]> granicus.if.org Git - imagemagick/blob - MagickCore/shear.c
(no commit message)
[imagemagick] / MagickCore / shear.c
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %                                                                             %
4 %                                                                             %
5 %                                                                             %
6 %                      SSSSS  H   H  EEEEE   AAA    RRRR                      %
7 %                      SS     H   H  E      A   A   R   R                     %
8 %                       SSS   HHHHH  EEE    AAAAA   RRRR                      %
9 %                         SS  H   H  E      A   A   R R                       %
10 %                      SSSSS  H   H  EEEEE  A   A   R  R                      %
11 %                                                                             %
12 %                                                                             %
13 %    MagickCore Methods to Shear or Rotate an Image by an Arbitrary Angle     %
14 %                                                                             %
15 %                               Software Design                               %
16 %                                 John Cristy                                 %
17 %                                  July 1992                                  %
18 %                                                                             %
19 %                                                                             %
20 %  Copyright 1999-2012 ImageMagick Studio LLC, a non-profit organization      %
21 %  dedicated to making software imaging solutions freely available.           %
22 %                                                                             %
23 %  You may not use this file except in compliance with the License.  You may  %
24 %  obtain a copy of the License at                                            %
25 %                                                                             %
26 %    http://www.imagemagick.org/script/license.php                            %
27 %                                                                             %
28 %  Unless required by applicable law or agreed to in writing, software        %
29 %  distributed under the License is distributed on an "AS IS" BASIS,          %
30 %  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
31 %  See the License for the specific language governing permissions and        %
32 %  limitations under the License.                                             %
33 %                                                                             %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %  The XShearImage() and YShearImage() methods are based on the paper "A Fast
37 %  Algorithm for General Raster Rotatation" by Alan W. Paeth, Graphics
38 %  Interface '86 (Vancouver).  ShearRotateImage() is adapted from a similar
39 %  method based on the Paeth paper written by Michael Halle of the Spatial
40 %  Imaging Group, MIT Media Lab.
41 %
42 */
43 \f
44 /*
45   Include declarations.
46 */
47 #include "MagickCore/studio.h"
48 #include "MagickCore/artifact.h"
49 #include "MagickCore/attribute.h"
50 #include "MagickCore/blob-private.h"
51 #include "MagickCore/cache-private.h"
52 #include "MagickCore/color-private.h"
53 #include "MagickCore/colorspace-private.h"
54 #include "MagickCore/composite.h"
55 #include "MagickCore/composite-private.h"
56 #include "MagickCore/decorate.h"
57 #include "MagickCore/distort.h"
58 #include "MagickCore/draw.h"
59 #include "MagickCore/exception.h"
60 #include "MagickCore/exception-private.h"
61 #include "MagickCore/gem.h"
62 #include "MagickCore/geometry.h"
63 #include "MagickCore/image.h"
64 #include "MagickCore/image-private.h"
65 #include "MagickCore/memory_.h"
66 #include "MagickCore/list.h"
67 #include "MagickCore/monitor.h"
68 #include "MagickCore/monitor-private.h"
69 #include "MagickCore/nt-base-private.h"
70 #include "MagickCore/pixel-accessor.h"
71 #include "MagickCore/quantum.h"
72 #include "MagickCore/resource_.h"
73 #include "MagickCore/shear.h"
74 #include "MagickCore/statistic.h"
75 #include "MagickCore/string_.h"
76 #include "MagickCore/string-private.h"
77 #include "MagickCore/thread-private.h"
78 #include "MagickCore/threshold.h"
79 #include "MagickCore/transform.h"
80 \f
81 /*
82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
83 %                                                                             %
84 %                                                                             %
85 %                                                                             %
86 +   C r o p T o F i t I m a g e                                               %
87 %                                                                             %
88 %                                                                             %
89 %                                                                             %
90 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
91 %
92 %  CropToFitImage() crops the sheared image as determined by the bounding box
93 %  as defined by width and height and shearing angles.
94 %
95 %  The format of the CropToFitImage method is:
96 %
97 %      MagickBooleanType CropToFitImage(Image **image,
98 %        const MagickRealType x_shear,const MagickRealType x_shear,
99 %        const MagickRealType width,const MagickRealType height,
100 %        const MagickBooleanType rotate,ExceptionInfo *exception)
101 %
102 %  A description of each parameter follows.
103 %
104 %    o image: the image.
105 %
106 %    o x_shear, y_shear, width, height: Defines a region of the image to crop.
107 %
108 %    o exception: return any errors or warnings in this structure.
109 %
110 */
111 static MagickBooleanType CropToFitImage(Image **image,
112   const MagickRealType x_shear,const MagickRealType y_shear,
113   const MagickRealType width,const MagickRealType height,
114   const MagickBooleanType rotate,ExceptionInfo *exception)
115 {
116   Image
117     *crop_image;
118
119   PointInfo
120     extent[4],
121     min,
122     max;
123
124   RectangleInfo
125     geometry,
126     page;
127
128   register ssize_t
129     i;
130
131   /*
132     Calculate the rotated image size.
133   */
134   extent[0].x=(double) (-width/2.0);
135   extent[0].y=(double) (-height/2.0);
136   extent[1].x=(double) width/2.0;
137   extent[1].y=(double) (-height/2.0);
138   extent[2].x=(double) (-width/2.0);
139   extent[2].y=(double) height/2.0;
140   extent[3].x=(double) width/2.0;
141   extent[3].y=(double) height/2.0;
142   for (i=0; i < 4; i++)
143   {
144     extent[i].x+=x_shear*extent[i].y;
145     extent[i].y+=y_shear*extent[i].x;
146     if (rotate != MagickFalse)
147       extent[i].x+=x_shear*extent[i].y;
148     extent[i].x+=(double) (*image)->columns/2.0;
149     extent[i].y+=(double) (*image)->rows/2.0;
150   }
151   min=extent[0];
152   max=extent[0];
153   for (i=1; i < 4; i++)
154   {
155     if (min.x > extent[i].x)
156       min.x=extent[i].x;
157     if (min.y > extent[i].y)
158       min.y=extent[i].y;
159     if (max.x < extent[i].x)
160       max.x=extent[i].x;
161     if (max.y < extent[i].y)
162       max.y=extent[i].y;
163   }
164   geometry.x=(ssize_t) ceil(min.x-0.5);
165   geometry.y=(ssize_t) ceil(min.y-0.5);
166   geometry.width=(size_t) floor(max.x-min.x+0.5);
167   geometry.height=(size_t) floor(max.y-min.y+0.5);
168   page=(*image)->page;
169   (void) ParseAbsoluteGeometry("0x0+0+0",&(*image)->page);
170   crop_image=CropImage(*image,&geometry,exception);
171   if (crop_image == (Image *) NULL)
172     return(MagickFalse);
173   crop_image->page=page;
174   *image=DestroyImage(*image);
175   *image=crop_image;
176   return(MagickTrue);
177 }
178 \f
179 /*
180 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
181 %                                                                             %
182 %                                                                             %
183 %                                                                             %
184 %     D e s k e w I m a g e                                                   %
185 %                                                                             %
186 %                                                                             %
187 %                                                                             %
188 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
189 %
190 %  DeskewImage() removes skew from the image.  Skew is an artifact that
191 %  occurs in scanned images because of the camera being misaligned,
192 %  imperfections in the scanning or surface, or simply because the paper was
193 %  not placed completely flat when scanned.
194 %
195 %  The format of the DeskewImage method is:
196 %
197 %      Image *DeskewImage(const Image *image,const double threshold,
198 %        ExceptionInfo *exception)
199 %
200 %  A description of each parameter follows:
201 %
202 %    o image: the image.
203 %
204 %    o threshold: separate background from foreground.
205 %
206 %    o exception: return any errors or warnings in this structure.
