]> granicus.if.org Git - imagemagick/blob - MagickCore/shear.c
(no commit message)
[imagemagick] / MagickCore / shear.c
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %                                                                             %
4 %                                                                             %
5 %                                                                             %
6 %                      SSSSS  H   H  EEEEE   AAA    RRRR                      %
7 %                      SS     H   H  E      A   A   R   R                     %
8 %                       SSS   HHHHH  EEE    AAAAA   RRRR                      %
9 %                         SS  H   H  E      A   A   R R                       %
10 %                      SSSSS  H   H  EEEEE  A   A   R  R                      %
11 %                                                                             %
12 %                                                                             %
13 %    MagickCore Methods to Shear or Rotate an Image by an Arbitrary Angle     %
14 %                                                                             %
15 %                               Software Design                               %
16 %                                 John Cristy                                 %
17 %                                  July 1992                                  %
18 %                                                                             %
19 %                                                                             %
20 %  Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization      %
21 %  dedicated to making software imaging solutions freely available.           %
22 %                                                                             %
23 %  You may not use this file except in compliance with the License.  You may  %
24 %  obtain a copy of the License at                                            %
25 %                                                                             %
26 %    http://www.imagemagick.org/script/license.php                            %
27 %                                                                             %
28 %  Unless required by applicable law or agreed to in writing, software        %
29 %  distributed under the License is distributed on an "AS IS" BASIS,          %
30 %  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
31 %  See the License for the specific language governing permissions and        %
32 %  limitations under the License.                                             %
33 %                                                                             %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %  The RotateImage, XShearImage, and YShearImage methods are based on the
37 %  paper "A Fast Algorithm for General Raster Rotatation" by Alan W. Paeth,
38 %  Graphics Interface '86 (Vancouver).  RotateImage is adapted from a similar
39 %  method based on the Paeth paper written by Michael Halle of the Spatial
40 %  Imaging Group, MIT Media Lab.
41 %
42 %
43 */
44 \f
45 /*
46   Include declarations.
47 */
48 #include "MagickCore/studio.h"
49 #include "MagickCore/artifact.h"
50 #include "MagickCore/attribute.h"
51 #include "MagickCore/blob-private.h"
52 #include "MagickCore/cache-private.h"
53 #include "MagickCore/color-private.h"
54 #include "MagickCore/colorspace-private.h"
55 #include "MagickCore/composite.h"
56 #include "MagickCore/composite-private.h"
57 #include "MagickCore/decorate.h"
58 #include "MagickCore/distort.h"
59 #include "MagickCore/draw.h"
60 #include "MagickCore/exception.h"
61 #include "MagickCore/exception-private.h"
62 #include "MagickCore/gem.h"
63 #include "MagickCore/geometry.h"
64 #include "MagickCore/image.h"
65 #include "MagickCore/image-private.h"
66 #include "MagickCore/memory_.h"
67 #include "MagickCore/list.h"
68 #include "MagickCore/monitor.h"
69 #include "MagickCore/monitor-private.h"
70 #include "MagickCore/pixel-accessor.h"
71 #include "MagickCore/quantum.h"
72 #include "MagickCore/resource_.h"
73 #include "MagickCore/shear.h"
74 #include "MagickCore/statistic.h"
75 #include "MagickCore/string_.h"
76 #include "MagickCore/string-private.h"
77 #include "MagickCore/thread-private.h"
78 #include "MagickCore/threshold.h"
79 #include "MagickCore/transform.h"
80 \f
81 /*
82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
83 %                                                                             %
84 %                                                                             %
85 %                                                                             %
86 %     A f f i n e T r a n s f o r m I m a g e                                 %
87 %                                                                             %
88 %                                                                             %
89 %                                                                             %
90 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
91 %
92 %  AffineTransformImage() transforms an image as dictated by the affine matrix.
93 %  It allocates the memory necessary for the new Image structure and returns
94 %  a pointer to the new image.
95 %
96 %  The format of the AffineTransformImage method is:
97 %
98 %      Image *AffineTransformImage(const Image *image,
99 %        AffineMatrix *affine_matrix,ExceptionInfo *exception)
100 %
101 %  A description of each parameter follows:
102 %
103 %    o image: the image.
104 %
105 %    o affine_matrix: the affine matrix.
106 %
107 %    o exception: return any errors or warnings in this structure.
108 %
109 */
110 MagickExport Image *AffineTransformImage(const Image *image,
111   const AffineMatrix *affine_matrix,ExceptionInfo *exception)
112 {
113   double
114     distort[6];
115
116   Image
117     *deskew_image;
118
119   /*
120     Affine transform image.
121   */
122   assert(image->signature == MagickSignature);
123   if (image->debug != MagickFalse)
124     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
125   assert(affine_matrix != (AffineMatrix *) NULL);
126   assert(exception != (ExceptionInfo *) NULL);
127   assert(exception->signature == MagickSignature);
128   distort[0]=affine_matrix->sx;
129   distort[1]=affine_matrix->rx;
130   distort[2]=affine_matrix->ry;
131   distort[3]=affine_matrix->sy;
132   distort[4]=affine_matrix->tx;
133   distort[5]=affine_matrix->ty;
134   deskew_image=DistortImage(image,AffineProjectionDistortion,6,distort,
135     MagickTrue,exception);
136   return(deskew_image);
137 }
138 \f
139 /*
140 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
141 %                                                                             %
142 %                                                                             %
143 %                                                                             %
144 +   C r o p T o F i t I m a g e                                               %
145 %                                                                             %
146 %                                                                             %
147 %                                                                             %
148 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
149 %
150 %  CropToFitImage() crops the sheared image as determined by the bounding box
151 %  as defined by width and height and shearing angles.
152 %
153 %  The format of the CropToFitImage method is:
154 %
155 %      MagickBooleanType CropToFitImage(Image **image,
156 %        const MagickRealType x_shear,const MagickRealType x_shear,
157 %        const MagickRealType width,const MagickRealType height,
158 %        const MagickBooleanType rotate,ExceptionInfo *exception)
159 %
160 %  A description of each parameter follows.
161 %
162 %    o image: the image.
163 %
164 %    o x_shear, y_shear, width, height: Defines a region of the image to crop.
165 %
166 %    o exception: return any errors or warnings in this structure.
