]> granicus.if.org Git - imagemagick/blob - MagickCore/statistic.c
(no commit message)
[imagemagick] / MagickCore / statistic.c
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %                                                                             %
4 %                                                                             %
5 %                                                                             %
6 %        SSSSS  TTTTT   AAA   TTTTT  IIIII  SSSSS  TTTTT  IIIII   CCCC        %
7 %        SS       T    A   A    T      I    SS       T      I    C            %
8 %         SSS     T    AAAAA    T      I     SSS     T      I    C            %
9 %           SS    T    A   A    T      I       SS    T      I    C            %
10 %        SSSSS    T    A   A    T    IIIII  SSSSS    T    IIIII   CCCC        %
11 %                                                                             %
12 %                                                                             %
13 %                     MagickCore Image Statistical Methods                    %
14 %                                                                             %
15 %                              Software Design                                %
16 %                                John Cristy                                  %
17 %                                 July 1992                                   %
18 %                                                                             %
19 %                                                                             %
20 %  Copyright 1999-2013 ImageMagick Studio LLC, a non-profit organization      %
21 %  dedicated to making software imaging solutions freely available.           %
22 %                                                                             %
23 %  You may not use this file except in compliance with the License.  You may  %
24 %  obtain a copy of the License at                                            %
25 %                                                                             %
26 %    http://www.imagemagick.org/script/license.php                            %
27 %                                                                             %
28 %  Unless required by applicable law or agreed to in writing, software        %
29 %  distributed under the License is distributed on an "AS IS" BASIS,          %
30 %  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
31 %  See the License for the specific language governing permissions and        %
32 %  limitations under the License.                                             %
33 %                                                                             %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %
37 %
38 */
39 \f
40 /*
41   Include declarations.
42 */
43 #include "MagickCore/studio.h"
44 #include "MagickCore/property.h"
45 #include "MagickCore/animate.h"
46 #include "MagickCore/blob.h"
47 #include "MagickCore/blob-private.h"
48 #include "MagickCore/cache.h"
49 #include "MagickCore/cache-private.h"
50 #include "MagickCore/cache-view.h"
51 #include "MagickCore/client.h"
52 #include "MagickCore/color.h"
53 #include "MagickCore/color-private.h"
54 #include "MagickCore/colorspace.h"
55 #include "MagickCore/colorspace-private.h"
56 #include "MagickCore/composite.h"
57 #include "MagickCore/composite-private.h"
58 #include "MagickCore/compress.h"
59 #include "MagickCore/constitute.h"
60 #include "MagickCore/display.h"
61 #include "MagickCore/draw.h"
62 #include "MagickCore/enhance.h"
63 #include "MagickCore/exception.h"
64 #include "MagickCore/exception-private.h"
65 #include "MagickCore/gem.h"
66 #include "MagickCore/gem-private.h"
67 #include "MagickCore/geometry.h"
68 #include "MagickCore/list.h"
69 #include "MagickCore/image-private.h"
70 #include "MagickCore/magic.h"
71 #include "MagickCore/magick.h"
72 #include "MagickCore/memory_.h"
73 #include "MagickCore/module.h"
74 #include "MagickCore/monitor.h"
75 #include "MagickCore/monitor-private.h"
76 #include "MagickCore/option.h"
77 #include "MagickCore/paint.h"
78 #include "MagickCore/pixel-accessor.h"
79 #include "MagickCore/profile.h"
80 #include "MagickCore/quantize.h"
81 #include "MagickCore/quantum-private.h"
82 #include "MagickCore/random_.h"
83 #include "MagickCore/random-private.h"
84 #include "MagickCore/resource_.h"
85 #include "MagickCore/segment.h"
86 #include "MagickCore/semaphore.h"
87 #include "MagickCore/signature-private.h"
88 #include "MagickCore/statistic.h"
89 #include "MagickCore/string_.h"
90 #include "MagickCore/thread-private.h"
91 #include "MagickCore/timer.h"
92 #include "MagickCore/utility.h"
93 #include "MagickCore/version.h"
94 \f
95 /*
96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
97 %                                                                             %
98 %                                                                             %
99 %                                                                             %
100 %     E v a l u a t e I m a g e                                               %
101 %                                                                             %
102 %                                                                             %
103 %                                                                             %
104 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105 %
106 %  EvaluateImage() applies a value to the image with an arithmetic, relational,
107 %  or logical operator to an image. Use these operations to lighten or darken
108 %  an image, to increase or decrease contrast in an image, or to produce the
109 %  "negative" of an image.
110 %
111 %  The format of the EvaluateImage method is:
112 %
113 %      MagickBooleanType EvaluateImage(Image *image,
114 %        const MagickEvaluateOperator op,const double value,
115 %        ExceptionInfo *exception)
116 %      MagickBooleanType EvaluateImages(Image *images,
117 %        const MagickEvaluateOperator op,const double value,
118 %        ExceptionInfo *exception)
119 %
120 %  A description of each parameter follows:
121 %
122 %    o image: the image.
123 %
124 %    o op: A channel op.
125 %
126 %    o value: A value value.
127 %
128 %    o exception: return any errors or warnings in this structure.
129 %
130 */
131
132 typedef struct _PixelChannels
133 {
134   double
135     channel[CompositePixelChannel];
136 } PixelChannels;
137
138 static PixelChannels **DestroyPixelThreadSet(PixelChannels **pixels)
139 {
140   register ssize_t
141     i;
142
143   assert(pixels != (PixelChannels **) NULL);
144   for (i=0; i < (ssize_t) GetMagickResourceLimit(ThreadResource); i++)
145     if (pixels[i] != (PixelChannels *) NULL)
146       pixels[i]=(PixelChannels *) RelinquishMagickMemory(pixels[i]);
147   pixels=(PixelChannels **) RelinquishMagickMemory(pixels);
148   return(pixels);
149 }
150
151 static PixelChannels **AcquirePixelThreadSet(const Image *image,
152   const size_t number_images)
153 {
154   register ssize_t
155     i;
156
157   PixelChannels
158     **pixels;
159
160   size_t
161     length,
162     number_threads;
163
164   number_threads=(size_t) GetMagickResourceLimit(ThreadResource);
165   pixels=(PixelChannels **) AcquireQuantumMemory(number_threads,
166     sizeof(*pixels));
167   if (pixels == (PixelChannels **) NULL)
168     return((PixelChannels **) NULL);
169   (void) ResetMagickMemory(pixels,0,number_threads*sizeof(*pixels));
170   for (i=0; i < (ssize_t) number_threads; i++)
171   {
172     register ssize_t
173       j;
174
175     length=image->columns;
176     if (length < number_images)
177       length=number_images;
178     pixels[i]=(PixelChannels *) AcquireQuantumMemory(length,sizeof(**pixels));
179     if (pixels[i] == (PixelChannels *) NULL)
180       return(DestroyPixelThreadSet(pixels));
181     for (j=0; j < (ssize_t) length; j++)
182     {
183       register ssize_t
184         k;
185
186       for (k=0; k < MaxPixelChannels; k++)
187         pixels[i][j].channel[k]=0.0;
188     }
189   }
190   return(pixels);
191 }
192
193 static inline double EvaluateMax(const double x,const double y)
194 {
195   if (x > y)
196     return(x);
197   return(y);
198 }
199
200 #if defined(__cplusplus) || defined(c_plusplus)
201 extern "C" {
202 #endif
203
204 static int IntensityCompare(const void *x,const void *y)
205 {
206   const PixelChannels
207     *color_1,
208     *color_2;
209
210   double
211     distance;
212
213   register ssize_t
214     i;
215
216   color_1=(const PixelChannels *) x;
217   color_2=(const PixelChannels *) y;
218   distance=0.0;
219   for (i=0; i < MaxPixelChannels; i++)
220     distance+=color_1->channel[i]-(double) color_2->channel[i];
221   return(distance < 0 ? -1 : distance > 0 ? 1 : 0);
222 }
223
224 #if defined(__cplusplus) || defined(c_plusplus)
225 }
226 #endif
227
228 static inline double MagickMin(const double x,const double y)
229 {
230   if (x < y)
231     return(x);
232   return(y);
233 }
234
235 static double ApplyEvaluateOperator(RandomInfo *random_info,const Quantum pixel,
236   const MagickEvaluateOperator op,const double value)
237 {
238   double
239     result;
240
241   result=0.0;
242   switch (op)
243   {
244     case UndefinedEvaluateOperator:
245       break;
246     case AbsEvaluateOperator:
247     {
248       result=(double) fabs((double) (pixel+value));
249       break;
250     }
251     case AddEvaluateOperator:
252     {
253       result=(double) (pixel+value);
254       break;
255     }
256     case AddModulusEvaluateOperator:
257     {
258       /*
259         This returns a 'floored modulus' of the addition which is a positive
260         result.  It differs from % or fmod() that returns a 'truncated modulus'
261         result, where floor() is replaced by trunc() and could return a
262         negative result (which is clipped).