207 %
208 */
209
210 typedef struct _RadonInfo
211 {
212   CacheType
213     type;
214
215   size_t
216     width,
217     height;
218
219   MagickSizeType
220     length;
221
222   MagickBooleanType
223     mapped;
224
225   char
226     path[MaxTextExtent];
227
228   int
229     file;
230
231   unsigned short
232     *cells;
233 } RadonInfo;
234
235 static RadonInfo *DestroyRadonInfo(RadonInfo *radon_info)
236 {
237   assert(radon_info != (RadonInfo *) NULL);
238   switch (radon_info->type)
239   {
240     case MemoryCache:
241     {
242       if (radon_info->mapped == MagickFalse)
243         radon_info->cells=(unsigned short *) RelinquishMagickMemory(
244           radon_info->cells);
245       else
246         radon_info->cells=(unsigned short *) UnmapBlob(radon_info->cells,
247           (size_t) radon_info->length);
248       RelinquishMagickResource(MemoryResource,radon_info->length);
249       break;
250     }
251     case MapCache:
252     {
253       radon_info->cells=(unsigned short *) UnmapBlob(radon_info->cells,(size_t)
254         radon_info->length);
255       RelinquishMagickResource(MapResource,radon_info->length);
256     }
257     case DiskCache:
258     {
259       if (radon_info->file != -1)
260         (void) close(radon_info->file);
261       (void) RelinquishUniqueFileResource(radon_info->path);
262       RelinquishMagickResource(DiskResource,radon_info->length);
263       break;
264     }
265     default:
266       break;
267   }
268   return((RadonInfo *) RelinquishMagickMemory(radon_info));
269 }
270
271 static MagickBooleanType ResetRadonCells(RadonInfo *radon_info)
272 {
273   register ssize_t
274     x;
275
276   ssize_t
277     count,
278     y;
279
280   unsigned short
281     value;
282
283   if (radon_info->type != DiskCache)
284     {
285       (void) ResetMagickMemory(radon_info->cells,0,(size_t) radon_info->length);
286       return(MagickTrue);
287     }
288   value=0;
289   (void) lseek(radon_info->file,0,SEEK_SET);
290   for (y=0; y < (ssize_t) radon_info->height; y++)
291   {
292     for (x=0; x < (ssize_t) radon_info->width; x++)
293     {
294       count=write(radon_info->file,&value,sizeof(*radon_info->cells));
295       if (count != (ssize_t) sizeof(*radon_info->cells))
296         break;
297     }
298     if (x < (ssize_t) radon_info->width)
299       break;
300   }
301   return(y < (ssize_t) radon_info->height ? MagickFalse : MagickTrue);
302 }
303
304 static RadonInfo *AcquireRadonInfo(const Image *image,const size_t width,
305   const size_t height,ExceptionInfo *exception)
306 {
307   MagickBooleanType
308     status;
309
310   RadonInfo
311     *radon_info;
312
313   radon_info=(RadonInfo *) AcquireMagickMemory(sizeof(*radon_info));
314   if (radon_info == (RadonInfo *) NULL)
315     return((RadonInfo *) NULL);
316   (void) ResetMagickMemory(radon_info,0,sizeof(*radon_info));
317   radon_info->width=width;
318   radon_info->height=height;
319   radon_info->length=(MagickSizeType) width*height*sizeof(*radon_info->cells);
320   radon_info->type=MemoryCache;
321   status=AcquireMagickResource(AreaResource,radon_info->length);
322   if ((status != MagickFalse) &&
323       (radon_info->length == (MagickSizeType) ((size_t) radon_info->length)))
324     {
325       status=AcquireMagickResource(MemoryResource,radon_info->length);
326       if (status != MagickFalse)
327         {
328           radon_info->mapped=MagickFalse;
329           radon_info->cells=(unsigned short *) AcquireMagickMemory((size_t)
330             radon_info->length);
331           if (radon_info->cells == (unsigned short *) NULL)
332             {
333               radon_info->mapped=MagickTrue;
334               radon_info->cells=(unsigned short *) MapBlob(-1,IOMode,0,(size_t)
335                 radon_info->length);
336             }
337           if (radon_info->cells == (unsigned short *) NULL)
338             RelinquishMagickResource(MemoryResource,radon_info->length);
339         }
340     }
341   radon_info->file=(-1);
342   if (radon_info->cells == (unsigned short *) NULL)
343     {
344       status=AcquireMagickResource(DiskResource,radon_info->length);
345       if (status == MagickFalse)
346         {
347           (void) ThrowMagickException(exception,GetMagickModule(),CacheError,
348             "CacheResourcesExhausted","`%s'",image->filename);
349           return(DestroyRadonInfo(radon_info));
350         }
351       radon_info->type=DiskCache;
352       (void) AcquireMagickResource(MemoryResource,radon_info->length);
353       radon_info->file=AcquireUniqueFileResource(radon_info->path);
354       if (radon_info->file == -1)
355         return(DestroyRadonInfo(radon_info));
356       status=AcquireMagickResource(MapResource,radon_info->length);
357       if (status != MagickFalse)
358         {
359           status=ResetRadonCells(radon_info);
360           if (status != MagickFalse)
361             {
362               radon_info->cells=(unsigned short *) MapBlob(radon_info->file,
363                 IOMode,0,(size_t) radon_info->length);
364               if (radon_info->cells != (unsigned short *) NULL)
365                 radon_info->type=MapCache;
366               else
367                 RelinquishMagickResource(MapResource,radon_info->length);
368             }
369         }
370     }
371   return(radon_info);
372 }
373
374 static inline size_t MagickMin(const size_t x,const size_t y)
375 {
376   if (x < y)
377     return(x);
378   return(y);
379 }
380
381 static inline ssize_t ReadRadonCell(const RadonInfo *radon_info,
382   const MagickOffsetType offset,const size_t length,unsigned char *buffer)
383 {
384   register ssize_t
385     i;
386
387   ssize_t
388     count;
389
390 #if !defined(MAGICKCORE_HAVE_PPREAD)
391 #if defined(MAGICKCORE_OPENMP_SUPPORT)
392   #pragma omp critical (MagickCore_ReadRadonCell)
393 #endif
394   {
395     i=(-1);
396     if (lseek(radon_info->file,offset,SEEK_SET) >= 0)
397       {
398 #endif
399         count=0;
400         for (i=0; i < (ssize_t) length; i+=count)
401         {
402 #if !defined(MAGICKCORE_HAVE_PPREAD)
403           count=read(radon_info->file,buffer+i,MagickMin(length-i,(size_t)
404             SSIZE_MAX));
405 #else
406           count=pread(radon_info->file,buffer+i,MagickMin(length-i,(size_t)
407             SSIZE_MAX),offset+i);
408 #endif
409           if (count > 0)
410             continue;
411           count=0;
412           if (errno != EINTR)
413             {
414               i=(-1);
415               break;
416             }
417         }
418 #if !defined(MAGICKCORE_HAVE_PPREAD)
419       }
420   }
421 #endif
422   return(i);
423 }
424
425 static inline ssize_t WriteRadonCell(const RadonInfo *radon_info,
426   const MagickOffsetType offset,const size_t length,const unsigned char *buffer)
427 {
428   register ssize_t
429     i;
430
431   ssize_t
432     count;
433
434 #if !defined(MAGICKCORE_HAVE_PWRITE)
435 #if defined(MAGICKCORE_OPENMP_SUPPORT)
436   #pragma omp critical (MagickCore_WriteRadonCell)
437 #endif
438   {
439     if (lseek(radon_info->file,offset,SEEK_SET) >= 0)
440       {
441 #endif
442         count=0;
443         for (i=0; i < (ssize_t) length; i+=count)
444         {
445 #if !defined(MAGICKCORE_HAVE_PWRITE)
446           count=write(radon_info->file,buffer+i,MagickMin(length-i,(size_t)
447             SSIZE_MAX));
448 #else
449           count=pwrite(radon_info->file,buffer+i,MagickMin(length-i,(size_t)
450             SSIZE_MAX),offset+i);
451 #endif
452           if (count > 0)
453             continue;
454           count=0;
455           if (errno != EINTR)
456             {
457               i=(-1);
458               break;
459             }
460         }
461 #if !defined(MAGICKCORE_HAVE_PWRITE)
462       }
463   }
464 #endif
465   return(i);
466 }
467
468 static inline unsigned short GetRadonCell(const RadonInfo *radon_info,
469   const ssize_t x,const ssize_t y)
470 {