167 %
168 */
169 static MagickBooleanType CropToFitImage(Image **image,
170   const MagickRealType x_shear,const MagickRealType y_shear,
171   const MagickRealType width,const MagickRealType height,
172   const MagickBooleanType rotate,ExceptionInfo *exception)
173 {
174   Image
175     *crop_image;
176
177   PointInfo
178     extent[4],
179     min,
180     max;
181
182   RectangleInfo
183     geometry,
184     page;
185
186   register ssize_t
187     i;
188
189   /*
190     Calculate the rotated image size.
191   */
192   extent[0].x=(double) (-width/2.0);
193   extent[0].y=(double) (-height/2.0);
194   extent[1].x=(double) width/2.0;
195   extent[1].y=(double) (-height/2.0);
196   extent[2].x=(double) (-width/2.0);
197   extent[2].y=(double) height/2.0;
198   extent[3].x=(double) width/2.0;
199   extent[3].y=(double) height/2.0;
200   for (i=0; i < 4; i++)
201   {
202     extent[i].x+=x_shear*extent[i].y;
203     extent[i].y+=y_shear*extent[i].x;
204     if (rotate != MagickFalse)
205       extent[i].x+=x_shear*extent[i].y;
206     extent[i].x+=(double) (*image)->columns/2.0;
207     extent[i].y+=(double) (*image)->rows/2.0;
208   }
209   min=extent[0];
210   max=extent[0];
211   for (i=1; i < 4; i++)
212   {
213     if (min.x > extent[i].x)
214       min.x=extent[i].x;
215     if (min.y > extent[i].y)
216       min.y=extent[i].y;
217     if (max.x < extent[i].x)
218       max.x=extent[i].x;
219     if (max.y < extent[i].y)
220       max.y=extent[i].y;
221   }
222   geometry.x=(ssize_t) ceil(min.x-0.5);
223   geometry.y=(ssize_t) ceil(min.y-0.5);
224   geometry.width=(size_t) floor(max.x-min.x+0.5);
225   geometry.height=(size_t) floor(max.y-min.y+0.5);
226   page=(*image)->page;
227   (void) ParseAbsoluteGeometry("0x0+0+0",&(*image)->page);
228   crop_image=CropImage(*image,&geometry,exception);
229   if (crop_image == (Image *) NULL)
230     return(MagickFalse);
231   crop_image->page=page;
232   *image=DestroyImage(*image);
233   *image=crop_image;
234   return(MagickTrue);
235 }
236 \f
237 /*
238 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
239 %                                                                             %
240 %                                                                             %
241 %                                                                             %
242 %     D e s k e w I m a g e                                                   %
243 %                                                                             %
244 %                                                                             %
245 %                                                                             %
246 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
247 %
248 %  DeskewImage() removes skew from the image.  Skew is an artifact that
249 %  occurs in scanned images because of the camera being misaligned,
250 %  imperfections in the scanning or surface, or simply because the paper was
251 %  not placed completely flat when scanned.
252 %
253 %  The format of the DeskewImage method is:
254 %
255 %      Image *DeskewImage(const Image *image,const double threshold,
256 %        ExceptionInfo *exception)
257 %
258 %  A description of each parameter follows:
259 %
260 %    o image: the image.
261 %
262 %    o threshold: separate background from foreground.
263 %
264 %    o exception: return any errors or warnings in this structure.
265 %
266 */
267
268 typedef struct _RadonInfo
269 {
270   CacheType
271     type;
272
273   size_t
274     width,
275     height;
276
277   MagickSizeType
278     length;
279
280   MagickBooleanType
281     mapped;
282
283   char
284     path[MaxTextExtent];
285
286   int
287     file;
288
289   unsigned short
290     *cells;
291 } RadonInfo;
292
293 static RadonInfo *DestroyRadonInfo(RadonInfo *radon_info)
294 {
295   assert(radon_info != (RadonInfo *) NULL);
296   switch (radon_info->type)
297   {
298     case MemoryCache:
299     {
300       if (radon_info->mapped == MagickFalse)
301         radon_info->cells=(unsigned short *) RelinquishMagickMemory(
302           radon_info->cells);
303       else
304         radon_info->cells=(unsigned short *) UnmapBlob(radon_info->cells,
305           (size_t) radon_info->length);
306       RelinquishMagickResource(MemoryResource,radon_info->length);
307       break;
308     }
309     case MapCache:
310     {
311       radon_info->cells=(unsigned short *) UnmapBlob(radon_info->cells,(size_t)
312         radon_info->length);
313       RelinquishMagickResource(MapResource,radon_info->length);
314     }
315     case DiskCache:
316     {
317       if (radon_info->file != -1)
318         (void) close(radon_info->file);
319       (void) RelinquishUniqueFileResource(radon_info->path);
320       RelinquishMagickResource(DiskResource,radon_info->length);
321       break;
322     }
323     default:
324       break;
325   }
326   return((RadonInfo *) RelinquishMagickMemory(radon_info));
327 }
328
329 static MagickBooleanType ResetRadonCells(RadonInfo *radon_info)
330 {
331   register ssize_t
332     x;
333
334   ssize_t
335     count,
336     y;
337
338   unsigned short
339     value;
340
341   if (radon_info->type != DiskCache)
342     {
343       (void) ResetMagickMemory(radon_info->cells,0,(size_t) radon_info->length);
344       return(MagickTrue);
345     }
346   value=0;
347   (void) lseek(radon_info->file,0,SEEK_SET);
348   for (y=0; y < (ssize_t) radon_info->height; y++)
349   {
350     for (x=0; x < (ssize_t) radon_info->width; x++)
351     {
352       count=write(radon_info->file,&value,sizeof(*radon_info->cells));
353       if (count != (ssize_t) sizeof(*radon_info->cells))
354         break;
355     }
356     if (x < (ssize_t) radon_info->width)
357       break;
358   }
359   return(y < (ssize_t) radon_info->height ? MagickFalse : MagickTrue);
360 }
361
362 static RadonInfo *AcquireRadonInfo(const Image *image,const size_t width,
363   const size_t height,ExceptionInfo *exception)
364 {
365   MagickBooleanType
366     status;
367
368   RadonInfo
369     *radon_info;
370
371   radon_info=(RadonInfo *) AcquireMagickMemory(sizeof(*radon_info));
372   if (radon_info == (RadonInfo *) NULL)
373     return((RadonInfo *) NULL);
374   (void) ResetMagickMemory(radon_info,0,sizeof(*radon_info));
375   radon_info->width=width;
376   radon_info->height=height;
377   radon_info->length=(MagickSizeType) width*height*sizeof(*radon_info->cells);