263       */
264       result=pixel+value;
265       result-=(QuantumRange+1.0)*floor((double) result/(QuantumRange+1.0));
266       break;
267     }
268     case AndEvaluateOperator:
269     {
270       result=(double) ((size_t) pixel & (size_t) (value+0.5));
271       break;
272     }
273     case CosineEvaluateOperator:
274     {
275       result=(double) (QuantumRange*(0.5*cos((double) (2.0*MagickPI*
276         QuantumScale*pixel*value))+0.5));
277       break;
278     }
279     case DivideEvaluateOperator:
280     {
281       result=pixel/(value == 0.0 ? 1.0 : value);
282       break;
283     }
284     case ExponentialEvaluateOperator:
285     {
286       result=(double) (QuantumRange*exp((double) (value*QuantumScale*pixel)));
287       break;
288     }
289     case GaussianNoiseEvaluateOperator:
290     {
291       result=(double) GenerateDifferentialNoise(random_info,pixel,
292         GaussianNoise,value);
293       break;
294     }
295     case ImpulseNoiseEvaluateOperator:
296     {
297       result=(double) GenerateDifferentialNoise(random_info,pixel,ImpulseNoise,
298         value);
299       break;
300     }
301     case LaplacianNoiseEvaluateOperator:
302     {
303       result=(double) GenerateDifferentialNoise(random_info,pixel,
304         LaplacianNoise,value);
305       break;
306     }
307     case LeftShiftEvaluateOperator:
308     {
309       result=(double) ((size_t) pixel << (size_t) (value+0.5));
310       break;
311     }
312     case LogEvaluateOperator:
313     {
314       if ((QuantumScale*pixel) >= MagickEpsilon)
315         result=(double) (QuantumRange*log((double) (QuantumScale*value*pixel+
316           1.0))/log((double) (value+1.0)));
317       break;
318     }
319     case MaxEvaluateOperator:
320     {
321       result=(double) EvaluateMax((double) pixel,value);
322       break;
323     }
324     case MeanEvaluateOperator:
325     {
326       result=(double) (pixel+value);
327       break;
328     }
329     case MedianEvaluateOperator:
330     {
331       result=(double) (pixel+value);
332       break;
333     }
334     case MinEvaluateOperator:
335     {
336       result=(double) MagickMin((double) pixel,value);
337       break;
338     }
339     case MultiplicativeNoiseEvaluateOperator:
340     {
341       result=(double) GenerateDifferentialNoise(random_info,pixel,
342         MultiplicativeGaussianNoise,value);
343       break;
344     }
345     case MultiplyEvaluateOperator:
346     {
347       result=(double) (value*pixel);
348       break;
349     }
350     case OrEvaluateOperator:
351     {
352       result=(double) ((size_t) pixel | (size_t) (value+0.5));
353       break;
354     }
355     case PoissonNoiseEvaluateOperator:
356     {
357       result=(double) GenerateDifferentialNoise(random_info,pixel,PoissonNoise,
358         value);
359       break;
360     }
361     case PowEvaluateOperator:
362     {
363       result=(double) (QuantumRange*pow((double) (QuantumScale*pixel),(double)
364         value));
365       break;
366     }
367     case RightShiftEvaluateOperator:
368     {
369       result=(double) ((size_t) pixel >> (size_t) (value+0.5));
370       break;
371     }
372     case SetEvaluateOperator:
373     {
374       result=value;
375       break;
376     }
377     case SineEvaluateOperator:
378     {
379       result=(double) (QuantumRange*(0.5*sin((double) (2.0*MagickPI*
380         QuantumScale*pixel*value))+0.5));
381       break;
382     }
383     case SubtractEvaluateOperator:
384     {
385       result=(double) (pixel-value);
386       break;
387     }
388     case SumEvaluateOperator:
389     {
390       result=(double) (pixel+value);
391       break;
392     }
393     case ThresholdEvaluateOperator:
394     {
395       result=(double) (((double) pixel <= value) ? 0 : QuantumRange);
396       break;
397     }
398     case ThresholdBlackEvaluateOperator:
399     {
400       result=(double) (((double) pixel <= value) ? 0 : pixel);
401       break;
402     }
403     case ThresholdWhiteEvaluateOperator:
404     {
405       result=(double) (((double) pixel > value) ? QuantumRange : pixel);
406       break;
407     }
408     case UniformNoiseEvaluateOperator:
409     {
410       result=(double) GenerateDifferentialNoise(random_info,pixel,UniformNoise,
411         value);
412       break;
413     }
414     case XorEvaluateOperator:
415     {
416       result=(double) ((size_t) pixel ^ (size_t) (value+0.5));
417       break;
418     }
419   }
420   return(result);
421 }
422
423 MagickExport Image *EvaluateImages(const Image *images,
424   const MagickEvaluateOperator op,ExceptionInfo *exception)
425 {
426 #define EvaluateImageTag  "Evaluate/Image"
427
428   CacheView
429     *evaluate_view;
430
431   Image
432     *image;
433
434   MagickBooleanType
435     status;
436
437   MagickOffsetType
438     progress;
439
440   PixelChannels
441     **restrict evaluate_pixels;
442
443   RandomInfo
444     **restrict random_info;
445
446   size_t
447     number_images;
448
449   ssize_t
450     y;
451
452 #if defined(MAGICKCORE_OPENMP_SUPPORT)
453   unsigned long
454     key;
455 #endif
456
457   assert(images != (Image *) NULL);
458   assert(images->signature == MagickSignature);
459   if (images->debug != MagickFalse)
460     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
461   assert(exception != (ExceptionInfo *) NULL);
462   assert(exception->signature == MagickSignature);
463   image=CloneImage(images,images->columns,images->rows,MagickTrue,
464     exception);
465   if (image == (Image *) NULL)
466     return((Image *) NULL);
467   if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
468     {
469       image=DestroyImage(image);
470       return((Image *) NULL);
471     }
472   number_images=GetImageListLength(images);
473   evaluate_pixels=AcquirePixelThreadSet(images,number_images);
474   if (evaluate_pixels == (PixelChannels **) NULL)
475     {
476       image=DestroyImage(image);
477       (void) ThrowMagickException(exception,GetMagickModule(),
478         ResourceLimitError,"MemoryAllocationFailed","`%s'",images->filename);
479       return((Image *) NULL);
480     }
481   /*
482     Evaluate image pixels.
483   */
484   status=MagickTrue;
485   progress=0;
486   random_info=AcquireRandomInfoThreadSet();
487 #if defined(MAGICKCORE_OPENMP_SUPPORT)
488   key=GetRandomSecretKey(random_info[0]);
489 #endif
490   evaluate_view=AcquireAuthenticCacheView(image,exception);
491   if (op == MedianEvaluateOperator)
492     {
493 #if defined(MAGICKCORE_OPENMP_SUPPORT)
494       #pragma omp parallel for schedule(static,4) shared(progress,status) \
495         magick_threads(image,images,image->rows,key == ~0UL)
496 #endif
497       for (y=0; y < (ssize_t) image->rows; y++)
498       {
499         CacheView
500           *image_view;
501
502         const Image
503           *next;
504
505         const int
506           id = GetOpenMPThreadId();
507
508         register PixelChannels
509           *evaluate_pixel;
510
511         register Quantum
512           *restrict q;
513
514         register ssize_t
515           x;
516
517         if (status == MagickFalse)
518           continue;
519         q=QueueCacheViewAuthenticPixels(evaluate_view,0,y,image->columns,1,
520           exception);
521         if (q == (Quantum *) NULL)
522           {
523             status=MagickFalse;
524             continue;
525           }
526         evaluate_pixel=evaluate_pixels[id];
527         for (x=0; x < (ssize_t) image->columns; x++)
528         {
529           register ssize_t
530             j,
531             k;
532
533           for (j=0; j < (ssize_t) number_images; j++)
534             for (k=0; k < MaxPixelChannels; k++)
535               evaluate_pixel[j].channel[k]=0.0;
536           next=images;
537           for (j=0; j < (ssize_t) number_images; j++)
538           {
539             register const Quantum
540               *p;
541
542             register ssize_t
543               i;
544
545             image_view=AcquireVirtualCacheView(next,exception);
546             p=GetCacheViewVirtualPixels(image_view,x,y,1,1,exception);
547             if (p == (const Quantum *) NULL)
548               {
549                 image_view=DestroyCacheView(image_view);
550                 break;
551               }
552             for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
553             {
554               PixelChannel channel=GetPixelChannelChannel(image,i);
555               PixelTrait evaluate_traits=GetPixelChannelTraits(image,channel);
556               PixelTrait traits=GetPixelChannelTraits(next,channel);
557               if ((traits == UndefinedPixelTrait) ||
558                   (evaluate_traits == UndefinedPixelTrait))
559                 continue;
560               if ((evaluate_traits & UpdatePixelTrait) == 0)
561                 continue;
562               evaluate_pixel[j].channel[i]=ApplyEvaluateOperator(
563                 random_info[id],GetPixelChannel(image,channel,p),op,
564                 evaluate_pixel[j].channel[i]);
565             }
566             image_view=DestroyCacheView(image_view);
567             next=GetNextImageInList(next);
568           }
569           qsort((void *) evaluate_pixel,number_images,sizeof(*evaluate_pixel),
570             IntensityCompare);
571           for (k=0; k < (ssize_t) GetPixelChannels(image); k++)
572             q[k]=ClampToQuantum(evaluate_pixel[j/2].channel[k]);
573           q+=GetPixelChannels(image);
574         }
575         if (SyncCacheViewAuthenticPixels(evaluate_view,exception) == MagickFalse)
576           status=MagickFalse;
577         if (images->progress_monitor != (MagickProgressMonitor) NULL)
578           {
579             MagickBooleanType
580               proceed;
581
582 #if   defined(MAGICKCORE_OPENMP_SUPPORT)
583             #pragma omp critical (MagickCore_EvaluateImages)
584 #endif
585             proceed=SetImageProgress(images,EvaluateImageTag,progress++,
586               image->rows);
587             if (proceed == MagickFalse)
588               status=MagickFalse;
589           }
590       }
591     }
592   else
593     {
594 #if defined(MAGICKCORE_OPENMP_SUPPORT)
595       #pragma omp parallel for schedule(static,4) shared(progress,status) \
596         magick_threads(image,images,image->rows,key == ~0UL)
597 #endif
598       for (y=0; y < (ssize_t) image->rows; y++)
599       {
600         CacheView
601           *image_view;
602
603         const Image
604           *next;
605
606         const int
607           id = GetOpenMPThreadId();
608
609         register ssize_t
610           i,
611           x;
612
613         register PixelChannels
614           *evaluate_pixel;
615
616         register Quantum
617           *restrict q;
618
619         ssize_t
620           j;
621
622         if (status == MagickFalse)
623           continue;
624         q=QueueCacheViewAuthenticPixels(evaluate_view,0,y,image->columns,1,
625           exception);
626         if (q == (Quantum *) NULL)
627           {
628             status=MagickFalse;
629             continue;
630           }
631         evaluate_pixel=evaluate_pixels[id];
632         for (j=0; j < (ssize_t) image->columns; j++)
633           for (i=0; i < MaxPixelChannels; i++)
634             evaluate_pixel[j].channel[i]=0.0;
635         next=images;
636         for (j=0; j < (ssize_t) number_images; j++)
637         {
638           register const Quantum
639             *p;
640
641           image_view=AcquireVirtualCacheView(next,exception);
642           p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception);
643           if (p == (const Quantum *) NULL)
644             {
645               image_view=DestroyCacheView(image_view);
646               break;
647             }
648           for (x=0; x < (ssize_t) next->columns; x++)
649           {
650             register ssize_t
651               i;
652
653             if (GetPixelMask(next,p) == 0)
654               {
655                 p+=GetPixelChannels(next);
656                 continue;
657               }
658             for (i=0; i < (ssize_t) GetPixelChannels(next); i++)
659             {
660               PixelChannel channel=GetPixelChannelChannel(image,i);
661               PixelTrait  traits=GetPixelChannelTraits(next,channel);
662               PixelTrait  evaluate_traits=GetPixelChannelTraits(image,channel);
663               if ((traits == UndefinedPixelTrait) ||
664                   (evaluate_traits == UndefinedPixelTrait))
665                 continue;
666               if ((traits & UpdatePixelTrait) == 0)
667                 continue;
668               evaluate_pixel[x].channel[i]=ApplyEvaluateOperator(
669                 random_info[id],GetPixelChannel(image,channel,p),j == 0 ?