471   MagickOffsetType
472     i;
473
474   unsigned short
475     value;
476
477   i=(MagickOffsetType) radon_info->height*x+y;
478   if ((i < 0) ||
479       ((MagickSizeType) (i*sizeof(*radon_info->cells)) >= radon_info->length))
480     return(0);
481   if (radon_info->type != DiskCache)
482     return(radon_info->cells[i]);
483   value=0;
484   (void) ReadRadonCell(radon_info,i*sizeof(*radon_info->cells),
485     sizeof(*radon_info->cells),(unsigned char *) &value);
486   return(value);
487 }
488
489 static inline MagickBooleanType SetRadonCell(const RadonInfo *radon_info,
490   const ssize_t x,const ssize_t y,const unsigned short value)
491 {
492   MagickOffsetType
493     i;
494
495   ssize_t
496     count;
497
498   i=(MagickOffsetType) radon_info->height*x+y;
499   if ((i < 0) ||
500       ((MagickSizeType) (i*sizeof(*radon_info->cells)) >= radon_info->length))
501     return(MagickFalse);
502   if (radon_info->type != DiskCache)
503     {
504       radon_info->cells[i]=value;
505       return(MagickTrue);
506     }
507   count=WriteRadonCell(radon_info,i*sizeof(*radon_info->cells),
508     sizeof(*radon_info->cells),(const unsigned char *) &value);
509   if (count != (ssize_t) sizeof(*radon_info->cells))
510     return(MagickFalse);
511   return(MagickTrue);
512 }
513
514 static void RadonProjection(RadonInfo *source_cells,
515   RadonInfo *destination_cells,const ssize_t sign,size_t *projection)
516 {
517   RadonInfo
518     *swap;
519
520   register ssize_t
521     x;
522
523   register RadonInfo
524     *p,
525     *q;
526
527   size_t
528     step;
529
530   p=source_cells;
531   q=destination_cells;
532   for (step=1; step < p->width; step*=2)
533   {
534     for (x=0; x < (ssize_t) p->width; x+=2*(ssize_t) step)
535     {
536       register ssize_t
537         i;
538
539       ssize_t
540         y;
541
542       unsigned short
543         cell;
544
545       for (i=0; i < (ssize_t) step; i++)
546       {
547         for (y=0; y < (ssize_t) (p->height-i-1); y++)
548         {
549           cell=GetRadonCell(p,x+i,y);
550           (void) SetRadonCell(q,x+2*i,y,cell+GetRadonCell(p,x+i+(ssize_t)
551             step,y+i));
552           (void) SetRadonCell(q,x+2*i+1,y,cell+GetRadonCell(p,x+i+(ssize_t)
553             step,y+i+1));
554         }
555         for ( ; y < (ssize_t) (p->height-i); y++)
556         {
557           cell=GetRadonCell(p,x+i,y);
558           (void) SetRadonCell(q,x+2*i,y,cell+GetRadonCell(p,x+i+(ssize_t) step,
559             y+i));
560           (void) SetRadonCell(q,x+2*i+1,y,cell);
561         }
562         for ( ; y < (ssize_t) p->height; y++)
563         {
564           cell=GetRadonCell(p,x+i,y);
565           (void) SetRadonCell(q,x+2*i,y,cell);
566           (void) SetRadonCell(q,x+2*i+1,y,cell);
567         }
568       }
569     }
570     swap=p;
571     p=q;
572     q=swap;
573   }
574 #if defined(MAGICKCORE_OPENMP_SUPPORT)
575   #pragma omp parallel for schedule(static,4)
576 #endif
577   for (x=0; x < (ssize_t) p->width; x++)
578   {
579     register ssize_t
580       y;
581
582     size_t
583       sum;
584
585     sum=0;
586     for (y=0; y < (ssize_t) (p->height-1); y++)
587     {
588       ssize_t
589         delta;
590
591       delta=GetRadonCell(p,x,y)-(ssize_t) GetRadonCell(p,x,y+1);
592       sum+=delta*delta;
593     }
594     projection[p->width+sign*x-1]=sum;
595   }
596 }
597
598 static MagickBooleanType RadonTransform(const Image *image,
599   const double threshold,size_t *projection,ExceptionInfo *exception)
600 {
601   CacheView
602     *image_view;
603
604   MagickBooleanType
605     status;
606
607   RadonInfo
608     *destination_cells,
609     *source_cells;
610
611   register ssize_t
612     i;
613
614   size_t
615     count,
616     width;
617
618   ssize_t
619     y;
620
621   unsigned char
622     byte;
623
624   unsigned short
625     bits[256];
626
627   for (width=1; width < ((image->columns+7)/8); width<<=1) ;
628   source_cells=AcquireRadonInfo(image,width,image->rows,exception);
629   destination_cells=AcquireRadonInfo(image,width,image->rows,exception);
630   if ((source_cells == (RadonInfo *) NULL) ||
631       (destination_cells == (RadonInfo *) NULL))
632     {
633       if (destination_cells != (RadonInfo *) NULL)
634         destination_cells=DestroyRadonInfo(destination_cells);
635       if (source_cells != (RadonInfo *) NULL)
636         source_cells=DestroyRadonInfo(source_cells);
637       return(MagickFalse);
638     }
639   if (ResetRadonCells(source_cells) == MagickFalse)
640     {
641       destination_cells=DestroyRadonInfo(destination_cells);
642       source_cells=DestroyRadonInfo(source_cells);
643       return(MagickFalse);
644     }
645   for (i=0; i < 256; i++)
646   {
647     byte=(unsigned char) i;
648     for (count=0; byte != 0; byte>>=1)
649       count+=byte & 0x01;
650     bits[i]=(unsigned short) count;
651   }
652   status=MagickTrue;
653   image_view=AcquireCacheView(image);
654 #if defined(MAGICKCORE_OPENMP_SUPPORT)
655   #pragma omp parallel for schedule(static,4) shared(status)
656 #endif
657   for (y=0; y < (ssize_t) image->rows; y++)
658   {
659     register const Quantum
660       *restrict p;
661
662     register ssize_t
663       i,
664       x;
665
666     size_t
667       bit,
668       byte;
669
670     if (status == MagickFalse)
671       continue;
672     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
673     if (p == (const Quantum *) NULL)
674       {
675         status=MagickFalse;
676         continue;
677       }
678     bit=0;
679     byte=0;
680     i=(ssize_t) (image->columns+7)/8;
681     for (x=0; x < (ssize_t) image->columns; x++)
682     {
683       byte<<=1;
684       if ((double) GetPixelIntensity(image,p) < threshold)
685         byte|=0x01;
686       bit++;
687       if (bit == 8)
688         {
689           (void) SetRadonCell(source_cells,--i,y,bits[byte]);
690           bit=0;
691           byte=0;
692         }
693       p+=GetPixelChannels(image);
694     }
695     if (bit != 0)
696       {
697         byte<<=(8-bit);
698         (void) SetRadonCell(source_cells,--i,y,bits[byte]);
699       }
700   }
701   RadonProjection(source_cells,destination_cells,-1,projection);
702   (void) ResetRadonCells(source_cells);
703 #if defined(MAGICKCORE_OPENMP_SUPPORT)
704   #pragma omp parallel for schedule(static,4) shared(status)
705 #endif
706   for (y=0; y < (ssize_t) image->rows; y++)
707   {
708     register const Quantum
709       *restrict p;
710
711     register ssize_t
712       i,
713       x;
714
715     size_t
716       bit,
717       byte;
718
719     if (status == MagickFalse)
720       continue;
721     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
722     if (p == (const Quantum *) NULL)
723       {
724         status=MagickFalse;
725         continue;
726       }
727     bit=0;
728     byte=0;
729     i=0;
730     for (x=0; x < (ssize_t) image->columns; x++)
731     {
732       byte<<=1;
733       if ((double) GetPixelIntensity(image,p) < threshold)
734         byte|=0x01;
735       bit++;
736       if (bit == 8)
737         {
738           (void) SetRadonCell(source_cells,i++,y,bits[byte]);
739           bit=0;
740           byte=0;
741         }
742       p+=GetPixelChannels(image);
743     }
744     if (bit != 0)
745       {
746         byte<<=(8-bit);
747         (void) SetRadonCell(source_cells,i++,y,bits[byte]);
748       }
749   }
750   RadonProjection(source_cells,destination_cells,1,projection);
751   image_view=DestroyCacheView(image_view);
752   destination_cells=DestroyRadonInfo(destination_cells);
753   source_cells=DestroyRadonInfo(source_cells);
754   return(MagickTrue);
755 }
756
757 static void GetImageBackgroundColor(Image *image,const ssize_t offset,
758   ExceptionInfo *exception)
759 {
760   CacheView
761     *image_view;
762
763   PixelInfo
764     background;
765
766   MagickRealType
767     count;
768
769   ssize_t
770     y;