378   radon_info->type=MemoryCache;
379   status=AcquireMagickResource(AreaResource,radon_info->length);
380   if ((status != MagickFalse) &&
381       (radon_info->length == (MagickSizeType) ((size_t) radon_info->length)))
382     {
383       status=AcquireMagickResource(MemoryResource,radon_info->length);
384       if (status != MagickFalse)
385         {
386           radon_info->mapped=MagickFalse;
387           radon_info->cells=(unsigned short *) AcquireMagickMemory((size_t)
388             radon_info->length);
389           if (radon_info->cells == (unsigned short *) NULL)
390             {
391               radon_info->mapped=MagickTrue;
392               radon_info->cells=(unsigned short *) MapBlob(-1,IOMode,0,(size_t)
393                 radon_info->length);
394             }
395           if (radon_info->cells == (unsigned short *) NULL)
396             RelinquishMagickResource(MemoryResource,radon_info->length);
397         }
398     }
399   radon_info->file=(-1);
400   if (radon_info->cells == (unsigned short *) NULL)
401     {
402       status=AcquireMagickResource(DiskResource,radon_info->length);
403       if (status == MagickFalse)
404         {
405           (void) ThrowMagickException(exception,GetMagickModule(),CacheError,
406             "CacheResourcesExhausted","`%s'",image->filename);
407           return(DestroyRadonInfo(radon_info));
408         }
409       radon_info->type=DiskCache;
410       (void) AcquireMagickResource(MemoryResource,radon_info->length);
411       radon_info->file=AcquireUniqueFileResource(radon_info->path);
412       if (radon_info->file == -1)
413         return(DestroyRadonInfo(radon_info));
414       status=AcquireMagickResource(MapResource,radon_info->length);
415       if (status != MagickFalse)
416         {
417           status=ResetRadonCells(radon_info);
418           if (status != MagickFalse)
419             {
420               radon_info->cells=(unsigned short *) MapBlob(radon_info->file,
421                 IOMode,0,(size_t) radon_info->length);
422               if (radon_info->cells != (unsigned short *) NULL)
423                 radon_info->type=MapCache;
424               else
425                 RelinquishMagickResource(MapResource,radon_info->length);
426             }
427         }
428     }
429   return(radon_info);
430 }
431
432 static inline size_t MagickMin(const size_t x,const size_t y)
433 {
434   if (x < y)
435     return(x);
436   return(y);
437 }
438
439 static inline ssize_t ReadRadonCell(const RadonInfo *radon_info,
440   const MagickOffsetType offset,const size_t length,unsigned char *buffer)
441 {
442   register ssize_t
443     i;
444
445   ssize_t
446     count;
447
448 #if !defined(MAGICKCORE_HAVE_PPREAD)
449 #if defined(MAGICKCORE_OPENMP_SUPPORT)
450   #pragma omp critical (MagickCore_ReadRadonCell)
451 #endif
452   {
453     i=(-1);
454     if (lseek(radon_info->file,offset,SEEK_SET) >= 0)
455       {
456 #endif
457         count=0;
458         for (i=0; i < (ssize_t) length; i+=count)
459         {
460 #if !defined(MAGICKCORE_HAVE_PPREAD)
461           count=read(radon_info->file,buffer+i,MagickMin(length-i,(size_t)
462             SSIZE_MAX));
463 #else
464           count=pread(radon_info->file,buffer+i,MagickMin(length-i,(size_t)
465             SSIZE_MAX),offset+i);
466 #endif
467           if (count > 0)
468             continue;
469           count=0;
470           if (errno != EINTR)
471             {
472               i=(-1);
473               break;
474             }
475         }
476 #if !defined(MAGICKCORE_HAVE_PPREAD)
477       }
478   }
479 #endif
480   return(i);
481 }
482
483 static inline ssize_t WriteRadonCell(const RadonInfo *radon_info,
484   const MagickOffsetType offset,const size_t length,const unsigned char *buffer)
485 {
486   register ssize_t
487     i;
488
489   ssize_t
490     count;
491
492 #if !defined(MAGICKCORE_HAVE_PWRITE)
493 #if defined(MAGICKCORE_OPENMP_SUPPORT)
494   #pragma omp critical (MagickCore_WriteRadonCell)
495 #endif
496   {
497     if (lseek(radon_info->file,offset,SEEK_SET) >= 0)
498       {
499 #endif
500         count=0;
501         for (i=0; i < (ssize_t) length; i+=count)
502         {
503 #if !defined(MAGICKCORE_HAVE_PWRITE)
504           count=write(radon_info->file,buffer+i,MagickMin(length-i,(size_t)
505             SSIZE_MAX));
506 #else
507           count=pwrite(radon_info->file,buffer+i,MagickMin(length-i,(size_t)
508             SSIZE_MAX),offset+i);
509 #endif
510           if (count > 0)
511             continue;
512           count=0;
513           if (errno != EINTR)
514             {
515               i=(-1);
516               break;
517             }
518         }
519 #if !defined(MAGICKCORE_HAVE_PWRITE)
520       }
521   }
522 #endif
523   return(i);
524 }
525
526 static inline unsigned short GetRadonCell(const RadonInfo *radon_info,
527   const ssize_t x,const ssize_t y)
528 {
529   MagickOffsetType
530     i;
531
532   unsigned short
533     value;
534
535   i=(MagickOffsetType) radon_info->height*x+y;
536   if ((i < 0) ||
537       ((MagickSizeType) (i*sizeof(*radon_info->cells)) >= radon_info->length))
538     return(0);
539   if (radon_info->type != DiskCache)
540     return(radon_info->cells[i]);
541   value=0;
542   (void) ReadRadonCell(radon_info,i*sizeof(*radon_info->cells),
543     sizeof(*radon_info->cells),(unsigned char *) &value);
544   return(value);
545 }
546
547 static inline MagickBooleanType SetRadonCell(const RadonInfo *radon_info,
548   const ssize_t x,const ssize_t y,const unsigned short value)
549 {
550   MagickOffsetType
551     i;
552
553   ssize_t
554     count;
555
556   i=(MagickOffsetType) radon_info->height*x+y;
557   if ((i < 0) ||
558       ((MagickSizeType) (i*sizeof(*radon_info->cells)) >= radon_info->length))
559     return(MagickFalse);
560   if (radon_info->type != DiskCache)
561     {
562       radon_info->cells[i]=value;
563       return(MagickTrue);
564     }
565   count=WriteRadonCell(radon_info,i*sizeof(*radon_info->cells),
566     sizeof(*radon_info->cells),(const unsigned char *) &value);
567   if (count != (ssize_t) sizeof(*radon_info->cells))
568     return(MagickFalse);
569   return(MagickTrue);
570 }
571
572 static void RadonProjection(RadonInfo *source_cells,
573   RadonInfo *destination_cells,const ssize_t sign,size_t *projection)
574 {
575   RadonInfo
576     *swap;
577
578   register ssize_t
579     x;
580