670                 AddEvaluateOperator : op,evaluate_pixel[x].channel[i]);
671             }
672             p+=GetPixelChannels(next);
673           }
674           image_view=DestroyCacheView(image_view);
675           next=GetNextImageInList(next);
676         }
677         for (x=0; x < (ssize_t) image->columns; x++)
678         {
679           register ssize_t
680              i;
681
682           switch (op)
683           {
684             case MeanEvaluateOperator:
685             {
686               for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
687                 evaluate_pixel[x].channel[i]/=(double) number_images;
688               break;
689             }
690             case MultiplyEvaluateOperator:
691             {
692               for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
693               {
694                 register ssize_t
695                   j;
696
697                 for (j=0; j < (ssize_t) (number_images-1); j++)
698                   evaluate_pixel[x].channel[i]*=QuantumScale;
699               }
700               break;
701             }
702             default:
703               break;
704           }
705         }
706         for (x=0; x < (ssize_t) image->columns; x++)
707         {
708           register ssize_t
709             i;
710
711           if (GetPixelMask(image,q) == 0)
712             {
713               q+=GetPixelChannels(image);
714               continue;
715             }
716           for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
717           {
718             PixelChannel channel=GetPixelChannelChannel(image,i);
719             PixelTrait traits=GetPixelChannelTraits(image,channel);
720             if (traits == UndefinedPixelTrait)
721               continue;
722             if ((traits & UpdatePixelTrait) == 0)
723               continue;
724             q[i]=ClampToQuantum(evaluate_pixel[x].channel[i]);
725           }
726           q+=GetPixelChannels(image);
727         }
728         if (SyncCacheViewAuthenticPixels(evaluate_view,exception) == MagickFalse)
729           status=MagickFalse;
730         if (images->progress_monitor != (MagickProgressMonitor) NULL)
731           {
732             MagickBooleanType
733               proceed;
734
735 #if   defined(MAGICKCORE_OPENMP_SUPPORT)
736             #pragma omp critical (MagickCore_EvaluateImages)
737 #endif
738             proceed=SetImageProgress(images,EvaluateImageTag,progress++,
739               image->rows);
740             if (proceed == MagickFalse)
741               status=MagickFalse;
742           }
743       }
744     }
745   evaluate_view=DestroyCacheView(evaluate_view);
746   evaluate_pixels=DestroyPixelThreadSet(evaluate_pixels);
747   random_info=DestroyRandomInfoThreadSet(random_info);
748   if (status == MagickFalse)
749     image=DestroyImage(image);
750   return(image);
751 }
752
753 MagickExport MagickBooleanType EvaluateImage(Image *image,
754   const MagickEvaluateOperator op,const double value,ExceptionInfo *exception)
755 {
756   CacheView
757     *image_view;
758
759   MagickBooleanType
760     status;
761
762   MagickOffsetType
763     progress;
764
765   RandomInfo
766     **restrict random_info;
767
768   ssize_t
769     y;
770
771 #if defined(MAGICKCORE_OPENMP_SUPPORT)
772   unsigned long
773     key;
774 #endif
775
776   assert(image != (Image *) NULL);
777   assert(image->signature == MagickSignature);
778   if (image->debug != MagickFalse)
779     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
780   assert(exception != (ExceptionInfo *) NULL);
781   assert(exception->signature == MagickSignature);
782   if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
783     return(MagickFalse);
784   status=MagickTrue;
785   progress=0;
786   random_info=AcquireRandomInfoThreadSet();
787 #if defined(MAGICKCORE_OPENMP_SUPPORT)
788   key=GetRandomSecretKey(random_info[0]);
789 #endif
790   image_view=AcquireAuthenticCacheView(image,exception);
791 #if defined(MAGICKCORE_OPENMP_SUPPORT)
792   #pragma omp parallel for schedule(static,4) shared(progress,status) \
793     magick_threads(image,image,image->rows,key == ~0UL)
794 #endif
795   for (y=0; y < (ssize_t) image->rows; y++)
796   {
797     const int
798       id = GetOpenMPThreadId();
799
800     register Quantum
801       *restrict q;
802
803     register ssize_t
804       x;
805
806     if (status == MagickFalse)
807       continue;
808     q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
809     if (q == (Quantum *) NULL)
810       {
811         status=MagickFalse;
812         continue;
813       }
814     for (x=0; x < (ssize_t) image->columns; x++)
815     {
816       register ssize_t
817         i;
818
819       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
820       {
821         PixelChannel channel=GetPixelChannelChannel(image,i);
822         PixelTrait traits=GetPixelChannelTraits(image,channel);
823         if (traits == UndefinedPixelTrait)
824           continue;
825         if (((traits & CopyPixelTrait) != 0) ||
826             (GetPixelMask(image,q) == 0))
827           continue;
828         q[i]=ClampToQuantum(ApplyEvaluateOperator(random_info[id],q[i],op,
829           value));
830       }
831       q+=GetPixelChannels(image);
832     }
833     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
834       status=MagickFalse;
835     if (image->progress_monitor != (MagickProgressMonitor) NULL)
836       {
837         MagickBooleanType
838           proceed;
839
840 #if defined(MAGICKCORE_OPENMP_SUPPORT)
841         #pragma omp critical (MagickCore_EvaluateImage)
842 #endif
843         proceed=SetImageProgress(image,EvaluateImageTag,progress++,image->rows);
844         if (proceed == MagickFalse)
845           status=MagickFalse;
846       }
847   }
848   image_view=DestroyCacheView(image_view);
849   random_info=DestroyRandomInfoThreadSet(random_info);
850   return(status);
851 }
852 \f
853 /*
854 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
855 %                                                                             %
856 %                                                                             %
857 %                                                                             %
858 %     F u n c t i o n I m a g e                                               %
859 %                                                                             %
860 %                                                                             %
861 %                                                                             %
862 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
863 %
864 %  FunctionImage() applies a value to the image with an arithmetic, relational,
865 %  or logical operator to an image. Use these operations to lighten or darken
866 %  an image, to increase or decrease contrast in an image, or to produce the
867 %  "negative" of an image.
868 %
869 %  The format of the FunctionImage method is:
870 %
871 %      MagickBooleanType FunctionImage(Image *image,
872 %        const MagickFunction function,const ssize_t number_parameters,
873 %        const double *parameters,ExceptionInfo *exception)
874 %
875 %  A description of each parameter follows:
876 %
877 %    o image: the image.
878 %
879 %    o function: A channel function.
880 %
881 %    o parameters: one or more parameters.
882 %
883 %    o exception: return any errors or warnings in this structure.
884 %
885 */
886
887 static Quantum ApplyFunction(Quantum pixel,const MagickFunction function,
888   const size_t number_parameters,const double *parameters,
889   ExceptionInfo *exception)
890 {
891   double
892     result;
893
894   register ssize_t
895     i;
896
897   (void) exception;
898   result=0.0;
899   switch (function)
900   {
901     case PolynomialFunction:
902     {
903       /*
904         Polynomial: polynomial constants, highest to lowest order (e.g. c0*x^3+
905         c1*x^2+c2*x+c3).
906       */
907       result=0.0;
908       for (i=0; i < (ssize_t) number_parameters; i++)
909         result=result*QuantumScale*pixel+parameters[i];
910       result*=QuantumRange;
911       break;
912     }
913     case SinusoidFunction:
914     {
915       double
916         amplitude,
917         bias,
918         frequency,
919         phase;
920
921       /*
922         Sinusoid: frequency, phase, amplitude, bias.
923       */
924       frequency=(number_parameters >= 1) ? parameters[0] : 1.0;
925       phase=(number_parameters >= 2) ? parameters[1] : 0.0;
926       amplitude=(number_parameters >= 3) ? parameters[2] : 0.5;
927       bias=(number_parameters >= 4) ? parameters[3] : 0.5;
928       result=(double) (QuantumRange*(amplitude*sin((double) (2.0*
929         MagickPI*(frequency*QuantumScale*pixel+phase/360.0)))+bias));
930       break;
931     }
932     case ArcsinFunction:
933     {
934       double
935         bias,
936         center,
937         range,
938         width;
939
940       /*
941         Arcsin (peged at range limits for invalid results): width, center,
942         range, and bias.
943       */
944       width=(number_parameters >= 1) ? parameters[0] : 1.0;
945       center=(number_parameters >= 2) ? parameters[1] : 0.5;
946       range=(number_parameters >= 3) ? parameters[2] : 1.0;
947       bias=(number_parameters >= 4) ? parameters[3] : 0.5;
948       result=2.0/width*(QuantumScale*pixel-center);
949       if ( result <= -1.0 )
950         result=bias-range/2.0;
951       else
952         if (result >= 1.0)
953           result=bias+range/2.0;
954         else
955           result=(double) (range/MagickPI*asin((double) result)+bias);
956       result*=QuantumRange;
957       break;
958     }
959     case ArctanFunction:
960     {
961       double
962         center,
963         bias,
964         range,
965         slope;