771
772   /*
773     Compute average background color.
774   */
775   if (offset <= 0)
776     return;
777   GetPixelInfo(image,&background);
778   count=0.0;
779   image_view=AcquireCacheView(image);
780   for (y=0; y < (ssize_t) image->rows; y++)
781   {
782     register const Quantum
783       *restrict p;
784
785     register ssize_t
786       x;
787
788     if ((y >= offset) && (y < ((ssize_t) image->rows-offset)))
789       continue;
790     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
791     if (p == (const Quantum *) NULL)
792       continue;
793     for (x=0; x < (ssize_t) image->columns; x++)
794     {
795       if ((x >= offset) && (x < ((ssize_t) image->columns-offset)))
796         continue;
797       background.red+=QuantumScale*GetPixelRed(image,p);
798       background.green+=QuantumScale*GetPixelGreen(image,p);
799       background.blue+=QuantumScale*GetPixelBlue(image,p);
800       if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0)
801         background.alpha+=QuantumScale*GetPixelAlpha(image,p);
802       count++;
803       p+=GetPixelChannels(image);
804     }
805   }
806   image_view=DestroyCacheView(image_view);
807   image->background_color.red=(double) ClampToQuantum((MagickRealType)
808     QuantumRange*background.red/count);
809   image->background_color.green=(double) ClampToQuantum((MagickRealType)
810     QuantumRange*background.green/count);
811   image->background_color.blue=(double) ClampToQuantum((MagickRealType)
812     QuantumRange*background.blue/count);
813   if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0)
814     image->background_color.alpha=(double) ClampToQuantum((MagickRealType)
815       QuantumRange*background.alpha/count);
816 }
817
818 MagickExport Image *DeskewImage(const Image *image,const double threshold,
819   ExceptionInfo *exception)
820 {
821   AffineMatrix
822     affine_matrix;
823
824   const char
825     *artifact;
826
827   double
828     degrees;
829
830   Image
831     *clone_image,
832     *crop_image,
833     *deskew_image,
834     *median_image;
835
836   MagickBooleanType
837     status;
838
839   RectangleInfo
840     geometry;
841
842   register ssize_t
843     i;
844
845   size_t
846     max_projection,
847     *projection,
848     width;
849
850   ssize_t
851     skew;
852
853   /*
854     Compute deskew angle.
855   */
856   for (width=1; width < ((image->columns+7)/8); width<<=1) ;
857   projection=(size_t *) AcquireQuantumMemory((size_t) (2*width-1),
858     sizeof(*projection));
859   if (projection == (size_t *) NULL)
860     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
861   status=RadonTransform(image,threshold,projection,exception);
862   if (status == MagickFalse)
863     {
864       projection=(size_t *) RelinquishMagickMemory(projection);
865       ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
866     }
867   max_projection=0;
868   skew=0;
869   for (i=0; i < (ssize_t) (2*width-1); i++)
870   {
871     if (projection[i] > max_projection)
872       {
873         skew=i-(ssize_t) width+1;
874         max_projection=projection[i];
875       }
876   }
877   projection=(size_t *) RelinquishMagickMemory(projection);
878   /*
879     Deskew image.
880   */
881   clone_image=CloneImage(image,0,0,MagickTrue,exception);
882   if (clone_image == (Image *) NULL)
883     return((Image *) NULL);
884   (void) SetImageVirtualPixelMethod(clone_image,BackgroundVirtualPixelMethod);
885   degrees=RadiansToDegrees(-atan((double) skew/width/8));
886   if (image->debug != MagickFalse)
887     (void) LogMagickEvent(TransformEvent,GetMagickModule(),
888       "  Deskew angle: %g",degrees);
889   affine_matrix.sx=cos(DegreesToRadians(fmod((double) degrees,360.0)));
890   affine_matrix.rx=sin(DegreesToRadians(fmod((double) degrees,360.0)));
891   affine_matrix.ry=(-sin(DegreesToRadians(fmod((double) degrees,360.0))));
892   affine_matrix.sy=cos(DegreesToRadians(fmod((double) degrees,360.0)));
893   affine_matrix.tx=0.0;
894   affine_matrix.ty=0.0;
895   artifact=GetImageArtifact(image,"deskew:auto-crop");
896   if (artifact == (const char *) NULL)
897     {
898       deskew_image=AffineTransformImage(clone_image,&affine_matrix,exception);
899       clone_image=DestroyImage(clone_image);
900       return(deskew_image);
901     }
902   /*
903     Auto-crop image.
904   */
905   GetImageBackgroundColor(clone_image,(ssize_t) StringToLong(artifact),
906     exception);
907   deskew_image=AffineTransformImage(clone_image,&affine_matrix,exception);
908   clone_image=DestroyImage(clone_image);
909   if (deskew_image == (Image *) NULL)
910     return((Image *) NULL);
911   median_image=StatisticImage(deskew_image,MedianStatistic,3,3,exception);
912   if (median_image == (Image *) NULL)
913     {
914       deskew_image=DestroyImage(deskew_image);
915       return((Image *) NULL);
916     }
917   geometry=GetImageBoundingBox(median_image,exception);
918   median_image=DestroyImage(median_image);
919   if (image->debug != MagickFalse)
920     (void) LogMagickEvent(TransformEvent,GetMagickModule(),"  Deskew geometry: "
921       "%.20gx%.20g%+.20g%+.20g",(double) geometry.width,(double)
922       geometry.height,(double) geometry.x,(double) geometry.y);
923   crop_image=CropImage(deskew_image,&geometry,exception);
924   deskew_image=DestroyImage(deskew_image);
925   return(crop_image);
926 }
927 \f
928 /*
929 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
930 %                                                                             %
931 %                                                                             %
932 %                                                                             %
933 %   I n t e g r a l R o t a t e I m a g e                                     %
934 %                                                                             %
935 %                                                                             %
936 %                                                                             %
937 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
938 %
939 %  IntegralRotateImage() rotates the image an integral of 90 degrees.  It
940 %  allocates the memory necessary for the new Image structure and returns a
941 %  pointer to the rotated image.
942 %
943 %  The format of the IntegralRotateImage method is:
944 %
945 %      Image *IntegralRotateImage(const Image *image,size_t rotations,
946 %        ExceptionInfo *exception)
947 %
948 %  A description of each parameter follows.
949 %
950 %    o image: the image.
951 %
952 %    o rotations: Specifies the number of 90 degree rotations.
953 %
954 */
955 MagickExport Image *IntegralRotateImage(const Image *image,size_t rotations,
956   ExceptionInfo *exception)
957 {
958 #define RotateImageTag  "Rotate/Image"
959
960   CacheView
961     *image_view,
962     *rotate_view;
963
964   Image
965     *rotate_image;
966
967   MagickBooleanType
968     status;
969
970   MagickOffsetType
971     progress;
972
973   RectangleInfo
974     page;
975
976   ssize_t
977     y;
978
979   /*
980     Initialize rotated image attributes.
981   */
982   assert(image != (Image *) NULL);
983   page=image->page;
984   rotations%=4;
985   if (rotations == 0)
986     return(CloneImage(image,0,0,MagickTrue,exception));
987   if ((rotations == 1) || (rotations == 3))
988     rotate_image=CloneImage(image,image->rows,image->columns,MagickTrue,
989       exception);
990   else
991     rotate_image=CloneImage(image,image->columns,image->rows,MagickTrue,
992       exception);
993   if (rotate_image == (Image *) NULL)
994     return((Image *) NULL);
995   /*
996     Integral rotate the image.
997   */
998   status=MagickTrue;
999   progress=0;
1000   image_view=AcquireCacheView(image);
1001   rotate_view=AcquireCacheView(rotate_image);
1002   switch (rotations)
1003   {
1004     case 0:
1005     {
1006       /*
1007         Rotate 0 degrees.
1008       */
1009       break;
1010     }
1011     case 1:
1012     {
1013       size_t
1014         tile_height,
1015         tile_width;
1016
1017       ssize_t
1018         tile_y;