581   register RadonInfo
582     *p,
583     *q;
584
585   size_t
586     step;
587
588   p=source_cells;
589   q=destination_cells;
590   for (step=1; step < p->width; step*=2)
591   {
592     for (x=0; x < (ssize_t) p->width; x+=2*(ssize_t) step)
593     {
594       register ssize_t
595         i;
596
597       ssize_t
598         y;
599
600       unsigned short
601         cell;
602
603       for (i=0; i < (ssize_t) step; i++)
604       {
605         for (y=0; y < (ssize_t) (p->height-i-1); y++)
606         {
607           cell=GetRadonCell(p,x+i,y);
608           (void) SetRadonCell(q,x+2*i,y,cell+GetRadonCell(p,x+i+(ssize_t)
609             step,y+i));
610           (void) SetRadonCell(q,x+2*i+1,y,cell+GetRadonCell(p,x+i+(ssize_t)
611             step,y+i+1));
612         }
613         for ( ; y < (ssize_t) (p->height-i); y++)
614         {
615           cell=GetRadonCell(p,x+i,y);
616           (void) SetRadonCell(q,x+2*i,y,cell+GetRadonCell(p,x+i+(ssize_t) step,
617             y+i));
618           (void) SetRadonCell(q,x+2*i+1,y,cell);
619         }
620         for ( ; y < (ssize_t) p->height; y++)
621         {
622           cell=GetRadonCell(p,x+i,y);
623           (void) SetRadonCell(q,x+2*i,y,cell);
624           (void) SetRadonCell(q,x+2*i+1,y,cell);
625         }
626       }
627     }
628     swap=p;
629     p=q;
630     q=swap;
631   }
632 #if defined(MAGICKCORE_OPENMP_SUPPORT)
633   #pragma omp parallel for schedule(dynamic,4)
634 #endif
635   for (x=0; x < (ssize_t) p->width; x++)
636   {
637     register ssize_t
638       y;
639
640     size_t
641       sum;
642
643     sum=0;
644     for (y=0; y < (ssize_t) (p->height-1); y++)
645     {
646       ssize_t
647         delta;
648
649       delta=GetRadonCell(p,x,y)-(ssize_t) GetRadonCell(p,x,y+1);
650       sum+=delta*delta;
651     }
652     projection[p->width+sign*x-1]=sum;
653   }
654 }
655
656 static MagickBooleanType RadonTransform(const Image *image,
657   const double threshold,size_t *projection,ExceptionInfo *exception)
658 {
659   CacheView
660     *image_view;
661
662   MagickBooleanType
663     status;
664
665   RadonInfo
666     *destination_cells,
667     *source_cells;
668
669   register ssize_t
670     i;
671
672   size_t
673     count,
674     width;
675
676   ssize_t
677     y;
678
679   unsigned char
680     byte;
681
682   unsigned short
683     bits[256];
684
685   for (width=1; width < ((image->columns+7)/8); width<<=1) ;
686   source_cells=AcquireRadonInfo(image,width,image->rows,exception);
687   destination_cells=AcquireRadonInfo(image,width,image->rows,exception);
688   if ((source_cells == (RadonInfo *) NULL) ||
689       (destination_cells == (RadonInfo *) NULL))
690     {
691       if (destination_cells != (RadonInfo *) NULL)
692         destination_cells=DestroyRadonInfo(destination_cells);
693       if (source_cells != (RadonInfo *) NULL)
694         source_cells=DestroyRadonInfo(source_cells);
695       return(MagickFalse);
696     }
697   if (ResetRadonCells(source_cells) == MagickFalse)
698     {
699       destination_cells=DestroyRadonInfo(destination_cells);
700       source_cells=DestroyRadonInfo(source_cells);
701       return(MagickFalse);
702     }
703   for (i=0; i < 256; i++)
704   {
705     byte=(unsigned char) i;
706     for (count=0; byte != 0; byte>>=1)
707       count+=byte & 0x01;
708     bits[i]=(unsigned short) count;
709   }
710   status=MagickTrue;
711   image_view=AcquireCacheView(image);
712 #if defined(MAGICKCORE_OPENMP_SUPPORT)
713   #pragma omp parallel for schedule(dynamic,4) shared(status)
714 #endif
715   for (y=0; y < (ssize_t) image->rows; y++)
716   {
717     register const Quantum
718       *restrict p;
719
720     register ssize_t
721       i,
722       x;
723
724     size_t
725       bit,
726       byte;
727
728     if (status == MagickFalse)
729       continue;
730     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
731     if (p == (const Quantum *) NULL)
732       {
733         status=MagickFalse;
734         continue;
735       }
736     bit=0;
737     byte=0;
738     i=(ssize_t) (image->columns+7)/8;
739     for (x=0; x < (ssize_t) image->columns; x++)
740     {
741       byte<<=1;
742       if ((double) GetPixelIntensity(image,p) < threshold)
743         byte|=0x01;
744       bit++;
745       if (bit == 8)
746         {
747           (void) SetRadonCell(source_cells,--i,y,bits[byte]);
748           bit=0;
749           byte=0;
750         }
751       p+=GetPixelChannels(image);
752     }
753     if (bit != 0)
754       {
755         byte<<=(8-bit);
756         (void) SetRadonCell(source_cells,--i,y,bits[byte]);
757       }
758   }
759   RadonProjection(source_cells,destination_cells,-1,projection);
760   (void) ResetRadonCells(source_cells);
761 #if defined(MAGICKCORE_OPENMP_SUPPORT)
762   #pragma omp parallel for schedule(dynamic,4) shared(status)
763 #endif
764   for (y=0; y < (ssize_t) image->rows; y++)
765   {
766     register const Quantum
767       *restrict p;
768
769     register ssize_t
770       i,
771       x;
772
773     size_t
774       bit,
775       byte;
776
777     if (status == MagickFalse)
778       continue;
779     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
780     if (p == (const Quantum *) NULL)
781       {
782         status=MagickFalse;
783         continue;
784       }
785     bit=0;
786     byte=0;
787     i=0;
788     for (x=0; x < (ssize_t) image->columns; x++)
789     {
790       byte<<=1;
791       if ((double) GetPixelIntensity(image,p) < threshold)
792         byte|=0x01;
793       bit++;
794       if (bit == 8)
795         {
796           (void) SetRadonCell(source_cells,i++,y,bits[byte]);
797           bit=0;
798           byte=0;
799         }
800       p+=GetPixelChannels(image);
801     }
802     if (bit != 0)
803       {
804         byte<<=(8-bit);
805         (void) SetRadonCell(source_cells,i++,y,bits[byte]);
806       }
807   }
808   RadonProjection(source_cells,destination_cells,1,projection);
809   image_view=DestroyCacheView(image_view);
810   destination_cells=DestroyRadonInfo(destination_cells);
811   source_cells=DestroyRadonInfo(source_cells);
812   return(MagickTrue);
813 }
814
815 static void GetImageBackgroundColor(Image *image,const ssize_t offset,
816   ExceptionInfo *exception)
817 {
818   CacheView
819     *image_view;
820
821   PixelInfo
822     background;
823
824   MagickRealType
825     count;
826
827   ssize_t
828     y;