966
967       /*
968         Arctan: slope, center, range, and bias.
969       */
970       slope=(number_parameters >= 1) ? parameters[0] : 1.0;
971       center=(number_parameters >= 2) ? parameters[1] : 0.5;
972       range=(number_parameters >= 3) ? parameters[2] : 1.0;
973       bias=(number_parameters >= 4) ? parameters[3] : 0.5;
974       result=(double) (MagickPI*slope*(QuantumScale*pixel-center));
975       result=(double) (QuantumRange*(range/MagickPI*atan((double)
976         result)+bias));
977       break;
978     }
979     case UndefinedFunction:
980       break;
981   }
982   return(ClampToQuantum(result));
983 }
984
985 MagickExport MagickBooleanType FunctionImage(Image *image,
986   const MagickFunction function,const size_t number_parameters,
987   const double *parameters,ExceptionInfo *exception)
988 {
989 #define FunctionImageTag  "Function/Image "
990
991   CacheView
992     *image_view;
993
994   MagickBooleanType
995     status;
996
997   MagickOffsetType
998     progress;
999
1000   ssize_t
1001     y;
1002
1003   assert(image != (Image *) NULL);
1004   assert(image->signature == MagickSignature);
1005   if (image->debug != MagickFalse)
1006     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1007   assert(exception != (ExceptionInfo *) NULL);
1008   assert(exception->signature == MagickSignature);
1009   if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
1010     return(MagickFalse);
1011   status=MagickTrue;
1012   progress=0;
1013   image_view=AcquireAuthenticCacheView(image,exception);
1014 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1015   #pragma omp parallel for schedule(static,4) shared(progress,status) \
1016     magick_threads(image,image,image->rows,1)
1017 #endif
1018   for (y=0; y < (ssize_t) image->rows; y++)
1019   {
1020     register Quantum
1021       *restrict q;
1022
1023     register ssize_t
1024       x;
1025
1026     if (status == MagickFalse)
1027       continue;
1028     q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
1029     if (q == (Quantum *) NULL)
1030       {
1031         status=MagickFalse;
1032         continue;
1033       }
1034     for (x=0; x < (ssize_t) image->columns; x++)
1035     {
1036       register ssize_t
1037         i;
1038
1039       if (GetPixelMask(image,q) == 0)
1040         {
1041           q+=GetPixelChannels(image);
1042           continue;
1043         }
1044       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1045       {
1046         PixelChannel channel=GetPixelChannelChannel(image,i);
1047         PixelTrait traits=GetPixelChannelTraits(image,channel);
1048         if (traits == UndefinedPixelTrait)
1049           continue;
1050         if ((traits & UpdatePixelTrait) == 0)
1051           continue;
1052         q[i]=ApplyFunction(q[i],function,number_parameters,parameters,
1053           exception);
1054       }
1055       q+=GetPixelChannels(image);
1056     }
1057     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
1058       status=MagickFalse;
1059     if (image->progress_monitor != (MagickProgressMonitor) NULL)
1060       {
1061         MagickBooleanType
1062           proceed;
1063
1064 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1065         #pragma omp critical (MagickCore_FunctionImage)
1066 #endif
1067         proceed=SetImageProgress(image,FunctionImageTag,progress++,image->rows);
1068         if (proceed == MagickFalse)
1069           status=MagickFalse;
1070       }
1071   }
1072   image_view=DestroyCacheView(image_view);
1073   return(status);
1074 }
1075 \f
1076 /*
1077 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1078 %                                                                             %
1079 %                                                                             %
1080 %                                                                             %
1081 %   G e t I m a g e E x t r e m a                                             %
1082 %                                                                             %
1083 %                                                                             %
1084 %                                                                             %
1085 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1086 %
1087 %  GetImageExtrema() returns the extrema of one or more image channels.
1088 %
1089 %  The format of the GetImageExtrema method is:
1090 %
1091 %      MagickBooleanType GetImageExtrema(const Image *image,size_t *minima,
1092 %        size_t *maxima,ExceptionInfo *exception)
1093 %
1094 %  A description of each parameter follows:
1095 %
1096 %    o image: the image.
1097 %
1098 %    o minima: the minimum value in the channel.
1099 %
1100 %    o maxima: the maximum value in the channel.
1101 %
1102 %    o exception: return any errors or warnings in this structure.
1103 %
1104 */
1105 MagickExport MagickBooleanType GetImageExtrema(const Image *image,
1106   size_t *minima,size_t *maxima,ExceptionInfo *exception)
1107 {
1108   double
1109     max,
1110     min;
1111
1112   MagickBooleanType
1113     status;
1114
1115   assert(image != (Image *) NULL);
1116   assert(image->signature == MagickSignature);
1117   if (image->debug != MagickFalse)
1118     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1119   status=GetImageRange(image,&min,&max,exception);
1120   *minima=(size_t) ceil(min-0.5);
1121   *maxima=(size_t) floor(max+0.5);
1122   return(status);
1123 }
1124 \f
1125 /*
1126 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1127 %                                                                             %
1128 %                                                                             %
1129 %                                                                             %
1130 %   G e t I m a g e M e a n                                                   %
1131 %                                                                             %
1132 %                                                                             %
1133 %                                                                             %
1134 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1135 %
1136 %  GetImageMean() returns the mean and standard deviation of one or more image
1137 %  channels.
1138 %
1139 %  The format of the GetImageMean method is:
1140 %
1141 %      MagickBooleanType GetImageMean(const Image *image,double *mean,
1142 %        double *standard_deviation,ExceptionInfo *exception)
1143 %
1144 %  A description of each parameter follows:
1145 %
1146 %    o image: the image.
1147 %
1148 %    o mean: the average value in the channel.
1149 %
1150 %    o standard_deviation: the standard deviation of the channel.
1151 %
1152 %    o exception: return any errors or warnings in this structure.
1153 %
1154 */
1155 MagickExport MagickBooleanType GetImageMean(const Image *image,double *mean,
1156   double *standard_deviation,ExceptionInfo *exception)
1157 {
1158   double
1159     area;
1160
1161   ChannelStatistics
1162     *channel_statistics;
1163
1164   register ssize_t
1165     i;
1166
1167   assert(image != (Image *) NULL);
1168   assert(image->signature == MagickSignature);
1169   if (image->debug != MagickFalse)
1170     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1171   channel_statistics=GetImageStatistics(image,exception);
1172   if (channel_statistics == (ChannelStatistics *) NULL)
1173     return(MagickFalse);
1174   area=0.0;
1175   channel_statistics[CompositePixelChannel].mean=0.0;
1176   channel_statistics[CompositePixelChannel].standard_deviation=0.0;
1177   for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1178   {
1179     PixelChannel channel=GetPixelChannelChannel(image,i);
1180     PixelTrait traits=GetPixelChannelTraits(image,channel);
1181     if (traits == UndefinedPixelTrait)
1182       continue;
1183     if ((traits & UpdatePixelTrait) == 0)
1184       continue;
1185     channel_statistics[CompositePixelChannel].mean+=channel_statistics[i].mean;
1186     channel_statistics[CompositePixelChannel].standard_deviation+=
1187       channel_statistics[i].variance-channel_statistics[i].mean*
1188       channel_statistics[i].mean;
1189     area++;
1190   }
1191   channel_statistics[CompositePixelChannel].mean/=area;
1192   channel_statistics[CompositePixelChannel].standard_deviation=
1193     sqrt(channel_statistics[CompositePixelChannel].standard_deviation/area);
1194   *mean=channel_statistics[CompositePixelChannel].mean;
1195   *standard_deviation=
1196     channel_statistics[CompositePixelChannel].standard_deviation;
1197   channel_statistics=(ChannelStatistics *) RelinquishMagickMemory(
1198     channel_statistics);
1199   return(MagickTrue);
1200 }
1201 \f
1202 /*
1203 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1204 %                                                                             %
1205 %                                                                             %
1206 %                                                                             %
1207 %   G e t I m a g e K u r t o s i s                                           %
1208 %                                                                             %
1209 %                                                                             %
1210 %                                                                             %
1211 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1212 %
1213 %  GetImageKurtosis() returns the kurtosis and skewness of one or more image
1214 %  channels.
1215 %
1216 %  The format of the GetImageKurtosis method is:
1217 %
1218 %      MagickBooleanType GetImageKurtosis(const Image *image,double *kurtosis,
1219 %        double *skewness,ExceptionInfo *exception)
1220 %
1221 %  A description of each parameter follows:
1222 %
1223 %    o image: the image.
1224 %
1225 %    o kurtosis: the kurtosis of the channel.
1226 %
1227 %    o skewness: the skewness of the channel.
1228 %
1229 %    o exception: return any errors or warnings in this structure.
1230 %
1231 */
1232 MagickExport MagickBooleanType GetImageKurtosis(const Image *image,
1233   double *kurtosis,double *skewness,ExceptionInfo *exception)
1234 {
1235   CacheView
1236     *image_view;
1237
1238   double
1239     area,
1240     mean,
1241     standard_deviation,
1242     sum_squares,
1243     sum_cubes,
1244     sum_fourth_power;
1245
1246   MagickBooleanType
1247     status;
1248
1249   ssize_t
1250     y;
1251
1252   assert(image != (Image *) NULL);
1253   assert(image->signature == MagickSignature);
1254   if (image->debug != MagickFalse)
1255     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1256   status=MagickTrue;
1257   *kurtosis=0.0;
1258   *skewness=0.0;
1259   area=0.0;
1260   mean=0.0;
1261   standard_deviation=0.0;
1262   sum_squares=0.0;
1263   sum_cubes=0.0;
1264   sum_fourth_power=0.0;
1265   image_view=AcquireVirtualCacheView(image,exception);
1266 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1267   #pragma omp parallel for schedule(static,4) shared(status) \
1268     magick_threads(image,image,image->rows,1)
1269 #endif
1270   for (y=0; y < (ssize_t) image->rows; y++)
1271   {
1272     register const Quantum
1273       *restrict p;
1274
1275     register ssize_t
1276       x;
1277
1278     if (status == MagickFalse)
1279       continue;
1280     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1281     if (p == (const Quantum *) NULL)
1282       {
1283         status=MagickFalse;
1284         continue;
1285       }
1286     for (x=0; x < (ssize_t) image->columns; x++)
1287     {
1288       register ssize_t
1289         i;
1290
1291       if (GetPixelMask(image,p) == 0)
1292         {
1293           p+=GetPixelChannels(image);
1294           continue;
1295         }
1296       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1297       {
1298         PixelChannel channel=GetPixelChannelChannel(image,i);
1299         PixelTrait traits=GetPixelChannelTraits(image,channel);
1300         if (traits == UndefinedPixelTrait)
1301           continue;
1302         if ((traits & UpdatePixelTrait) == 0)
1303           continue;
1304 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1305         #pragma omp critical (MagickCore_GetImageKurtosis)
1306 #endif
1307         {
1308           mean+=p[i];
1309           sum_squares+=(double) p[i]*p[i];
1310           sum_cubes+=(double) p[i]*p[i]*p[i];
1311           sum_fourth_power+=(double) p[i]*p[i]*p[i]*p[i];
1312           area++;
1313         }
1314       }
1315       p+=GetPixelChannels(image);
1316     }
1317   }
1318   image_view=DestroyCacheView(image_view);
1319   if (area != 0.0)
1320     {
1321       mean/=area;
1322       sum_squares/=area;
1323       sum_cubes/=area;
1324       sum_fourth_power/=area;
1325     }
1326   standard_deviation=sqrt(sum_squares-(mean*mean));
1327   if (standard_deviation != 0.0)
1328     {
1329       *kurtosis=sum_fourth_power-4.0*mean*sum_cubes+6.0*mean*mean*sum_squares-
1330         3.0*mean*mean*mean*mean;
1331       *kurtosis/=standard_deviation*standard_deviation*standard_deviation*
1332         standard_deviation;
1333       *kurtosis-=3.0;
1334       *skewness=sum_cubes-3.0*mean*sum_squares+2.0*mean*mean*mean;
1335       *skewness/=standard_deviation*standard_deviation*standard_deviation;
1336     }
1337   return(status);
1338 }
1339 \f
1340 /*
1341 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1342 %                                                                             %
1343 %                                                                             %
1344 %                                                                             %
1345 %   G e t I m a g e R a n g e                                                 %
1346 %                                                                             %
1347 %                                                                             %
1348 %                                                                             %
1349 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1350 %
1351 %  GetImageRange() returns the range of one or more image channels.