1019
1020       /*
1021         Rotate 90 degrees.
1022       */
1023       GetPixelCacheTileSize(image,&tile_width,&tile_height);
1024 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1025       #pragma omp parallel for schedule(static,1) shared(progress,status)
1026 #endif
1027       for (tile_y=0; tile_y < (ssize_t) image->rows; tile_y+=(ssize_t) tile_height)
1028       {
1029         register ssize_t
1030           tile_x;
1031
1032         if (status == MagickFalse)
1033           continue;
1034         tile_x=0;
1035         for ( ; tile_x < (ssize_t) image->columns; tile_x+=(ssize_t) tile_width)
1036         {
1037           MagickBooleanType
1038             sync;
1039
1040           register const Quantum
1041             *restrict p;
1042
1043           register Quantum
1044             *restrict q;
1045
1046           register ssize_t
1047             y;
1048
1049           size_t
1050             height,
1051             width;
1052
1053           width=tile_width;
1054           if ((tile_x+(ssize_t) tile_width) > (ssize_t) image->columns)
1055             width=(size_t) (tile_width-(tile_x+tile_width-image->columns));
1056           height=tile_height;
1057           if ((tile_y+(ssize_t) tile_height) > (ssize_t) image->rows)
1058             height=(size_t) (tile_height-(tile_y+tile_height-image->rows));
1059           p=GetCacheViewVirtualPixels(image_view,tile_x,tile_y,width,height,
1060             exception);
1061           if (p == (const Quantum *) NULL)
1062             {
1063               status=MagickFalse;
1064               break;
1065             }
1066           for (y=0; y < (ssize_t) width; y++)
1067           {
1068             register const Quantum
1069               *restrict tile_pixels;
1070
1071             register ssize_t
1072               x;
1073
1074             if (status == MagickFalse)
1075               continue;
1076             q=QueueCacheViewAuthenticPixels(rotate_view,(ssize_t)
1077               (rotate_image->columns-(tile_y+height)),y+tile_x,height,1,
1078               exception);
1079             if (q == (Quantum *) NULL)
1080               {
1081                 status=MagickFalse;
1082                 continue;
1083               }
1084             tile_pixels=p+((height-1)*width+y)*GetPixelChannels(image);
1085             for (x=0; x < (ssize_t) height; x++)
1086             {
1087               register ssize_t
1088                 i;
1089
1090               for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1091               {
1092                 PixelChannel
1093                   channel;
1094
1095                 PixelTrait
1096                   rotate_traits,
1097                   traits;
1098
1099                 channel=GetPixelChannelMapChannel(image,i);
1100                 traits=GetPixelChannelMapTraits(image,channel);
1101                 rotate_traits=GetPixelChannelMapTraits(rotate_image,channel);
1102                 if ((traits == UndefinedPixelTrait) ||
1103                     (rotate_traits == UndefinedPixelTrait))
1104                   continue;
1105                 SetPixelChannel(rotate_image,channel,tile_pixels[i],q);
1106               }
1107               tile_pixels-=width*GetPixelChannels(image);
1108               q+=GetPixelChannels(rotate_image);
1109             }
1110             sync=SyncCacheViewAuthenticPixels(rotate_view,exception);
1111             if (sync == MagickFalse)
1112               status=MagickFalse;
1113           }
1114         }
1115         if (image->progress_monitor != (MagickProgressMonitor) NULL)
1116           {
1117             MagickBooleanType
1118               proceed;
1119
1120 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1121             #pragma omp critical (MagickCore_IntegralRotateImage)
1122 #endif
1123             proceed=SetImageProgress(image,RotateImageTag,progress+=tile_height,
1124               image->rows);
1125             if (proceed == MagickFalse)
1126               status=MagickFalse;
1127           }
1128       }
1129       (void) SetImageProgress(image,RotateImageTag,(MagickOffsetType)
1130         image->rows-1,image->rows);
1131       Swap(page.width,page.height);
1132       Swap(page.x,page.y);
1133       if (page.width != 0)
1134         page.x=(ssize_t) (page.width-rotate_image->columns-page.x);
1135       break;
1136     }
1137     case 2:
1138     {
1139       /*
1140         Rotate 180 degrees.
1141       */
1142 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1143       #pragma omp parallel for schedule(static,1) shared(progress,status)
1144 #endif
1145       for (y=0; y < (ssize_t) image->rows; y++)
1146       {
1147         MagickBooleanType
1148           sync;
1149
1150         register const Quantum
1151           *restrict p;
1152
1153         register Quantum
1154           *restrict q;
1155
1156         register ssize_t
1157           x;
1158
1159         if (status == MagickFalse)
1160           continue;
1161         p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1162         q=QueueCacheViewAuthenticPixels(rotate_view,0,(ssize_t) (image->rows-y-
1163           1),image->columns,1,exception);
1164         if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
1165           {
1166             status=MagickFalse;
1167             continue;
1168           }
1169         q+=GetPixelChannels(rotate_image)*image->columns;
1170         for (x=0; x < (ssize_t) image->columns; x++)
1171         {
1172           register ssize_t
1173             i;
1174
1175           q-=GetPixelChannels(rotate_image);
1176           for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1177           {
1178             PixelChannel
1179               channel;
1180
1181             PixelTrait
1182               rotate_traits,
1183               traits;
1184
1185             channel=GetPixelChannelMapChannel(image,i);
1186             traits=GetPixelChannelMapTraits(image,channel);
1187             rotate_traits=GetPixelChannelMapTraits(rotate_image,channel);
1188             if ((traits == UndefinedPixelTrait) ||
1189                 (rotate_traits == UndefinedPixelTrait))
1190               continue;
1191             SetPixelChannel(rotate_image,channel,p[i],q);
1192           }
1193           p+=GetPixelChannels(image);
1194         }
1195         sync=SyncCacheViewAuthenticPixels(rotate_view,exception);
1196         if (sync == MagickFalse)
1197           status=MagickFalse;
1198         if (image->progress_monitor != (MagickProgressMonitor) NULL)
1199           {
1200             MagickBooleanType
1201               proceed;
1202
1203 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1204             #pragma omp critical (MagickCore_IntegralRotateImage)
1205 #endif
1206             proceed=SetImageProgress(image,RotateImageTag,progress++,
1207               image->rows);
1208             if (proceed == MagickFalse)
1209               status=MagickFalse;
1210           }
1211       }
1212       (void) SetImageProgress(image,RotateImageTag,(MagickOffsetType)
1213         image->rows-1,image->rows);
1214       Swap(page.width,page.height);
1215       Swap(page.x,page.y);
1216       if (page.width != 0)
1217         page.x=(ssize_t) (page.width-rotate_image->columns-page.x);
1218       break;
1219     }
1220     case 3:
1221     {
1222       size_t
1223         tile_height,
1224         tile_width;
1225
1226       ssize_t
1227         tile_y;
1228
1229       /*
1230         Rotate 270 degrees.
1231       */
1232       GetPixelCacheTileSize(image,&tile_width,&tile_height);
1233 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1234       #pragma omp parallel for schedule(static,1) shared(progress,status)
1235 #endif
1236       for (tile_y=0; tile_y < (ssize_t) image->rows; tile_y+=(ssize_t) tile_height)
1237       {
1238         register ssize_t
1239           tile_x;
1240
1241         if (status == MagickFalse)
1242           continue;
1243         tile_x=0;
1244         for ( ; tile_x < (ssize_t) image->columns; tile_x+=(ssize_t) tile_width)
1245         {
1246           MagickBooleanType
1247             sync;
1248
1249           register const Quantum
1250             *restrict p;
1251
1252           register Quantum
1253             *restrict q;
1254
1255           register ssize_t
1256             y;
1257
1258           size_t
1259             height,
1260             width;
1261
1262           width=tile_width;
1263           if ((tile_x+(ssize_t) tile_width) > (ssize_t) image->columns)
1264             width=(size_t) (tile_width-(tile_x+tile_width-image->columns));
1265           height=tile_height;
1266           if ((tile_y+(ssize_t) tile_height) > (ssize_t) image->rows)
1267             height=(size_t) (tile_height-(tile_y+tile_height-image->rows));
1268           p=GetCacheViewVirtualPixels(image_view,tile_x,tile_y,width,height,
1269             exception);
1270           if (p == (const Quantum *) NULL)
1271             {
1272               status=MagickFalse;
1273               break;
1274             }
1275           for (y=0; y < (ssize_t) width; y++)
1276           {
1277             register const Quantum
1278               *restrict tile_pixels;
1279
1280             register ssize_t
1281               x;
1282
1283             if (status == MagickFalse)
1284               continue;
1285             q=QueueCacheViewAuthenticPixels(rotate_view,tile_y,(ssize_t) (y+
1286               rotate_image->rows-(tile_x+width)),height,1,exception);
1287             if (q == (Quantum *) NULL)
1288               {
1289                 status=MagickFalse;
1290                 continue;
1291               }
1292             tile_pixels=p+((width-1)-y)*GetPixelChannels(image);
1293             for (x=0; x < (ssize_t) height; x++)
1294             {
1295               register ssize_t
1296                 i;
1297
1298               for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1299               {
1300                 PixelChannel
1301                   channel;
1302
1303                 PixelTrait
1304                   rotate_traits,
1305                   traits;
1306
1307                 channel=GetPixelChannelMapChannel(image,i);
1308                 traits=GetPixelChannelMapTraits(image,channel);
1309                 rotate_traits=GetPixelChannelMapTraits(rotate_image,channel);
1310                 if ((traits == UndefinedPixelTrait) ||
1311                     (rotate_traits == UndefinedPixelTrait))
1312                   continue;
1313                 SetPixelChannel(rotate_image,channel,tile_pixels[i],q);
1314               }
1315               tile_pixels+=width*GetPixelChannels(image);
1316               q+=GetPixelChannels(rotate_image);
1317             }
1318             sync=SyncCacheViewAuthenticPixels(rotate_view,exception);
1319             if (sync == MagickFalse)
1320               status=MagickFalse;
1321           }
1322         }
1323         if (image->progress_monitor != (MagickProgressMonitor) NULL)
1324           {
1325             MagickBooleanType
1326               proceed;
1327
1328 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1329             #pragma omp critical (MagickCore_IntegralRotateImage)
1330 #endif
1331             proceed=SetImageProgress(image,RotateImageTag,progress+=tile_height,
1332               image->rows);
1333             if (proceed == MagickFalse)
1334               status=MagickFalse;
1335           }
1336       }
1337       (void) SetImageProgress(image,RotateImageTag,(MagickOffsetType)
1338         image->rows-1,image->rows);
1339       Swap(page.width,page.height);
1340       Swap(page.x,page.y);
1341       if (page.width != 0)
1342         page.x=(ssize_t) (page.width-rotate_image->columns-page.x);
1343       break;
1344     }
1345   }
1346   rotate_view=DestroyCacheView(rotate_view);
1347   image_view=DestroyCacheView(image_view);
1348   rotate_image->type=image->type;
1349   rotate_image->page=page;
1350   if (status == MagickFalse)
1351     rotate_image=DestroyImage(rotate_image);
1352   return(rotate_image);
1353 }
1354 \f
1355 /*
1356 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1357 %                                                                             %
1358 %                                                                             %
1359 %                                                                             %
1360 +   X S h e a r I m a g e                                                     %
1361 %                                                                             %
1362 %                                                                             %
1363 %                                                                             %
1364 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1365 %
1366 %  XShearImage() shears the image in the X direction with a shear angle of
1367 %  'degrees'.  Positive angles shear counter-clockwise (right-hand rule), and
1368 %  negative angles shear clockwise.  Angles are measured relative to a vertical
1369 %  Y-axis.  X shears will widen an image creating 'empty' triangles on the left
1370 %  and right sides of the source image.