829
830   /*
831     Compute average background color.
832   */
833   if (offset <= 0)
834     return;
835   GetPixelInfo(image,&background);
836   count=0.0;
837   image_view=AcquireCacheView(image);
838   for (y=0; y < (ssize_t) image->rows; y++)
839   {
840     register const Quantum
841       *restrict p;
842
843     register ssize_t
844       x;
845
846     if ((y >= offset) && (y < ((ssize_t) image->rows-offset)))
847       continue;
848     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
849     if (p == (const Quantum *) NULL)
850       continue;
851     for (x=0; x < (ssize_t) image->columns; x++)
852     {
853       if ((x >= offset) && (x < ((ssize_t) image->columns-offset)))
854         continue;
855       background.red+=QuantumScale*GetPixelRed(image,p);
856       background.green+=QuantumScale*GetPixelGreen(image,p);
857       background.blue+=QuantumScale*GetPixelBlue(image,p);
858       if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0)
859         background.alpha+=QuantumScale*GetPixelAlpha(image,p);
860       count++;
861       p+=GetPixelChannels(image);
862     }
863   }
864   image_view=DestroyCacheView(image_view);
865   image->background_color.red=(double) ClampToQuantum((MagickRealType)
866     QuantumRange*background.red/count);
867   image->background_color.green=(double) ClampToQuantum((MagickRealType)
868     QuantumRange*background.green/count);
869   image->background_color.blue=(double) ClampToQuantum((MagickRealType)
870     QuantumRange*background.blue/count);
871   if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0)
872     image->background_color.alpha=(double) ClampToQuantum((MagickRealType)
873       QuantumRange*background.alpha/count);
874 }
875
876 MagickExport Image *DeskewImage(const Image *image,const double threshold,
877   ExceptionInfo *exception)
878 {
879   AffineMatrix
880     affine_matrix;
881
882   const char
883     *artifact;
884
885   double
886     degrees;
887
888   Image
889     *clone_image,
890     *crop_image,
891     *deskew_image,
892     *median_image;
893
894   MagickBooleanType
895     status;
896
897   RectangleInfo
898     geometry;
899
900   register ssize_t
901     i;
902
903   size_t
904     max_projection,
905     *projection,
906     width;
907
908   ssize_t
909     skew;
910
911   /*
912     Compute deskew angle.
913   */
914   for (width=1; width < ((image->columns+7)/8); width<<=1) ;
915   projection=(size_t *) AcquireQuantumMemory((size_t) (2*width-1),
916     sizeof(*projection));
917   if (projection == (size_t *) NULL)
918     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
919   status=RadonTransform(image,threshold,projection,exception);
920   if (status == MagickFalse)
921     {
922       projection=(size_t *) RelinquishMagickMemory(projection);
923       ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
924     }
925   max_projection=0;
926   skew=0;
927   for (i=0; i < (ssize_t) (2*width-1); i++)
928   {
929     if (projection[i] > max_projection)
930       {
931         skew=i-(ssize_t) width+1;
932         max_projection=projection[i];
933       }
934   }
935   projection=(size_t *) RelinquishMagickMemory(projection);
936   /*
937     Deskew image.
938   */
939   clone_image=CloneImage(image,0,0,MagickTrue,exception);
940   if (clone_image == (Image *) NULL)
941     return((Image *) NULL);
942   (void) SetImageVirtualPixelMethod(clone_image,BackgroundVirtualPixelMethod);
943   degrees=RadiansToDegrees(-atan((double) skew/width/8));
944   if (image->debug != MagickFalse)
945     (void) LogMagickEvent(TransformEvent,GetMagickModule(),
946       "  Deskew angle: %g",degrees);
947   affine_matrix.sx=cos(DegreesToRadians(fmod((double) degrees,360.0)));
948   affine_matrix.rx=sin(DegreesToRadians(fmod((double) degrees,360.0)));
949   affine_matrix.ry=(-sin(DegreesToRadians(fmod((double) degrees,360.0))));
950   affine_matrix.sy=cos(DegreesToRadians(fmod((double) degrees,360.0)));
951   affine_matrix.tx=0.0;
952   affine_matrix.ty=0.0;
953   artifact=GetImageArtifact(image,"deskew:auto-crop");
954   if (artifact == (const char *) NULL)
955     {
956       deskew_image=AffineTransformImage(clone_image,&affine_matrix,exception);
957       clone_image=DestroyImage(clone_image);
958       return(deskew_image);
959     }
960   /*
961     Auto-crop image.
962   */
963   GetImageBackgroundColor(clone_image,(ssize_t) StringToLong(artifact),
964     exception);
965   deskew_image=AffineTransformImage(clone_image,&affine_matrix,exception);
966   clone_image=DestroyImage(clone_image);
967   if (deskew_image == (Image *) NULL)
968     return((Image *) NULL);
969   median_image=StatisticImage(deskew_image,MedianStatistic,3,3,exception);
970   if (median_image == (Image *) NULL)
971     {
972       deskew_image=DestroyImage(deskew_image);
973       return((Image *) NULL);
974     }
975   geometry=GetImageBoundingBox(median_image,exception);
976   median_image=DestroyImage(median_image);
977   if (image->debug != MagickFalse)
978     (void) LogMagickEvent(TransformEvent,GetMagickModule(),"  Deskew geometry: "
979       "%.20gx%.20g%+.20g%+.20g",(double) geometry.width,(double)
980       geometry.height,(double) geometry.x,(double) geometry.y);
981   crop_image=CropImage(deskew_image,&geometry,exception);
982   deskew_image=DestroyImage(deskew_image);
983   return(crop_image);
984 }
985 \f
986 /*
987 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
988 %                                                                             %
989 %                                                                             %
990 %                                                                             %
991 +   I n t e g r a l R o t a t e I m a g e                                     %
992 %                                                                             %
993 %                                                                             %
994 %                                                                             %
995 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
996 %
997 %  IntegralRotateImage() rotates the image an integral of 90 degrees.  It
998 %  allocates the memory necessary for the new Image structure and returns a
999 %  pointer to the rotated image.
