2653   Image
2654     *statistic_image;
2655
2656   MagickBooleanType
2657     status;
2658
2659   MagickOffsetType
2660     progress;
2661
2662   PixelList
2663     **restrict pixel_list;
2664
2665   ssize_t
2666     center,
2667     y;
2668
2669   /*
2670     Initialize statistics image attributes.
2671   */
2672   assert(image != (Image *) NULL);
2673   assert(image->signature == MagickSignature);
2674   if (image->debug != MagickFalse)
2675     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2676   assert(exception != (ExceptionInfo *) NULL);
2677   assert(exception->signature == MagickSignature);
2678   statistic_image=CloneImage(image,image->columns,image->rows,MagickTrue,
2679     exception);
2680   if (statistic_image == (Image *) NULL)
2681     return((Image *) NULL);
2682   status=SetImageStorageClass(statistic_image,DirectClass,exception);
2683   if (status == MagickFalse)
2684     {
2685       statistic_image=DestroyImage(statistic_image);
2686       return((Image *) NULL);
2687     }
2688   pixel_list=AcquirePixelListThreadSet(MagickMax(width,1),MagickMax(height,1));
2689   if (pixel_list == (PixelList **) NULL)
2690     {
2691       statistic_image=DestroyImage(statistic_image);
2692       ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
2693     }
2694   /*
2695     Make each pixel the min / max / median / mode / etc. of the neighborhood.
2696   */
2697   center=(ssize_t) GetPixelChannels(image)*(image->columns+MagickMax(width,1))*
2698     (MagickMax(height,1)/2L)+GetPixelChannels(image)*(MagickMax(width,1)/2L);
2699   status=MagickTrue;
2700   progress=0;
2701   image_view=AcquireVirtualCacheView(image,exception);
2702   statistic_view=AcquireAuthenticCacheView(statistic_image,exception);
2703 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2704   #pragma omp parallel for schedule(static,4) shared(progress,status) \
2705     magick_threads(image,statistic_image,statistic_image->rows,1)
2706 #endif
2707   for (y=0; y < (ssize_t) statistic_image->rows; y++)
2708   {
2709     const int
2710       id = GetOpenMPThreadId();
2711
2712     register const Quantum
2713       *restrict p;
2714
2715     register Quantum
2716       *restrict q;
2717
2718     register ssize_t
2719       x;
2720
2721     if (status == MagickFalse)
2722       continue;
2723     p=GetCacheViewVirtualPixels(image_view,-((ssize_t) MagickMax(width,1)/2L),y-
2724       (ssize_t) (MagickMax(height,1)/2L),image->columns+MagickMax(width,1),
2725       MagickMax(height,1),exception);
2726     q=QueueCacheViewAuthenticPixels(statistic_view,0,y,statistic_image->columns,      1,exception);
2727     if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
2728       {
2729         status=MagickFalse;
2730         continue;
2731       }
2732     for (x=0; x < (ssize_t) statistic_image->columns; x++)
2733     {
2734       register ssize_t
2735         i;
2736
2737       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
2738       {
2739         Quantum
2740           pixel;
2741
2742         register const Quantum
2743           *restrict pixels;
2744
2745         register ssize_t
2746           u;
2747
2748         ssize_t
2749           v;
2750
2751         PixelChannel channel=GetPixelChannelChannel(image,i);
2752         PixelTrait traits=GetPixelChannelTraits(image,channel);
2753         PixelTrait statistic_traits=GetPixelChannelTraits(statistic_image,
2754           channel);
2755         if ((traits == UndefinedPixelTrait) ||
2756             (statistic_traits == UndefinedPixelTrait))
2757           continue;
2758         if (((statistic_traits & CopyPixelTrait) != 0) ||
2759             (GetPixelReadMask(image,p) == 0))
2760           {
2761             SetPixelChannel(statistic_image,channel,p[center+i],q);
2762             continue;
2763           }
2764         pixels=p;
2765         ResetPixelList(pixel_list[id]);
2766         for (v=0; v < (ssize_t) MagickMax(height,1); v++)
2767         {
2768           for (u=0; u < (ssize_t) MagickMax(width,1); u++)
2769           {
2770             InsertPixelList(pixels[i],pixel_list[id]);
2771             pixels+=GetPixelChannels(image);
2772           }
2773           pixels+=(image->columns-1)*GetPixelChannels(image);
2774         }
2775         switch (type)
2776         {
2777           case GradientStatistic:
2778           {
2779             double
2780               maximum,
2781               minimum;
2782
2783             GetMinimumPixelList(pixel_list[id],&pixel);
2784             minimum=(double) pixel;
2785             GetMaximumPixelList(pixel_list[id],&pixel);
2786             maximum=(double) pixel;
2787             pixel=ClampToQuantum(MagickAbsoluteValue(maximum-minimum));
2788             break;
2789           }
2790           case MaximumStatistic:
2791           {
2792             GetMaximumPixelList(pixel_list[id],&pixel);
2793             break;
2794           }
2795           case MeanStatistic:
2796           {
2797             GetMeanPixelList(pixel_list[id],&pixel);
2798             break;
2799           }
2800           case MedianStatistic:
2801           default:
2802           {
2803             GetMedianPixelList(pixel_list[id],&pixel);
2804             break;
2805           }
2806           case MinimumStatistic:
2807           {
2808             GetMinimumPixelList(pixel_list[id],&pixel);
2809             break;
2810           }
2811           case ModeStatistic:
2812           {
2813             GetModePixelList(pixel_list[id],&pixel);
2814             break;
2815           }
2816           case NonpeakStatistic:
2817           {
2818             GetNonpeakPixelList(pixel_list[id],&pixel);
2819             break;
2820           }
2821           case StandardDeviationStatistic:
2822           {
2823             GetStandardDeviationPixelList(pixel_list[id],&pixel);
2824             break;
2825           }
2826         }
2827         SetPixelChannel(statistic_image,channel,pixel,q);
2828       }
2829       p+=GetPixelChannels(image);
2830       q+=GetPixelChannels(statistic_image);
2831     }
2832     if (SyncCacheViewAuthenticPixels(statistic_view,exception) == MagickFalse)
2833       status=MagickFalse;
2834     if (image->progress_monitor != (MagickProgressMonitor) NULL)
2835       {
2836         MagickBooleanType
2837           proceed;
2838
2839 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2840         #pragma omp critical (MagickCore_StatisticImage)
2841 #endif
2842         proceed=SetImageProgress(image,StatisticImageTag,progress++,
2843           image->rows);
2844         if (proceed == MagickFalse)
2845           status=MagickFalse;
2846       }
2847   }
2848   statistic_view=DestroyCacheView(statistic_view);
2849   image_view=DestroyCacheView(image_view);
2850   pixel_list=DestroyPixelListThreadSet(pixel_list);
2851   if (status == MagickFalse)
2852     statistic_image=DestroyImage(statistic_image);
2853   return(statistic_image);
2854 }