1371 %
1372 %  The format of the XShearImage method is:
1373 %
1374 %      MagickBooleanType XShearImage(Image *image,const MagickRealType degrees,
1375 %        const size_t width,const size_t height,
1376 %        const ssize_t x_offset,const ssize_t y_offset,ExceptionInfo *exception)
1377 %
1378 %  A description of each parameter follows.
1379 %
1380 %    o image: the image.
1381 %
1382 %    o degrees: A MagickRealType representing the shearing angle along the X
1383 %      axis.
1384 %
1385 %    o width, height, x_offset, y_offset: Defines a region of the image
1386 %      to shear.
1387 %
1388 %    o exception: return any errors or warnings in this structure.
1389 %
1390 */
1391 static MagickBooleanType XShearImage(Image *image,const MagickRealType degrees,
1392   const size_t width,const size_t height,const ssize_t x_offset,
1393   const ssize_t y_offset,ExceptionInfo *exception)
1394 {
1395 #define XShearImageTag  "XShear/Image"
1396
1397   typedef enum
1398   {
1399     LEFT,
1400     RIGHT
1401   } ShearDirection;
1402
1403   CacheView
1404     *image_view;
1405
1406   MagickBooleanType
1407     status;
1408
1409   MagickOffsetType
1410     progress;
1411
1412   PixelInfo
1413     background;
1414
1415   ssize_t
1416     y;
1417
1418   /*
1419     X shear image.
1420   */
1421   assert(image != (Image *) NULL);
1422   assert(image->signature == MagickSignature);
1423   if (image->debug != MagickFalse)
1424     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1425   status=MagickTrue;
1426   background=image->background_color;
1427   progress=0;
1428   image_view=AcquireCacheView(image);
1429 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1430   #pragma omp parallel for schedule(static,4) shared(progress,status)
1431 #endif
1432   for (y=0; y < (ssize_t) height; y++)
1433   {
1434     PixelInfo
1435       pixel,
1436       source,
1437       destination;
1438
1439     MagickRealType
1440       area,
1441       displacement;
1442
1443     register Quantum
1444       *restrict p,
1445       *restrict q;
1446
1447     register ssize_t
1448       i;
1449
1450     ShearDirection
1451       direction;
1452
1453     ssize_t
1454       step;
1455
1456     if (status == MagickFalse)
1457       continue;
1458     p=GetCacheViewAuthenticPixels(image_view,0,y_offset+y,image->columns,1,
1459       exception);
1460     if (p == (Quantum *) NULL)
1461       {
1462         status=MagickFalse;
1463         continue;
1464       }
1465     p+=x_offset*GetPixelChannels(image);
1466     displacement=degrees*(MagickRealType) (y-height/2.0);
1467     if (displacement == 0.0)
1468       continue;
1469     if (displacement > 0.0)
1470       direction=RIGHT;
1471     else
1472       {
1473         displacement*=(-1.0);
1474         direction=LEFT;
1475       }
1476     step=(ssize_t) floor((double) displacement);
1477     area=(MagickRealType) (displacement-step);
1478     step++;
1479     pixel=background;
1480     GetPixelInfo(image,&source);
1481     GetPixelInfo(image,&destination);
1482     switch (direction)
1483     {
1484       case LEFT:
1485       {
1486         /*
1487           Transfer pixels left-to-right.
1488         */
1489         if (step > x_offset)
1490           break;
1491         q=p-step*GetPixelChannels(image);
1492         for (i=0; i < (ssize_t) width; i++)
1493         {
1494           if ((x_offset+i) < step)
1495             {
1496               p+=GetPixelChannels(image);
1497               GetPixelInfoPixel(image,p,&pixel);
1498               q+=GetPixelChannels(image);
1499               continue;
1500             }
1501           GetPixelInfoPixel(image,p,&source);
1502           CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1503             &source,(MagickRealType) GetPixelAlpha(image,p),area,&destination);
1504           SetPixelInfoPixel(image,&destination,q);
1505           GetPixelInfoPixel(image,p,&pixel);
1506           p+=GetPixelChannels(image);
1507           q+=GetPixelChannels(image);
1508         }
1509         CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1510           &background,(MagickRealType) background.alpha,area,&destination);
1511         SetPixelInfoPixel(image,&destination,q);
1512         q+=GetPixelChannels(image);
1513         for (i=0; i < (step-1); i++)
1514         {
1515           SetPixelInfoPixel(image,&background,q);
1516           q+=GetPixelChannels(image);
1517         }
1518         break;
1519       }
1520       case RIGHT:
1521       {
1522         /*
1523           Transfer pixels right-to-left.
1524         */
1525         p+=width*GetPixelChannels(image);
1526         q=p+step*GetPixelChannels(image);
1527         for (i=0; i < (ssize_t) width; i++)
1528         {
1529           p-=GetPixelChannels(image);
1530           q-=GetPixelChannels(image);
1531           if ((size_t) (x_offset+width+step-i) >= image->columns)
1532             continue;
1533           GetPixelInfoPixel(image,p,&source);
1534           CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1535             &source,(MagickRealType) GetPixelAlpha(image,p),area,&destination);
1536           SetPixelInfoPixel(image,&destination,q);
1537           GetPixelInfoPixel(image,p,&pixel);
1538         }
1539         CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1540           &background,(MagickRealType) background.alpha,area,&destination);
1541         q-=GetPixelChannels(image);
1542         SetPixelInfoPixel(image,&destination,q);
1543         for (i=0; i < (step-1); i++)
1544         {
1545           q-=GetPixelChannels(image);
1546           SetPixelInfoPixel(image,&background,q);
1547         }
1548         break;
1549       }
1550     }
1551     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
1552       status=MagickFalse;
1553     if (image->progress_monitor != (MagickProgressMonitor) NULL)
1554       {
1555         MagickBooleanType
1556           proceed;
1557
1558 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1559         #pragma omp critical (MagickCore_XShearImage)
1560 #endif
1561         proceed=SetImageProgress(image,XShearImageTag,progress++,height);
1562         if (proceed == MagickFalse)
1563           status=MagickFalse;
1564       }
1565   }
1566   image_view=DestroyCacheView(image_view);
1567   return(status);
1568 }
1569 \f
1570 /*
1571 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1572 %                                                                             %
1573 %                                                                             %
1574 %                                                                             %
1575 +   Y S h e a r I m a g e                                                     %
1576 %                                                                             %
1577 %                                                                             %
1578 %                                                                             %
1579 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1580 %
1581 %  YShearImage shears the image in the Y direction with a shear angle of
1582 %  'degrees'.  Positive angles shear counter-clockwise (right-hand rule), and
1583 %  negative angles shear clockwise.  Angles are measured relative to a
1584 %  horizontal X-axis.  Y shears will increase the height of an image creating
1585 %  'empty' triangles on the top and bottom of the source image.
1586 %
1587 %  The format of the YShearImage method is:
1588 %
1589 %      MagickBooleanType YShearImage(Image *image,const MagickRealType degrees,
1590 %        const size_t width,const size_t height,
1591 %        const ssize_t x_offset,const ssize_t y_offset,ExceptionInfo *exception)
1592 %
1593 %  A description of each parameter follows.
1594 %
1595 %    o image: the image.
1596 %
1597 %    o degrees: A MagickRealType representing the shearing angle along the Y
1598 %      axis.
1599 %
1600 %    o width, height, x_offset, y_offset: Defines a region of the image
1601 %      to shear.