1000 %
1001 %  The format of the IntegralRotateImage method is:
1002 %
1003 %      Image *IntegralRotateImage(const Image *image,size_t rotations,
1004 %        ExceptionInfo *exception)
1005 %
1006 %  A description of each parameter follows.
1007 %
1008 %    o image: the image.
1009 %
1010 %    o rotations: Specifies the number of 90 degree rotations.
1011 %
1012 */
1013 static Image *IntegralRotateImage(const Image *image,size_t rotations,
1014   ExceptionInfo *exception)
1015 {
1016 #define RotateImageTag  "Rotate/Image"
1017
1018   CacheView
1019     *image_view,
1020     *rotate_view;
1021
1022   Image
1023     *rotate_image;
1024
1025   MagickBooleanType
1026     status;
1027
1028   MagickOffsetType
1029     progress;
1030
1031   RectangleInfo
1032     page;
1033
1034   ssize_t
1035     y;
1036
1037   /*
1038     Initialize rotated image attributes.
1039   */
1040   assert(image != (Image *) NULL);
1041   page=image->page;
1042   rotations%=4;
1043   if (rotations == 0)
1044     return(CloneImage(image,0,0,MagickTrue,exception));
1045   if ((rotations == 1) || (rotations == 3))
1046     rotate_image=CloneImage(image,image->rows,image->columns,MagickTrue,
1047       exception);
1048   else
1049     rotate_image=CloneImage(image,image->columns,image->rows,MagickTrue,
1050       exception);
1051   if (rotate_image == (Image *) NULL)
1052     return((Image *) NULL);
1053   /*
1054     Integral rotate the image.
1055   */
1056   status=MagickTrue;
1057   progress=0;
1058   image_view=AcquireCacheView(image);
1059   rotate_view=AcquireCacheView(rotate_image);
1060   switch (rotations)
1061   {
1062     case 0:
1063     {
1064       /*
1065         Rotate 0 degrees.
1066       */
1067       break;
1068     }
1069     case 1:
1070     {
1071       size_t
1072         tile_height,
1073         tile_width;
1074
1075       ssize_t
1076         tile_y;
1077
1078       /*
1079         Rotate 90 degrees.
1080       */
1081       GetPixelCacheTileSize(image,&tile_width,&tile_height);
1082       tile_width=image->columns;
1083 #if defined(MAGICKCORE_OPENMP_SUPPORT) 
1084       #pragma omp parallel for schedule(dynamic,4) shared(progress, status)
1085 #endif
1086       for (tile_y=0; tile_y < (ssize_t) image->rows; tile_y+=(ssize_t) tile_height)
1087       {
1088         register ssize_t
1089           tile_x;
1090
1091         if (status == MagickFalse)
1092           continue;
1093         tile_x=0;
1094         for ( ; tile_x < (ssize_t) image->columns; tile_x+=(ssize_t) tile_width)
1095         {
1096           MagickBooleanType
1097             sync;
1098
1099           register const Quantum
1100             *restrict p;
1101
1102           register Quantum
1103             *restrict q;
1104
1105           register ssize_t
1106             y;
1107
1108           size_t
1109             height,
1110             width;
1111
1112           width=tile_width;
1113           if ((tile_x+(ssize_t) tile_width) > (ssize_t) image->columns)
1114             width=(size_t) (tile_width-(tile_x+tile_width-image->columns));
1115           height=tile_height;
1116           if ((tile_y+(ssize_t) tile_height) > (ssize_t) image->rows)
1117             height=(size_t) (tile_height-(tile_y+tile_height-image->rows));
1118           p=GetCacheViewVirtualPixels(image_view,tile_x,tile_y,width,height,
1119             exception);
1120           if (p == (const Quantum *) NULL)
1121             {
1122               status=MagickFalse;
1123               break;
1124             }
1125           for (y=0; y < (ssize_t) width; y++)
1126           {
1127             register const Quantum
1128               *restrict tile_pixels;
1129
1130             register ssize_t
1131               x;
1132
1133             if (status == MagickFalse)
1134               continue;
1135             q=QueueCacheViewAuthenticPixels(rotate_view,(ssize_t)
1136               (rotate_image->columns-(tile_y+height)),y+tile_x,height,1,
1137               exception);
1138             if (q == (Quantum *) NULL)
1139               {
1140                 status=MagickFalse;
1141                 continue;
1142               }
1143             tile_pixels=p+((height-1)*width+y)*GetPixelChannels(image);
1144             for (x=0; x < (ssize_t) height; x++)
1145             {
1146               register ssize_t
1147                 i;
1148
1149               for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1150               {
1151                 PixelChannel
1152                   channel;
1153
1154                 PixelTrait
1155                   rotate_traits,
1156                   traits;
1157
1158                 traits=GetPixelChannelMapTraits(image,(PixelChannel) i);
1159                 channel=GetPixelChannelMapChannel(image,(PixelChannel) i);
1160                 rotate_traits=GetPixelChannelMapTraits(rotate_image,channel);
1161                 if ((traits == UndefinedPixelTrait) ||
1162                     (rotate_traits == UndefinedPixelTrait))
1163                   continue;
1164                 SetPixelChannel(rotate_image,channel,tile_pixels[i],q);
1165               }
1166               tile_pixels-=width*GetPixelChannels(image);
1167               q+=GetPixelChannels(rotate_image);
1168             }
1169             sync=SyncCacheViewAuthenticPixels(rotate_view,exception);
1170             if (sync == MagickFalse)
1171               status=MagickFalse;
1172           }
1173         }
1174         if (image->progress_monitor != (MagickProgressMonitor) NULL)
1175           {
1176             MagickBooleanType
1177               proceed;
1178
1179 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1180             #pragma omp critical (MagickCore_IntegralRotateImage)
1181 #endif
1182             proceed=SetImageProgress(image,RotateImageTag,progress+=tile_height,
1183               image->rows);
1184             if (proceed == MagickFalse)
1185               status=MagickFalse;
1186           }
1187       }
1188       (void) SetImageProgress(image,RotateImageTag,(MagickOffsetType)
1189         image->rows-1,image->rows);
1190       Swap(page.width,page.height);
1191       Swap(page.x,page.y);
1192       if (page.width != 0)
1193         page.x=(ssize_t) (page.width-rotate_image->columns-page.x);
1194       break;
1195     }
1196     case 2:
1197     {
1198       /*
1199         Rotate 180 degrees.
1200       */
1201 #if defined(MAGICKCORE_OPENMP_SUPPORT) 
1202       #pragma omp parallel for schedule(dynamic,4) shared(progress,status) omp_throttle(1)
1203 #endif
1204       for (y=0; y < (ssize_t) image->rows; y++)
1205       {
1206         MagickBooleanType
1207           sync;
1208
1209         register const Quantum
1210           *restrict p;
1211
1212         register Quantum
1213           *restrict q;
1214
1215         register ssize_t
1216           x;
1217
1218         if (status == MagickFalse)
1219           continue;
1220         p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1221         q=QueueCacheViewAuthenticPixels(rotate_view,0,(ssize_t) (image->rows-y-
1222           1),image->columns,1,exception);
1223         if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
1224           {
1225             status=MagickFalse;
1226             continue;
1227           }
1228         q+=GetPixelChannels(rotate_image)*image->columns;
1229         for (x=0; x < (ssize_t) image->columns; x++)
1230         {
1231           register ssize_t
1232             i;
1233
1234           q-=GetPixelChannels(rotate_image);
1235           for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1236           {
1237             PixelChannel
1238               channel;
1239
1240             PixelTrait
1241               rotate_traits,
1242               traits;
1243
1244             traits=GetPixelChannelMapTraits(image,(PixelChannel) i);
1245             channel=GetPixelChannelMapChannel(image,(PixelChannel) i);
1246             rotate_traits=GetPixelChannelMapTraits(rotate_image,channel);
1247             if ((traits == UndefinedPixelTrait) ||
1248                 (rotate_traits == UndefinedPixelTrait))
1249               continue;
1250             SetPixelChannel(rotate_image,channel,p[i],q);
1251           }
1252           p+=GetPixelChannels(image);
1253         }
1254         sync=SyncCacheViewAuthenticPixels(rotate_view,exception);
1255         if (sync == MagickFalse)
1256           status=MagickFalse;
1257         if (image->progress_monitor != (MagickProgressMonitor) NULL)
1258           {
1259             MagickBooleanType
1260               proceed;
1261
1262 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1263             #pragma omp critical (MagickCore_IntegralRotateImage)
1264 #endif
1265             proceed=SetImageProgress(image,RotateImageTag,progress++,
1266               image->rows);
1267             if (proceed == MagickFalse)
1268               status=MagickFalse;
1269           }
1270       }
1271       (void) SetImageProgress(image,RotateImageTag,(MagickOffsetType)
1272         image->rows-1,image->rows);
1273       Swap(page.width,page.height);
1274       Swap(page.x,page.y);
1275       if (page.width != 0)
1276         page.x=(ssize_t) (page.width-rotate_image->columns-page.x);
1277       break;
1278     }
1279     case 3:
1280     {
1281       size_t
1282         tile_height,
1283         tile_width;
1284
1285       ssize_t
1286         tile_y;
1287
1288       /*
1289         Rotate 270 degrees.
1290       */
1291       GetPixelCacheTileSize(image,&tile_width,&tile_height);
1292       tile_width=image->columns;
1293 #if defined(MAGICKCORE_OPENMP_SUPPORT) 
1294       #pragma omp parallel for schedule(dynamic,4) shared(progress,status)
1295 #endif
1296       for (tile_y=0; tile_y < (ssize_t) image->rows; tile_y+=(ssize_t) tile_height)
1297       {
1298         register ssize_t
1299           tile_x;
1300
1301         if (status == MagickFalse)
1302           continue;
1303         tile_x=0;
1304         for ( ; tile_x < (ssize_t) image->columns; tile_x+=(ssize_t) tile_width)
1305         {
1306           MagickBooleanType
1307             sync;
1308
1309           register const Quantum
1310             *restrict p;
1311
1312           register Quantum
1313             *restrict q;
1314
1315           register ssize_t
1316             y;
1317
1318           size_t
1319             height,
1320             width;
1321
1322           width=tile_width;
1323           if ((tile_x+(ssize_t) tile_width) > (ssize_t) image->columns)
1324             width=(size_t) (tile_width-(tile_x+tile_width-image->columns));
1325           height=tile_height;
1326           if ((tile_y+(ssize_t) tile_height) > (ssize_t) image->rows)
1327             height=(size_t) (tile_height-(tile_y+tile_height-image->rows));
1328           p=GetCacheViewVirtualPixels(image_view,tile_x,tile_y,width,height,
1329             exception);
1330           if (p == (const Quantum *) NULL)
1331             {
1332               status=MagickFalse;
1333               break;
1334             }
1335           for (y=0; y < (ssize_t) width; y++)
1336           {
1337             register const Quantum
1338               *restrict tile_pixels;
1339
1340             register ssize_t
1341               x;
1342
1343             if (status == MagickFalse)
1344               continue;
1345             q=QueueCacheViewAuthenticPixels(rotate_view,tile_y,(ssize_t) (y+
1346               rotate_image->rows-(tile_x+width)),height,1,exception);
1347             if (q == (Quantum *) NULL)
1348               {
1349                 status=MagickFalse;
1350                 continue;
1351               }
1352             tile_pixels=p+((width-1)-y)*GetPixelChannels(image);
1353             for (x=0; x < (ssize_t) height; x++)
1354             {
1355               register ssize_t
1356                 i;
1357
1358               for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1359               {
1360                 PixelChannel
1361                   channel;
1362
1363                 PixelTrait
1364                   rotate_traits,
1365                   traits;
1366
1367                 traits=GetPixelChannelMapTraits(image,(PixelChannel) i);
1368                 channel=GetPixelChannelMapChannel(image,(PixelChannel) i);
1369                 rotate_traits=GetPixelChannelMapTraits(rotate_image,channel);
1370                 if ((traits == UndefinedPixelTrait) ||
1371                     (rotate_traits == UndefinedPixelTrait))
1372                   continue;
1373                 SetPixelChannel(rotate_image,channel,tile_pixels[i],q);
1374               }
1375               tile_pixels+=width*GetPixelChannels(image);
1376               q+=GetPixelChannels(rotate_image);
1377             }
1378             sync=SyncCacheViewAuthenticPixels(rotate_view,exception);
1379             if (sync == MagickFalse)
1380               status=MagickFalse;
1381           }
1382         }
1383         if (image->progress_monitor != (MagickProgressMonitor) NULL)
1384           {
1385             MagickBooleanType
1386               proceed;
1387
1388 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1389             #pragma omp critical (MagickCore_IntegralRotateImage)
1390 #endif
1391             proceed=SetImageProgress(image,RotateImageTag,progress+=tile_height,
1392               image->rows);
1393             if (proceed == MagickFalse)
1394               status=MagickFalse;
1395           }
1396       }
1397       (void) SetImageProgress(image,RotateImageTag,(MagickOffsetType)
1398         image->rows-1,image->rows);
1399       Swap(page.width,page.height);
1400       Swap(page.x,page.y);
1401       if (page.width != 0)
1402         page.x=(ssize_t) (page.width-rotate_image->columns-page.x);
1403       break;
1404     }
1405   }
1406   rotate_view=DestroyCacheView(rotate_view);
1407   image_view=DestroyCacheView(image_view);
1408   rotate_image->type=image->type;
1409   rotate_image->page=page;
1410   if (status == MagickFalse)
1411     rotate_image=DestroyImage(rotate_image);
1412   return(rotate_image);
1413 }
1414 \f
1415 /*
1416 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1417 %                                                                             %
1418 %                                                                             %
1419 %                                                                             %
1420 +   X S h e a r I m a g e                                                     %
1421 %                                                                             %
1422 %                                                                             %
1423 %                                                                             %
1424 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1425 %
1426 %  XShearImage() shears the image in the X direction with a shear angle of
1427 %  'degrees'.  Positive angles shear counter-clockwise (right-hand rule), and
1428 %  negative angles shear clockwise.  Angles are measured relative to a vertical
1429 %  Y-axis.  X shears will widen an image creating 'empty' triangles on the left
1430 %  and right sides of the source image.