1352 %
1353 %  The format of the GetImageRange method is:
1354 %
1355 %      MagickBooleanType GetImageRange(const Image *image,double *minima,
1356 %        double *maxima,ExceptionInfo *exception)
1357 %
1358 %  A description of each parameter follows:
1359 %
1360 %    o image: the image.
1361 %
1362 %    o minima: the minimum value in the channel.
1363 %
1364 %    o maxima: the maximum value in the channel.
1365 %
1366 %    o exception: return any errors or warnings in this structure.
1367 %
1368 */
1369 MagickExport MagickBooleanType GetImageRange(const Image *image,double *minima,
1370   double *maxima,ExceptionInfo *exception)
1371 {
1372   CacheView
1373     *image_view;
1374
1375   MagickBooleanType
1376     initialize,
1377     status;
1378
1379   ssize_t
1380     y;
1381
1382   assert(image != (Image *) NULL);
1383   assert(image->signature == MagickSignature);
1384   if (image->debug != MagickFalse)
1385     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1386   status=MagickTrue;
1387   initialize=MagickTrue;
1388   *maxima=0.0;
1389   *minima=0.0;
1390   image_view=AcquireVirtualCacheView(image,exception);
1391 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1392   #pragma omp parallel for schedule(static,4) shared(status,initialize) \
1393     magick_threads(image,image,image->rows,1)
1394 #endif
1395   for (y=0; y < (ssize_t) image->rows; y++)
1396   {
1397     register const Quantum
1398       *restrict p;
1399
1400     register ssize_t
1401       x;
1402
1403     if (status == MagickFalse)
1404       continue;
1405     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1406     if (p == (const Quantum *) NULL)
1407       {
1408         status=MagickFalse;
1409         continue;
1410       }
1411     for (x=0; x < (ssize_t) image->columns; x++)
1412     {
1413       register ssize_t
1414         i;
1415
1416       if (GetPixelMask(image,p) == 0)
1417         {
1418           p+=GetPixelChannels(image);
1419           continue;
1420         }
1421       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1422       {
1423         PixelChannel channel=GetPixelChannelChannel(image,i);
1424         PixelTrait traits=GetPixelChannelTraits(image,channel);
1425         if (traits == UndefinedPixelTrait)
1426           continue;
1427         if ((traits & UpdatePixelTrait) == 0)
1428           continue;
1429 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1430         #pragma omp critical (MagickCore_GetImageRange)
1431 #endif
1432         {
1433           if (initialize != MagickFalse)
1434             {
1435               *minima=(double) p[i];
1436               *maxima=(double) p[i];
1437               initialize=MagickFalse;
1438             }
1439           else
1440             {
1441               if ((double) p[i] < *minima)
1442                 *minima=(double) p[i];
1443               if ((double) p[i] > *maxima)
1444                 *maxima=(double) p[i];
1445            }
1446         }
1447       }
1448       p+=GetPixelChannels(image);
1449     }
1450   }
1451   image_view=DestroyCacheView(image_view);
1452   return(status);
1453 }
1454 \f
1455 /*
1456 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1457 %                                                                             %
1458 %                                                                             %
1459 %                                                                             %
1460 %   G e t I m a g e S t a t i s t i c s                                       %
1461 %                                                                             %
1462 %                                                                             %
1463 %                                                                             %
1464 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1465 %
1466 %  GetImageStatistics() returns statistics for each channel in the image.  The
1467 %  statistics include the channel depth, its minima, maxima, mean, standard
1468 %  deviation, kurtosis and skewness.  You can access the red channel mean, for
1469 %  example, like this:
1470 %
1471 %      channel_statistics=GetImageStatistics(image,exception);
1472 %      red_mean=channel_statistics[RedPixelChannel].mean;
1473 %
1474 %  Use MagickRelinquishMemory() to free the statistics buffer.
1475 %
1476 %  The format of the GetImageStatistics method is:
1477 %
1478 %      ChannelStatistics *GetImageStatistics(const Image *image,
1479 %        ExceptionInfo *exception)
1480 %
1481 %  A description of each parameter follows:
1482 %
1483 %    o image: the image.
1484 %
1485 %    o exception: return any errors or warnings in this structure.
1486 %
1487 */
1488
1489 static size_t GetImageChannels(const Image *image)
1490 {
1491   register ssize_t
1492     i;
1493
1494   size_t
1495     channels;
1496
1497   channels=0;
1498   for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1499   {
1500     PixelChannel channel=GetPixelChannelChannel(image,i);
1501     PixelTrait traits=GetPixelChannelTraits(image,channel);
1502     if (traits != UndefinedPixelTrait)
1503       channels++;
1504   }
1505   return(channels);
1506 }
1507
1508 MagickExport ChannelStatistics *GetImageStatistics(const Image *image,
1509   ExceptionInfo *exception)
1510 {
1511   ChannelStatistics
1512     *channel_statistics;
1513
1514   MagickStatusType
1515     status;
1516
1517   QuantumAny
1518     range;
1519
1520   register ssize_t
1521     i;
1522
1523   size_t
1524     channels,
1525     depth;
1526
1527   ssize_t
1528     y;
1529
1530   assert(image != (Image *) NULL);
1531   assert(image->signature == MagickSignature);
1532   if (image->debug != MagickFalse)
1533     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1534   channel_statistics=(ChannelStatistics *) AcquireQuantumMemory(
1535     MaxPixelChannels+1,sizeof(*channel_statistics));
1536   if (channel_statistics == (ChannelStatistics *) NULL)
1537     ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
1538   (void) ResetMagickMemory(channel_statistics,0,(MaxPixelChannels+1)*
1539     sizeof(*channel_statistics));
1540   for (i=0; i <= (ssize_t) MaxPixelChannels; i++)
1541   {
1542     channel_statistics[i].depth=1;
1543     channel_statistics[i].maxima=(-MagickHuge);
1544     channel_statistics[i].minima=MagickHuge;
1545   }
1546   for (y=0; y < (ssize_t) image->rows; y++)
1547   {
1548     register const Quantum
1549       *restrict p;
1550
1551     register ssize_t
1552       x;
1553
1554     p=GetVirtualPixels(image,0,y,image->columns,1,exception);
1555     if (p == (const Quantum *) NULL)
1556       break;
1557     for (x=0; x < (ssize_t) image->columns; x++)
1558     {
1559       register ssize_t
1560         i;
1561
1562       if (GetPixelMask(image,p) == 0)
1563         {
1564           p+=GetPixelChannels(image);
1565           continue;
1566         }
1567       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1568       {
1569         PixelChannel channel=GetPixelChannelChannel(image,i);
1570         PixelTrait traits=GetPixelChannelTraits(image,channel);
1571         if (traits == UndefinedPixelTrait)
1572           continue;
1573         if (channel_statistics[channel].depth != MAGICKCORE_QUANTUM_DEPTH)
1574           {
1575             depth=channel_statistics[channel].depth;
1576             range=GetQuantumRange(depth);
1577             status=p[i] != ScaleAnyToQuantum(ScaleQuantumToAny(p[i],range),
1578               range) ? MagickTrue : MagickFalse;
1579             if (status != MagickFalse)
1580               {
1581                 channel_statistics[channel].depth++;
1582                 i--;
1583                 continue;
1584               }
1585           }
1586         if ((double) p[i] < channel_statistics[channel].minima)
1587           channel_statistics[channel].minima=(double) p[i];
1588         if ((double) p[i] > channel_statistics[channel].maxima)
1589           channel_statistics[channel].maxima=(double) p[i];
1590         channel_statistics[channel].sum+=p[i];
1591         channel_statistics[channel].sum_squared+=(double) p[i]*p[i];
1592         channel_statistics[channel].sum_cubed+=(double) p[i]*p[i]*p[i];
1593         channel_statistics[channel].sum_fourth_power+=(double) p[i]*p[i]*p[i]*
1594           p[i];
1595         channel_statistics[channel].area++;
1596       }
1597       p+=GetPixelChannels(image);
1598     }
1599   }
1600   for (i=0; i < (ssize_t) MaxPixelChannels; i++)
1601   {
1602     double
1603       area;
1604
1605     area=PerceptibleReciprocal(channel_statistics[i].area);
1606     channel_statistics[i].sum*=area;
1607     channel_statistics[i].sum_squared*=area;
1608     channel_statistics[i].sum_cubed*=area;
1609     channel_statistics[i].sum_fourth_power*=area;
1610     channel_statistics[i].mean=channel_statistics[i].sum;
1611     channel_statistics[i].variance=channel_statistics[i].sum_squared;
1612     channel_statistics[i].standard_deviation=sqrt(
1613       channel_statistics[i].variance-(channel_statistics[i].mean*
1614       channel_statistics[i].mean));
1615   }
1616   for (i=0; i < (ssize_t) MaxPixelChannels; i++)
1617   {
1618     channel_statistics[CompositePixelChannel].area+=channel_statistics[i].area;
1619     channel_statistics[CompositePixelChannel].minima=MagickMin(
1620       channel_statistics[CompositePixelChannel].minima,
1621       channel_statistics[i].minima);
1622     channel_statistics[CompositePixelChannel].maxima=EvaluateMax(
1623       channel_statistics[CompositePixelChannel].maxima,
1624       channel_statistics[i].maxima);
1625     channel_statistics[CompositePixelChannel].sum+=channel_statistics[i].sum;
1626     channel_statistics[CompositePixelChannel].sum_squared+=
1627       channel_statistics[i].sum_squared;
1628     channel_statistics[CompositePixelChannel].sum_cubed+=
1629       channel_statistics[i].sum_cubed;
1630     channel_statistics[CompositePixelChannel].sum_fourth_power+=
1631       channel_statistics[i].sum_fourth_power;
1632     channel_statistics[CompositePixelChannel].mean+=channel_statistics[i].mean;
1633     channel_statistics[CompositePixelChannel].variance+=
1634       channel_statistics[i].variance-channel_statistics[i].mean*
1635       channel_statistics[i].mean;
1636     channel_statistics[CompositePixelChannel].standard_deviation+=
1637       channel_statistics[i].variance-channel_statistics[i].mean*
1638       channel_statistics[i].mean;
1639   }
1640   channels=GetImageChannels(image);
1641   channel_statistics[CompositePixelChannel].area/=channels;