1602 %
1603 %    o exception: return any errors or warnings in this structure.
1604 %
1605 */
1606 static MagickBooleanType YShearImage(Image *image,const MagickRealType degrees,
1607   const size_t width,const size_t height,const ssize_t x_offset,
1608   const ssize_t y_offset,ExceptionInfo *exception)
1609 {
1610 #define YShearImageTag  "YShear/Image"
1611
1612   typedef enum
1613   {
1614     UP,
1615     DOWN
1616   } ShearDirection;
1617
1618   CacheView
1619     *image_view;
1620
1621   MagickBooleanType
1622     status;
1623
1624   MagickOffsetType
1625     progress;
1626
1627   PixelInfo
1628     background;
1629
1630   ssize_t
1631     x;
1632
1633   /*
1634     Y Shear image.
1635   */
1636   assert(image != (Image *) NULL);
1637   assert(image->signature == MagickSignature);
1638   if (image->debug != MagickFalse)
1639     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1640   status=MagickTrue;
1641   progress=0;
1642   background=image->background_color;
1643   image_view=AcquireCacheView(image);
1644 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1645   #pragma omp parallel for schedule(static,4) shared(progress,status)
1646 #endif
1647   for (x=0; x < (ssize_t) width; x++)
1648   {
1649     ssize_t
1650       step;
1651
1652     MagickRealType
1653       area,
1654       displacement;
1655
1656     PixelInfo
1657       pixel,
1658       source,
1659       destination;
1660
1661     register Quantum
1662       *restrict p,
1663       *restrict q;
1664
1665     register ssize_t
1666       i;
1667
1668     ShearDirection
1669       direction;
1670
1671     if (status == MagickFalse)
1672       continue;
1673     p=GetCacheViewAuthenticPixels(image_view,x_offset+x,0,1,image->rows,
1674       exception);
1675     if (p == (Quantum *) NULL)
1676       {
1677         status=MagickFalse;
1678         continue;
1679       }
1680     p+=y_offset*GetPixelChannels(image);
1681     displacement=degrees*(MagickRealType) (x-width/2.0);
1682     if (displacement == 0.0)
1683       continue;
1684     if (displacement > 0.0)
1685       direction=DOWN;
1686     else
1687       {
1688         displacement*=(-1.0);
1689         direction=UP;
1690       }
1691     step=(ssize_t) floor((double) displacement);
1692     area=(MagickRealType) (displacement-step);
1693     step++;
1694     pixel=background;
1695     GetPixelInfo(image,&source);
1696     GetPixelInfo(image,&destination);
1697     switch (direction)
1698     {
1699       case UP:
1700       {
1701         /*
1702           Transfer pixels top-to-bottom.
1703         */
1704         if (step > y_offset)
1705           break;
1706         q=p-step*GetPixelChannels(image);
1707         for (i=0; i < (ssize_t) height; i++)
1708         {
1709           if ((y_offset+i) < step)
1710             {
1711               p+=GetPixelChannels(image);
1712               GetPixelInfoPixel(image,p,&pixel);
1713               q+=GetPixelChannels(image);
1714               continue;
1715             }
1716           GetPixelInfoPixel(image,p,&source);
1717           CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1718             &source,(MagickRealType) GetPixelAlpha(image,p),area,
1719             &destination);
1720           SetPixelInfoPixel(image,&destination,q);
1721           GetPixelInfoPixel(image,p,&pixel);
1722           p+=GetPixelChannels(image);
1723           q+=GetPixelChannels(image);
1724         }
1725         CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1726           &background,(MagickRealType) background.alpha,area,&destination);
1727         SetPixelInfoPixel(image,&destination,q);
1728         q+=GetPixelChannels(image);
1729         for (i=0; i < (step-1); i++)
1730         {
1731           SetPixelInfoPixel(image,&background,q);
1732           q+=GetPixelChannels(image);
1733         }
1734         break;
1735       }
1736       case DOWN:
1737       {
1738         /*
1739           Transfer pixels bottom-to-top.
1740         */
1741         p+=height*GetPixelChannels(image);
1742         q=p+step*GetPixelChannels(image);
1743         for (i=0; i < (ssize_t) height; i++)
1744         {
1745           p-=GetPixelChannels(image);
1746           q-=GetPixelChannels(image);
1747           if ((size_t) (y_offset+height+step-i) >= image->rows)
1748             continue;
1749           GetPixelInfoPixel(image,p,&source);
1750           CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1751             &source,(MagickRealType) GetPixelAlpha(image,p),area,
1752             &destination);
1753           SetPixelInfoPixel(image,&destination,q);
1754           GetPixelInfoPixel(image,p,&pixel);
1755         }
1756         CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1757           &background,(MagickRealType) background.alpha,area,&destination);
1758         q-=GetPixelChannels(image);
1759         SetPixelInfoPixel(image,&destination,q);
1760         for (i=0; i < (step-1); i++)
1761         {
1762           q-=GetPixelChannels(image);
1763           SetPixelInfoPixel(image,&background,q);
1764         }
1765         break;
1766       }
1767     }
1768     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
1769       status=MagickFalse;
1770     if (image->progress_monitor != (MagickProgressMonitor) NULL)
1771       {
1772         MagickBooleanType
1773           proceed;
1774
1775 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1776         #pragma omp critical (MagickCore_YShearImage)
1777 #endif
1778         proceed=SetImageProgress(image,YShearImageTag,progress++,image->rows);
1779         if (proceed == MagickFalse)
1780           status=MagickFalse;
1781       }
1782   }
1783   image_view=DestroyCacheView(image_view);
1784   return(status);
1785 }
1786 \f
1787 /*
1788 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1789 %                                                                             %
1790 %                                                                             %
1791 %                                                                             %
1792 %   S h e a r I m a g e                                                       %
1793 %                                                                             %
1794 %                                                                             %
1795 %                                                                             %
1796 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1797 %
1798 %  ShearImage() creates a new image that is a shear_image copy of an existing
1799 %  one.  Shearing slides one edge of an image along the X or Y axis, creating
1800 %  a parallelogram.  An X direction shear slides an edge along the X axis,
1801 %  while a Y direction shear slides an edge along the Y axis.  The amount of
1802 %  the shear is controlled by a shear angle.  For X direction shears, x_shear
1803 %  is measured relative to the Y axis, and similarly, for Y direction shears
1804 %  y_shear is measured relative to the X axis.  Empty triangles left over from
1805 %  shearing the image are filled with the background color defined by member
1806 %  'background_color' of the image..  ShearImage() allocates the memory
1807 %  necessary for the new Image structure and returns a pointer to the new image.
1808 %
1809 %  ShearImage() is based on the paper "A Fast Algorithm for General Raster
1810 %  Rotatation" by Alan W. Paeth.
1811 %
1812 %  The format of the ShearImage method is:
1813 %
1814 %      Image *ShearImage(const Image *image,const double x_shear,
1815 %        const double y_shear,ExceptionInfo *exception)
1816 %
1817 %  A description of each parameter follows.
1818 %
1819 %    o image: the image.
1820 %
1821 %    o x_shear, y_shear: Specifies the number of degrees to shear the image.
1822 %
1823 %    o exception: return any errors or warnings in this structure.
1824 %
1825 */
1826 MagickExport Image *ShearImage(const Image *image,const double x_shear,
1827   const double y_shear,ExceptionInfo *exception)
1828 {
1829   Image
1830     *integral_image,
1831     *shear_image;
1832
1833   ssize_t
1834     x_offset,
1835     y_offset;
1836
1837   MagickBooleanType
1838     status;
1839
1840   PointInfo
1841     shear;
1842
1843   RectangleInfo
1844     border_info;
1845
1846   size_t
1847     y_width;
1848
1849   assert(image != (Image *) NULL);
1850   assert(image->signature == MagickSignature);
1851   if (image->debug != MagickFalse)
1852     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1853   assert(exception != (ExceptionInfo *) NULL);
1854   assert(exception->signature == MagickSignature);
1855   if ((x_shear != 0.0) && (fmod(x_shear,90.0) == 0.0))
1856     ThrowImageException(ImageError,"AngleIsDiscontinuous");
1857   if ((y_shear != 0.0) && (fmod(y_shear,90.0) == 0.0))
1858     ThrowImageException(ImageError,"AngleIsDiscontinuous");
1859   /*
1860     Initialize shear angle.
1861   */
1862   integral_image=CloneImage(image,0,0,MagickTrue,exception);
1863   if (integral_image == (Image *) NULL)
1864     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
1865   shear.x=(-tan(DegreesToRadians(fmod(x_shear,360.0))));
1866   shear.y=tan(DegreesToRadians(fmod(y_shear,360.0)));
1867   if ((shear.x == 0.0) && (shear.y == 0.0))
1868     return(integral_image);
1869   if (SetImageStorageClass(integral_image,DirectClass,exception) == MagickFalse)
1870     {
1871       integral_image=DestroyImage(integral_image);
1872       return(integral_image);
1873     }
1874   if (integral_image->matte == MagickFalse)
1875     (void) SetImageAlphaChannel(integral_image,OpaqueAlphaChannel,exception);
1876   /*
1877     Compute image size.
1878   */
1879   y_width=image->columns+(ssize_t) floor(fabs(shear.x)*image->rows+0.5);
1880   x_offset=(ssize_t) ceil((double) image->columns+((fabs(shear.x)*image->rows)-
1881     image->columns)/2.0-0.5);
1882   y_offset=(ssize_t) ceil((double) image->rows+((fabs(shear.y)*y_width)-
1883     image->rows)/2.0-0.5);
1884   /*
1885     Surround image with border.
1886   */
1887   integral_image->border_color=integral_image->background_color;
1888   integral_image->compose=CopyCompositeOp;
1889   border_info.width=(size_t) x_offset;
1890   border_info.height=(size_t) y_offset;
1891   shear_image=BorderImage(integral_image,&border_info,image->compose,exception);
1892   integral_image=DestroyImage(integral_image);
1893   if (shear_image == (Image *) NULL)
1894     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
1895   /*
1896     Shear the image.
1897   */
1898   if (shear_image->matte == MagickFalse)
1899     (void) SetImageAlphaChannel(shear_image,OpaqueAlphaChannel,exception);
1900   status=XShearImage(shear_image,shear.x,image->columns,image->rows,x_offset,
1901     (ssize_t) (shear_image->rows-image->rows)/2,exception);
1902   if (status == MagickFalse)
1903     {
1904       shear_image=DestroyImage(shear_image);
1905       return((Image *) NULL);
1906     }
1907   status=YShearImage(shear_image,shear.y,y_width,image->rows,(ssize_t)
1908     (shear_image->columns-y_width)/2,y_offset,exception);
1909   if (status == MagickFalse)
1910     {
1911       shear_image=DestroyImage(shear_image);
1912       return((Image *) NULL);
1913     }
1914   status=CropToFitImage(&shear_image,shear.x,shear.y,(MagickRealType)
1915     image->columns,(MagickRealType) image->rows,MagickFalse,exception);
1916   if (status == MagickFalse)
1917     {
1918       shear_image=DestroyImage(shear_image);
1919       return((Image *) NULL);
1920     }
1921   shear_image->compose=image->compose;
1922   shear_image->page.width=0;
1923   shear_image->page.height=0;
1924   return(shear_image);
1925 }
1926 \f
1927 /*
1928 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1929 %                                                                             %
1930 %                                                                             %
1931 %                                                                             %
1932 %   S h e a r R o t a t e I m a g e                                           %
1933 %                                                                             %
1934 %                                                                             %
1935 %                                                                             %
1936 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1937 %
1938 %  ShearRotateImage() creates a new image that is a rotated copy of an existing
1939 %  one.  Positive angles rotate counter-clockwise (right-hand rule), while
1940 %  negative angles rotate clockwise.  Rotated images are usually larger than
1941 %  the originals and have 'empty' triangular corners.  X axis.  Empty
1942 %  triangles left over from shearing the image are filled with the background
1943 %  color defined by member 'background_color' of the image.  ShearRotateImage
1944 %  allocates the memory necessary for the new Image structure and returns a
1945 %  pointer to the new image.
1946 %
1947 %  ShearRotateImage() is based on the paper "A Fast Algorithm for General
1948 %  Raster Rotatation" by Alan W. Paeth.  ShearRotateImage is adapted from a
1949 %  similar method based on the Paeth paper written by Michael Halle of the
1950 %  Spatial Imaging Group, MIT Media Lab.
1951 %
1952 %  The format of the ShearRotateImage method is:
1953 %
1954 %      Image *ShearRotateImage(const Image *image,const double degrees,
1955 %        ExceptionInfo *exception)
1956 %
1957 %  A description of each parameter follows.
1958 %
1959 %    o image: the image.
1960 %
1961 %    o degrees: Specifies the number of degrees to rotate the image.
1962 %
1963 %    o exception: return any errors or warnings in this structure.
1964 %
1965 */
1966 MagickExport Image *ShearRotateImage(const Image *image,const double degrees,
1967   ExceptionInfo *exception)
1968 {
1969   Image
1970     *integral_image,
1971     *rotate_image;
1972
1973   MagickBooleanType
1974     status;
1975
1976   MagickRealType
1977     angle;
1978
1979   PointInfo
1980     shear;
1981
1982   RectangleInfo
1983     border_info;
1984
1985   size_t
1986     height,
1987     rotations,
1988     width,
1989     y_width;
1990
1991   ssize_t
1992     x_offset,
1993     y_offset;
1994
1995   /*
1996     Adjust rotation angle.
1997   */
1998   assert(image != (Image *) NULL);
1999   assert(image->signature == MagickSignature);
2000   if (image->debug != MagickFalse)
2001     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2002   assert(exception != (ExceptionInfo *) NULL);
2003   assert(exception->signature == MagickSignature);
2004   angle=degrees;
2005   while (angle < -45.0)
2006     angle+=360.0;
2007   for (rotations=0; angle > 45.0; rotations++)
2008     angle-=90.0;
2009   rotations%=4;
2010   /*
2011     Calculate shear equations.
2012   */
2013   integral_image=IntegralRotateImage(image,rotations,exception);
2014   if (integral_image == (Image *) NULL)
2015     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
2016   shear.x=(-tan((double) DegreesToRadians(angle)/2.0));
2017   shear.y=sin((double) DegreesToRadians(angle));
2018   if ((shear.x == 0.0) && (shear.y == 0.0))
2019     return(integral_image);
2020   if (SetImageStorageClass(integral_image,DirectClass,exception) == MagickFalse)
2021     {
2022       integral_image=DestroyImage(integral_image);
2023       return(integral_image);
2024     }
2025   if (integral_image->matte == MagickFalse)
2026     (void) SetImageAlphaChannel(integral_image,OpaqueAlphaChannel,exception);
2027   /*
2028     Compute image size.
2029   */
2030   width=image->columns;
2031   height=image->rows;
2032   if ((rotations == 1) || (rotations == 3))
2033     {
2034       width=image->rows;
2035       height=image->columns;
2036     }
2037   y_width=width+(ssize_t) floor(fabs(shear.x)*height+0.5);
2038   x_offset=(ssize_t) ceil((double) width+((fabs(shear.y)*height)-width)/2.0-
2039     0.5);
2040   y_offset=(ssize_t) ceil((double) height+((fabs(shear.y)*y_width)-height)/2.0-
2041     0.5);
2042   /*
2043     Surround image with a border.
2044   */
2045   integral_image->border_color=integral_image->background_color;
2046   integral_image->compose=CopyCompositeOp;
2047   border_info.width=(size_t) x_offset;
2048   border_info.height=(size_t) y_offset;
2049   rotate_image=BorderImage(integral_image,&border_info,image->compose,
2050     exception);
2051   integral_image=DestroyImage(integral_image);
2052   if (rotate_image == (Image *) NULL)
2053     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
2054   /*
2055     Rotate the image.
2056   */
2057   status=XShearImage(rotate_image,shear.x,width,height,x_offset,(ssize_t)
2058     (rotate_image->rows-height)/2,exception);
2059   if (status == MagickFalse)
2060     {
2061       rotate_image=DestroyImage(rotate_image);
2062       return((Image *) NULL);
2063     }
2064   status=YShearImage(rotate_image,shear.y,y_width,height,(ssize_t)
2065     (rotate_image->columns-y_width)/2,y_offset,exception);
2066   if (status == MagickFalse)
2067     {
2068       rotate_image=DestroyImage(rotate_image);
2069       return((Image *) NULL);
2070     }
2071   status=XShearImage(rotate_image,shear.x,y_width,rotate_image->rows,(ssize_t)
2072     (rotate_image->columns-y_width)/2,0,exception);
2073   if (status == MagickFalse)
2074     {
2075       rotate_image=DestroyImage(rotate_image);
2076       return((Image *) NULL);
2077     }
2078   status=CropToFitImage(&rotate_image,shear.x,shear.y,(MagickRealType) width,
2079     (MagickRealType) height,MagickTrue,exception);
2080   if (status == MagickFalse)
2081     {
2082       rotate_image=DestroyImage(rotate_image);
2083       return((Image *) NULL);
2084     }
2085   rotate_image->compose=image->compose;
2086   rotate_image->page.width=0;
2087   rotate_image->page.height=0;
2088   return(rotate_image);
2089 }