1642   channel_statistics[CompositePixelChannel].sum/=channels;
1643   channel_statistics[CompositePixelChannel].sum_squared/=channels;
1644   channel_statistics[CompositePixelChannel].sum_cubed/=channels;
1645   channel_statistics[CompositePixelChannel].sum_fourth_power/=channels;
1646   channel_statistics[CompositePixelChannel].mean/=channels;
1647   channel_statistics[CompositePixelChannel].variance/=channels;
1648   channel_statistics[CompositePixelChannel].standard_deviation=
1649     sqrt(channel_statistics[CompositePixelChannel].standard_deviation/channels);
1650   channel_statistics[CompositePixelChannel].kurtosis/=channels;
1651   channel_statistics[CompositePixelChannel].skewness/=channels;
1652   for (i=0; i <= (ssize_t) MaxPixelChannels; i++)
1653   {
1654     double
1655       standard_deviation;
1656
1657     if (channel_statistics[i].standard_deviation == 0.0)
1658       continue;
1659     standard_deviation=PerceptibleReciprocal(
1660       channel_statistics[i].standard_deviation);
1661     channel_statistics[i].skewness=(channel_statistics[i].sum_cubed-3.0*
1662       channel_statistics[i].mean*channel_statistics[i].sum_squared+2.0*
1663       channel_statistics[i].mean*channel_statistics[i].mean*
1664       channel_statistics[i].mean)*(standard_deviation*standard_deviation*
1665       standard_deviation);
1666     channel_statistics[i].kurtosis=(channel_statistics[i].sum_fourth_power-4.0*
1667       channel_statistics[i].mean*channel_statistics[i].sum_cubed+6.0*
1668       channel_statistics[i].mean*channel_statistics[i].mean*
1669       channel_statistics[i].sum_squared-3.0*channel_statistics[i].mean*
1670       channel_statistics[i].mean*1.0*channel_statistics[i].mean*
1671       channel_statistics[i].mean)*(standard_deviation*standard_deviation*
1672       standard_deviation*standard_deviation)-3.0;
1673   }
1674   return(channel_statistics);
1675 }
1676 \f
1677 /*
1678 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1679 %                                                                             %
1680 %                                                                             %
1681 %                                                                             %
1682 %     P o l y n o m i a l I m a g e                                           %
1683 %                                                                             %
1684 %                                                                             %
1685 %                                                                             %
1686 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1687 %
1688 %  PolynomialImage() returns a new image where each pixel is the sum of the
1689 %  pixels in the image sequence after applying its corresponding terms
1690 %  (coefficient and degree pairs).
1691 %
1692 %  The format of the PolynomialImage method is:
1693 %
1694 %      Image *PolynomialImage(const Image *images,const size_t number_terms,
1695 %        const double *terms,ExceptionInfo *exception)
1696 %
1697 %  A description of each parameter follows:
1698 %
1699 %    o images: the image sequence.
1700 %
1701 %    o number_terms: the number of terms in the list.  The actual list length
1702 %      is 2 x number_terms + 1 (the constant).
1703 %
1704 %    o terms: the list of polynomial coefficients and degree pairs and a
1705 %      constant.
1706 %
1707 %    o exception: return any errors or warnings in this structure.
1708 %
1709 */
1710
1711 MagickExport Image *PolynomialImage(const Image *images,
1712   const size_t number_terms,const double *terms,ExceptionInfo *exception)
1713 {
1714 #define PolynomialImageTag  "Polynomial/Image"
1715
1716   CacheView
1717     *polynomial_view;
1718
1719   Image
1720     *image;
1721
1722   MagickBooleanType
1723     status;
1724
1725   MagickOffsetType
1726     progress;
1727
1728   PixelChannels
1729     **restrict polynomial_pixels;
1730
1731   size_t
1732     number_images;
1733
1734   ssize_t
1735     y;
1736
1737   assert(images != (Image *) NULL);
1738   assert(images->signature == MagickSignature);
1739   if (images->debug != MagickFalse)
1740     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
1741   assert(exception != (ExceptionInfo *) NULL);
1742   assert(exception->signature == MagickSignature);
1743   image=CloneImage(images,images->columns,images->rows,MagickTrue,
1744     exception);
1745   if (image == (Image *) NULL)
1746     return((Image *) NULL);
1747   if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
1748     {
1749       image=DestroyImage(image);
1750       return((Image *) NULL);
1751     }
1752   number_images=GetImageListLength(images);
1753   polynomial_pixels=AcquirePixelThreadSet(images,number_images);
1754   if (polynomial_pixels == (PixelChannels **) NULL)
1755     {
1756       image=DestroyImage(image);
1757       (void) ThrowMagickException(exception,GetMagickModule(),
1758         ResourceLimitError,"MemoryAllocationFailed","`%s'",images->filename);
1759       return((Image *) NULL);
1760     }
1761   /*
1762     Polynomial image pixels.
1763   */
1764   status=MagickTrue;
1765   progress=0;
1766   polynomial_view=AcquireAuthenticCacheView(image,exception);
1767 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1768   #pragma omp parallel for schedule(static,4) shared(progress,status) \
1769     magick_threads(image,image,image->rows,1)
1770 #endif
1771   for (y=0; y < (ssize_t) image->rows; y++)
1772   {
1773     CacheView
1774       *image_view;
1775
1776     const Image
1777       *next;
1778
1779     const int
1780       id = GetOpenMPThreadId();
1781
1782     register ssize_t
1783       i,
1784       x;
1785
1786     register PixelChannels
1787       *polynomial_pixel;
1788
1789     register Quantum
1790       *restrict q;
1791
1792     ssize_t
1793       j;
1794
1795     if (status == MagickFalse)
1796       continue;
1797     q=QueueCacheViewAuthenticPixels(polynomial_view,0,y,image->columns,1,
1798       exception);
1799     if (q == (Quantum *) NULL)
1800       {
1801         status=MagickFalse;
1802         continue;
1803       }
1804     polynomial_pixel=polynomial_pixels[id];
1805     for (j=0; j < (ssize_t) image->columns; j++)
1806       for (i=0; i < MaxPixelChannels; i++)
1807         polynomial_pixel[j].channel[i]=0.0;
1808     next=images;
1809     for (j=0; j < (ssize_t) number_images; j++)
1810     {
1811       register const Quantum
1812         *p;
1813
1814       if (j >= (ssize_t) number_terms)
1815         continue;
1816       image_view=AcquireVirtualCacheView(next,exception);
1817       p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1818       if (p == (const Quantum *) NULL)
1819         {
1820           image_view=DestroyCacheView(image_view);
1821           break;
1822         }
1823       for (x=0; x < (ssize_t) image->columns; x++)
1824       {
1825         register ssize_t
1826           i;
1827
1828         if (GetPixelMask(next,p) == 0)
1829           {
1830             p+=GetPixelChannels(next);
1831             continue;
1832           }
1833         for (i=0; i < (ssize_t) GetPixelChannels(next); i++)
1834         {
1835           MagickRealType
1836             coefficient,
1837             degree;
1838
1839           PixelChannel channel=GetPixelChannelChannel(image,i);
1840           PixelTrait traits=GetPixelChannelTraits(next,channel);
1841           PixelTrait polynomial_traits=GetPixelChannelTraits(image,channel);
1842           if ((traits == UndefinedPixelTrait) ||
1843               (polynomial_traits == UndefinedPixelTrait))
1844             continue;
1845           if ((traits & UpdatePixelTrait) == 0)
1846             continue;
1847           coefficient=(MagickRealType) terms[2*i];
1848           degree=(MagickRealType) terms[(i << 1)+1];
1849           polynomial_pixel[x].channel[i]+=coefficient*
1850             pow(QuantumScale*GetPixelChannel(image,channel,p),degree);
1851         }
1852         p+=GetPixelChannels(next);
1853       }
1854       image_view=DestroyCacheView(image_view);
1855       next=GetNextImageInList(next);
1856     }
1857     for (x=0; x < (ssize_t) image->columns; x++)
1858     {
1859       register ssize_t
1860         i;
1861
1862       if (GetPixelMask(image,q) == 0)
1863         {
1864           q+=GetPixelChannels(image);
1865           continue;
1866         }
1867       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1868       {
1869         PixelChannel channel=GetPixelChannelChannel(image,i);
1870         PixelTrait traits=GetPixelChannelTraits(image,channel);
1871         if (traits == UndefinedPixelTrait)
1872           continue;
1873         if ((traits & UpdatePixelTrait) == 0)
1874           continue;
1875         q[i]=ClampToQuantum(QuantumRange*polynomial_pixel[x].channel[i]);
1876       }
1877       q+=GetPixelChannels(image);
1878     }
1879     if (SyncCacheViewAuthenticPixels(polynomial_view,exception) == MagickFalse)
1880       status=MagickFalse;
1881     if (images->progress_monitor != (MagickProgressMonitor) NULL)
1882       {
1883         MagickBooleanType
1884           proceed;
1885
1886 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1887         #pragma omp critical (MagickCore_PolynomialImages)
1888 #endif
1889         proceed=SetImageProgress(images,PolynomialImageTag,progress++,
1890           image->rows);
1891         if (proceed == MagickFalse)
1892           status=MagickFalse;
1893       }
1894   }
1895   polynomial_view=DestroyCacheView(polynomial_view);
1896   polynomial_pixels=DestroyPixelThreadSet(polynomial_pixels);
1897   if (status == MagickFalse)
1898     image=DestroyImage(image);
1899   return(image);
1900 }
1901 \f
1902 /*
1903 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1904 %                                                                             %
1905 %                                                                             %
1906 %                                                                             %
1907 %     S t a t i s t i c I m a g e                                             %
1908 %                                                                             %
1909 %                                                                             %
1910 %                                                                             %
1911 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1912 %
1913 %  StatisticImage() makes each pixel the min / max / median / mode / etc. of
1914 %  the neighborhood of the specified width and height.
1915 %
1916 %  The format of the StatisticImage method is:
1917 %
1918 %      Image *StatisticImage(const Image *image,const StatisticType type,
1919 %        const size_t width,const size_t height,ExceptionInfo *exception)
1920 %
1921 %  A description of each parameter follows:
1922 %
1923 %    o image: the image.
1924 %
1925 %    o type: the statistic type (median, mode, etc.).
1926 %
1927 %    o width: the width of the pixel neighborhood.
1928 %
1929 %    o height: the height of the pixel neighborhood.
1930 %
1931 %    o exception: return any errors or warnings in this structure.
1932 %
1933 */
1934
1935 typedef struct _SkipNode
1936 {
1937   size_t
1938     next[9],
1939     count,
1940     signature;
1941 } SkipNode;
1942
1943 typedef struct _SkipList
1944 {
1945   ssize_t
1946     level;
1947
1948   SkipNode
1949     *nodes;
1950 } SkipList;
1951
1952 typedef struct _PixelList
1953 {
1954   size_t
1955     length,
1956     seed;
1957
1958   SkipList
1959     skip_list;
1960
1961   size_t
1962     signature;
1963 } PixelList;
1964
1965 static PixelList *DestroyPixelList(PixelList *pixel_list)
1966 {
1967   if (pixel_list == (PixelList *) NULL)
1968     return((PixelList *) NULL);
1969   if (pixel_list->skip_list.nodes != (SkipNode *) NULL)
1970     pixel_list->skip_list.nodes=(SkipNode *) RelinquishMagickMemory(
1971       pixel_list->skip_list.nodes);
1972   pixel_list=(PixelList *) RelinquishMagickMemory(pixel_list);
1973   return(pixel_list);
1974 }
1975
1976 static PixelList **DestroyPixelListThreadSet(PixelList **pixel_list)
1977 {
1978   register ssize_t
1979     i;
1980
1981   assert(pixel_list != (PixelList **) NULL);
1982   for (i=0; i < (ssize_t) GetMagickResourceLimit(ThreadResource); i++)
1983     if (pixel_list[i] != (PixelList *) NULL)
1984       pixel_list[i]=DestroyPixelList(pixel_list[i]);
1985   pixel_list=(PixelList **) RelinquishMagickMemory(pixel_list);
1986   return(pixel_list);
1987 }
1988
1989 static PixelList *AcquirePixelList(const size_t width,const size_t height)
1990 {
1991   PixelList
1992     *pixel_list;
1993
1994   pixel_list=(PixelList *) AcquireMagickMemory(sizeof(*pixel_list));
1995   if (pixel_list == (PixelList *) NULL)
1996     return(pixel_list);
1997   (void) ResetMagickMemory((void *) pixel_list,0,sizeof(*pixel_list));
1998   pixel_list->length=width*height;
1999   pixel_list->skip_list.nodes=(SkipNode *) AcquireQuantumMemory(65537UL,
2000     sizeof(*pixel_list->skip_list.nodes));
2001   if (pixel_list->skip_list.nodes == (SkipNode *) NULL)
2002     return(DestroyPixelList(pixel_list));
2003   (void) ResetMagickMemory(pixel_list->skip_list.nodes,0,65537UL*
2004     sizeof(*pixel_list->skip_list.nodes));
2005   pixel_list->signature=MagickSignature;
2006   return(pixel_list);
2007 }
2008
2009 static PixelList **AcquirePixelListThreadSet(const size_t width,
2010   const size_t height)
2011 {
2012   PixelList
2013     **pixel_list;
2014
2015   register ssize_t
2016     i;
2017
2018   size_t
2019     number_threads;
2020
2021   number_threads=(size_t) GetMagickResourceLimit(ThreadResource);
2022   pixel_list=(PixelList **) AcquireQuantumMemory(number_threads,
2023     sizeof(*pixel_list));
2024   if (pixel_list == (PixelList **) NULL)
2025     return((PixelList **) NULL);
2026   (void) ResetMagickMemory(pixel_list,0,number_threads*sizeof(*pixel_list));
2027   for (i=0; i < (ssize_t) number_threads; i++)
2028   {
2029     pixel_list[i]=AcquirePixelList(width,height);
2030     if (pixel_list[i] == (PixelList *) NULL)
2031       return(DestroyPixelListThreadSet(pixel_list));
2032   }
2033   return(pixel_list);
2034 }
2035
2036 static void AddNodePixelList(PixelList *pixel_list,const size_t color)
2037 {
2038   register SkipList
2039     *p;
2040
2041   register ssize_t
2042     level;
2043
2044   size_t
2045     search,
2046     update[9];
2047
2048   /*
2049     Initialize the node.
2050   */
2051   p=(&pixel_list->skip_list);
2052   p->nodes[color].signature=pixel_list->signature;
2053   p->nodes[color].count=1;
2054   /*
2055     Determine where it belongs in the list.
2056   */
2057   search=65536UL;
2058   for (level=p->level; level >= 0; level--)
2059   {
2060     while (p->nodes[search].next[level] < color)
2061       search=p->nodes[search].next[level];
2062     update[level]=search;
2063   }
2064   /*
2065     Generate a pseudo-random level for this node.
2066   */
2067   for (level=0; ; level++)
2068   {
2069     pixel_list->seed=(pixel_list->seed*42893621L)+1L;
2070     if ((pixel_list->seed & 0x300) != 0x300)
2071       break;
2072   }
2073   if (level > 8)
2074     level=8;
2075   if (level > (p->level+2))
2076     level=p->level+2;
2077   /*
2078     If we're raising the list's level, link back to the root node.
2079   */
2080   while (level > p->level)
2081   {
2082     p->level++;
2083     update[p->level]=65536UL;
2084   }
2085   /*
2086     Link the node into the skip-list.
2087   */
2088   do
2089   {
2090     p->nodes[color].next[level]=p->nodes[update[level]].next[level];
2091     p->nodes[update[level]].next[level]=color;
2092   } while (level-- > 0);
2093 }
2094
2095 static inline void GetMaximumPixelList(PixelList *pixel_list,Quantum *pixel)
2096 {
2097   register SkipList
2098     *p;
2099
2100   size_t
2101     color,
2102     maximum;
2103
2104   ssize_t
2105     count;
2106
2107   /*
2108     Find the maximum value for each of the color.
2109   */
2110   p=(&pixel_list->skip_list);
2111   color=65536L;
2112   count=0;
2113   maximum=p->nodes[color].next[0];
2114   do
2115   {
2116     color=p->nodes[color].next[0];
2117     if (color > maximum)
2118       maximum=color;
2119     count+=p->nodes[color].count;
2120   } while (count < (ssize_t) pixel_list->length);
2121   *pixel=ScaleShortToQuantum((unsigned short) maximum);
2122 }
2123
2124 static inline void GetMeanPixelList(PixelList *pixel_list,Quantum *pixel)
2125 {
2126   double
2127     sum;
2128
2129   register SkipList
2130     *p;
2131
2132   size_t
2133     color;
2134
2135   ssize_t
2136     count;
2137
2138   /*
2139     Find the mean value for each of the color.
2140   */
2141   p=(&pixel_list->skip_list);
2142   color=65536L;
2143   count=0;
2144   sum=0.0;
2145   do
2146   {
2147     color=p->nodes[color].next[0];
2148     sum+=(double) p->nodes[color].count*color;
2149     count+=p->nodes[color].count;
2150   } while (count < (ssize_t) pixel_list->length);
2151   sum/=pixel_list->length;
2152   *pixel=ScaleShortToQuantum((unsigned short) sum);
2153 }
2154
2155 static inline void GetMedianPixelList(PixelList *pixel_list,Quantum *pixel)
2156 {
2157   register SkipList
2158     *p;
2159
2160   size_t
2161     color;
2162
2163   ssize_t
2164     count;
2165
2166   /*
2167     Find the median value for each of the color.
2168   */
2169   p=(&pixel_list->skip_list);
2170   color=65536L;
2171   count=0;
2172   do
2173   {
2174     color=p->nodes[color].next[0];
2175     count+=p->nodes[color].count;
2176   } while (count <= (ssize_t) (pixel_list->length >> 1));
2177   *pixel=ScaleShortToQuantum((unsigned short) color);
2178 }
2179
2180 static inline void GetMinimumPixelList(PixelList *pixel_list,Quantum *pixel)
2181 {
2182   register SkipList
2183     *p;
2184
2185   size_t
2186     color,
2187     minimum;
2188
2189   ssize_t
2190     count;
2191
2192   /*
2193     Find the minimum value for each of the color.
2194   */
2195   p=(&pixel_list->skip_list);
2196   count=0;
2197   color=65536UL;
2198   minimum=p->nodes[color].next[0];
2199   do
2200   {
2201     color=p->nodes[color].next[0];
2202     if (color < minimum)
2203       minimum=color;
2204     count+=p->nodes[color].count;
2205   } while (count < (ssize_t) pixel_list->length);
2206   *pixel=ScaleShortToQuantum((unsigned short) minimum);
2207 }
2208
2209 static inline void GetModePixelList(PixelList *pixel_list,Quantum *pixel)
2210 {
2211   register SkipList
2212     *p;
2213
2214   size_t
2215     color,
2216     max_count,
2217     mode;
2218
2219   ssize_t
2220     count;
2221
2222   /*
2223     Make each pixel the 'predominant color' of the specified neighborhood.
2224   */
2225   p=(&pixel_list->skip_list);
2226   color=65536L;
2227   mode=color;
2228   max_count=p->nodes[mode].count;
2229   count=0;
2230   do
2231   {
2232     color=p->nodes[color].next[0];
2233     if (p->nodes[color].count > max_count)
2234       {
2235         mode=color;
2236         max_count=p->nodes[mode].count;
2237       }
2238     count+=p->nodes[color].count;
2239   } while (count < (ssize_t) pixel_list->length);
2240   *pixel=ScaleShortToQuantum((unsigned short) mode);
2241 }
2242
2243 static inline void GetNonpeakPixelList(PixelList *pixel_list,Quantum *pixel)
2244 {
2245   register SkipList
2246     *p;
2247
2248   size_t
2249     color,
2250     next,
2251     previous;
2252
2253   ssize_t
2254     count;
2255
2256   /*
2257     Finds the non peak value for each of the colors.
2258   */
2259   p=(&pixel_list->skip_list);
2260   color=65536L;
2261   next=p->nodes[color].next[0];
2262   count=0;
2263   do
2264   {
2265     previous=color;
2266     color=next;
2267     next=p->nodes[color].next[0];
2268     count+=p->nodes[color].count;
2269   } while (count <= (ssize_t) (pixel_list->length >> 1));
2270   if ((previous == 65536UL) && (next != 65536UL))
2271     color=next;
2272   else
2273     if ((previous != 65536UL) && (next == 65536UL))
2274       color=previous;
2275   *pixel=ScaleShortToQuantum((unsigned short) color);
2276 }
2277
2278 static inline void GetStandardDeviationPixelList(PixelList *pixel_list,
2279   Quantum *pixel)
2280 {
2281   double
2282     sum,
2283     sum_squared;
2284
2285   register SkipList
2286     *p;
2287
2288   size_t
2289     color;
2290
2291   ssize_t
2292     count;
2293
2294   /*
2295     Find the standard-deviation value for each of the color.
2296   */
2297   p=(&pixel_list->skip_list);
2298   color=65536L;
2299   count=0;
2300   sum=0.0;
2301   sum_squared=0.0;
2302   do
2303   {
2304     register ssize_t
2305       i;
2306
2307     color=p->nodes[color].next[0];
2308     sum+=(double) p->nodes[color].count*color;
2309     for (i=0; i < (ssize_t) p->nodes[color].count; i++)
2310       sum_squared+=((double) color)*((double) color);
2311     count+=p->nodes[color].count;
2312   } while (count < (ssize_t) pixel_list->length);
2313   sum/=pixel_list->length;
2314   sum_squared/=pixel_list->length;
2315   *pixel=ScaleShortToQuantum((unsigned short) sqrt(sum_squared-(sum*sum)));
2316 }
2317
2318 static inline void InsertPixelList(const Image *image,const Quantum pixel,
2319   PixelList *pixel_list)
2320 {
2321   size_t
2322     signature;
2323
2324   unsigned short
2325     index;
2326
2327   index=ScaleQuantumToShort(pixel);
2328   signature=pixel_list->skip_list.nodes[index].signature;
2329   if (signature == pixel_list->signature)
2330     {
2331       pixel_list->skip_list.nodes[index].count++;
2332       return;
2333     }
2334   AddNodePixelList(pixel_list,index);
2335 }
2336
2337 static inline double MagickAbsoluteValue(const double x)
2338 {
2339   if (x < 0)
2340     return(-x);
2341   return(x);
2342 }
2343
2344 static inline size_t MagickMax(const size_t x,const size_t y)
2345 {
2346   if (x > y)
2347     return(x);
2348   return(y);
2349 }
2350
2351 static void ResetPixelList(PixelList *pixel_list)
2352 {
2353   int
2354     level;
2355
2356   register SkipNode
2357     *root;
2358
2359   register SkipList
2360     *p;
2361
2362   /*
2363     Reset the skip-list.
2364   */
2365   p=(&pixel_list->skip_list);
2366   root=p->nodes+65536UL;
2367   p->level=0;
2368   for (level=0; level < 9; level++)
2369     root->next[level]=65536UL;
2370   pixel_list->seed=pixel_list->signature++;
2371 }
2372
2373 MagickExport Image *StatisticImage(const Image *image,const StatisticType type,
2374   const size_t width,const size_t height,ExceptionInfo *exception)
2375 {
2376 #define StatisticImageTag  "Statistic/Image"
2377
2378   CacheView
2379     *image_view,
2380     *statistic_view;
2381
2382   Image
2383     *statistic_image;
2384
2385   MagickBooleanType
2386     status;
2387
2388   MagickOffsetType
2389     progress;
2390
2391   PixelList
2392     **restrict pixel_list;
2393
2394   ssize_t
2395     center,
2396     y;
2397
2398   /*
2399     Initialize statistics image attributes.
2400   */
2401   assert(image != (Image *) NULL);
2402   assert(image->signature == MagickSignature);
2403   if (image->debug != MagickFalse)
2404     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2405   assert(exception != (ExceptionInfo *) NULL);
2406   assert(exception->signature == MagickSignature);
2407   statistic_image=CloneImage(image,image->columns,image->rows,MagickTrue,
2408     exception);
2409   if (statistic_image == (Image *) NULL)
2410     return((Image *) NULL);
2411   status=SetImageStorageClass(statistic_image,DirectClass,exception);
2412   if (status == MagickFalse)
2413     {
2414       statistic_image=DestroyImage(statistic_image);
2415       return((Image *) NULL);
2416     }
2417   pixel_list=AcquirePixelListThreadSet(MagickMax(width,1),MagickMax(height,1));
2418   if (pixel_list == (PixelList **) NULL)
2419     {
2420       statistic_image=DestroyImage(statistic_image);
2421       ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
2422     }
2423   /*
2424     Make each pixel the min / max / median / mode / etc. of the neighborhood.
2425   */
2426   center=(ssize_t) GetPixelChannels(image)*(image->columns+MagickMax(width,1))*
2427     (MagickMax(height,1)/2L)+GetPixelChannels(image)*(MagickMax(width,1)/2L);
2428   status=MagickTrue;
2429   progress=0;
2430   image_view=AcquireVirtualCacheView(image,exception);
2431   statistic_view=AcquireAuthenticCacheView(statistic_image,exception);
2432 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2433   #pragma omp parallel for schedule(static,4) shared(progress,status) \
2434     magick_threads(image,statistic_image,statistic_image->rows,1)
2435 #endif
2436   for (y=0; y < (ssize_t) statistic_image->rows; y++)
2437   {
2438     const int
2439       id = GetOpenMPThreadId();
2440
2441     register const Quantum
2442       *restrict p;
2443
2444     register Quantum
2445       *restrict q;
2446
2447     register ssize_t
2448       x;
2449
2450     if (status == MagickFalse)
2451       continue;
2452     p=GetCacheViewVirtualPixels(image_view,-((ssize_t) MagickMax(width,1)/2L),y-
2453       (ssize_t) (MagickMax(height,1)/2L),image->columns+MagickMax(width,1),
2454       MagickMax(height,1),exception);
2455     q=QueueCacheViewAuthenticPixels(statistic_view,0,y,statistic_image->columns,      1,exception);
2456     if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
2457       {
2458         status=MagickFalse;
2459         continue;
2460       }
2461     for (x=0; x < (ssize_t) statistic_image->columns; x++)
2462     {
2463       register ssize_t
2464         i;
2465
2466       for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
2467       {
2468         Quantum
2469           pixel;
2470
2471         register const Quantum
2472           *restrict pixels;
2473
2474         register ssize_t
2475           u;
2476
2477         ssize_t
2478           v;
2479
2480         PixelChannel channel=GetPixelChannelChannel(image,i);
2481         PixelTrait traits=GetPixelChannelTraits(image,channel);
2482         PixelTrait statistic_traits=GetPixelChannelTraits(statistic_image,
2483           channel);
2484         if ((traits == UndefinedPixelTrait) ||
2485             (statistic_traits == UndefinedPixelTrait))
2486           continue;
2487         if (((statistic_traits & CopyPixelTrait) != 0) ||
2488             (GetPixelMask(image,p) == 0))
2489           {
2490             SetPixelChannel(statistic_image,channel,p[center+i],q);
2491             continue;
2492           }
2493         pixels=p;
2494         ResetPixelList(pixel_list[id]);
2495         for (v=0; v < (ssize_t) MagickMax(height,1); v++)
2496         {
2497           for (u=0; u < (ssize_t) MagickMax(width,1); u++)
2498           {
2499             InsertPixelList(image,pixels[i],pixel_list[id]);
2500             pixels+=GetPixelChannels(image);
2501           }
2502           pixels+=(image->columns-1)*GetPixelChannels(image);
2503         }
2504         switch (type)
2505         {
2506           case GradientStatistic:
2507           {
2508             double
2509               maximum,
2510               minimum;
2511
2512             GetMinimumPixelList(pixel_list[id],&pixel);
2513             minimum=(double) pixel;
2514             GetMaximumPixelList(pixel_list[id],&pixel);
2515             maximum=(double) pixel;
2516             pixel=ClampToQuantum(MagickAbsoluteValue(maximum-minimum));
2517             break;
2518           }
2519           case MaximumStatistic:
2520           {
2521             GetMaximumPixelList(pixel_list[id],&pixel);
2522             break;
2523           }
2524           case MeanStatistic:
2525           {
2526             GetMeanPixelList(pixel_list[id],&pixel);
2527             break;
2528           }
2529           case MedianStatistic:
2530           default:
2531           {
2532             GetMedianPixelList(pixel_list[id],&pixel);
2533             break;
2534           }
2535           case MinimumStatistic:
2536           {
2537             GetMinimumPixelList(pixel_list[id],&pixel);
2538             break;
2539           }
2540           case ModeStatistic:
2541           {
2542             GetModePixelList(pixel_list[id],&pixel);
2543             break;
2544           }
2545           case NonpeakStatistic:
2546           {
2547             GetNonpeakPixelList(pixel_list[id],&pixel);
2548             break;
2549           }
2550           case StandardDeviationStatistic:
2551           {
2552             GetStandardDeviationPixelList(pixel_list[id],&pixel);
2553             break;
2554           }
2555         }
2556         SetPixelChannel(statistic_image,channel,pixel,q);
2557       }
2558       p+=GetPixelChannels(image);
2559       q+=GetPixelChannels(statistic_image);
2560     }
2561     if (SyncCacheViewAuthenticPixels(statistic_view,exception) == MagickFalse)
2562       status=MagickFalse;
2563     if (image->progress_monitor != (MagickProgressMonitor) NULL)
2564       {
2565         MagickBooleanType
2566           proceed;
2567
2568 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2569         #pragma omp critical (MagickCore_StatisticImage)
2570 #endif
2571         proceed=SetImageProgress(image,StatisticImageTag,progress++,
2572           image->rows);
2573         if (proceed == MagickFalse)
2574           status=MagickFalse;
2575       }
2576   }
2577   statistic_view=DestroyCacheView(statistic_view);
2578   image_view=DestroyCacheView(image_view);
2579   pixel_list=DestroyPixelListThreadSet(pixel_list);
2580   if (status == MagickFalse)
2581     statistic_image=DestroyImage(statistic_image);
2582   return(statistic_image);
2583 }