1431 %
1432 %  The format of the XShearImage method is:
1433 %
1434 %      MagickBooleanType XShearImage(Image *image,const MagickRealType degrees,
1435 %        const size_t width,const size_t height,
1436 %        const ssize_t x_offset,const ssize_t y_offset,ExceptionInfo *exception)
1437 %
1438 %  A description of each parameter follows.
1439 %
1440 %    o image: the image.
1441 %
1442 %    o degrees: A MagickRealType representing the shearing angle along the X
1443 %      axis.
1444 %
1445 %    o width, height, x_offset, y_offset: Defines a region of the image
1446 %      to shear.
1447 %
1448 %    o exception: return any errors or warnings in this structure.
1449 %
1450 */
1451 static MagickBooleanType XShearImage(Image *image,const MagickRealType degrees,
1452   const size_t width,const size_t height,const ssize_t x_offset,
1453   const ssize_t y_offset,ExceptionInfo *exception)
1454 {
1455 #define XShearImageTag  "XShear/Image"
1456
1457   typedef enum
1458   {
1459     LEFT,
1460     RIGHT
1461   } ShearDirection;
1462
1463   CacheView
1464     *image_view;
1465
1466   MagickBooleanType
1467     status;
1468
1469   MagickOffsetType
1470     progress;
1471
1472   PixelInfo
1473     background;
1474
1475   ssize_t
1476     y;
1477
1478   assert(image != (Image *) NULL);
1479   assert(image->signature == MagickSignature);
1480   if (image->debug != MagickFalse)
1481     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1482   GetPixelInfo(image,&background);
1483   SetPixelInfoPacket(image,&image->background_color,&background);
1484   if (image->colorspace == CMYKColorspace)
1485     ConvertRGBToCMYK(&background);
1486   /*
1487     X shear image.
1488   */
1489   status=MagickTrue;
1490   progress=0;
1491   image_view=AcquireCacheView(image);
1492 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1493   #pragma omp parallel for schedule(dynamic,4) shared(progress, status)
1494 #endif
1495   for (y=0; y < (ssize_t) height; y++)
1496   {
1497     PixelInfo
1498       pixel,
1499       source,
1500       destination;
1501
1502     MagickRealType
1503       area,
1504       displacement;
1505
1506     register Quantum
1507       *restrict p,
1508       *restrict q;
1509
1510     register ssize_t
1511       i;
1512
1513     ShearDirection
1514       direction;
1515
1516     ssize_t
1517       step;
1518
1519     if (status == MagickFalse)
1520       continue;
1521     p=GetCacheViewAuthenticPixels(image_view,0,y_offset+y,image->columns,1,
1522       exception);
1523     if (p == (Quantum *) NULL)
1524       {
1525         status=MagickFalse;
1526         continue;
1527       }
1528     p+=x_offset*GetPixelChannels(image);
1529     displacement=degrees*(MagickRealType) (y-height/2.0);
1530     if (displacement == 0.0)
1531       continue;
1532     if (displacement > 0.0)
1533       direction=RIGHT;
1534     else
1535       {
1536         displacement*=(-1.0);
1537         direction=LEFT;
1538       }
1539     step=(ssize_t) floor((double) displacement);
1540     area=(MagickRealType) (displacement-step);
1541     step++;
1542     pixel=background;
1543     GetPixelInfo(image,&source);
1544     GetPixelInfo(image,&destination);
1545     switch (direction)
1546     {
1547       case LEFT:
1548       {
1549         /*
1550           Transfer pixels left-to-right.
1551         */
1552         if (step > x_offset)
1553           break;
1554         q=p-step*GetPixelChannels(image);
1555         for (i=0; i < (ssize_t) width; i++)
1556         {
1557           if ((x_offset+i) < step)
1558             {
1559               p+=GetPixelChannels(image);
1560               SetPixelInfo(image,p,&pixel);
1561               q+=GetPixelChannels(image);
1562               continue;
1563             }
1564           SetPixelInfo(image,p,&source);
1565           CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1566             &source,(MagickRealType) GetPixelAlpha(image,p),area,&destination);
1567           SetPixelPixelInfo(image,&destination,q);
1568           SetPixelInfo(image,p,&pixel);
1569           p+=GetPixelChannels(image);
1570           q+=GetPixelChannels(image);
1571         }
1572         CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1573           &background,(MagickRealType) background.alpha,area,&destination);
1574         SetPixelPixelInfo(image,&destination,q);
1575         q+=GetPixelChannels(image);
1576         for (i=0; i < (step-1); i++)
1577         {
1578           SetPixelPixelInfo(image,&background,q);
1579           q+=GetPixelChannels(image);
1580         }
1581         break;
1582       }
1583       case RIGHT:
1584       {
1585         /*
1586           Transfer pixels right-to-left.
1587         */
1588         p+=width*GetPixelChannels(image);
1589         q=p+step*GetPixelChannels(image);
1590         for (i=0; i < (ssize_t) width; i++)
1591         {
1592           p-=GetPixelChannels(image);
1593           q-=GetPixelChannels(image);
1594           if ((size_t) (x_offset+width+step-i) >= image->columns)
1595             continue;
1596           SetPixelInfo(image,p,&source);
1597           CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1598             &source,(MagickRealType) GetPixelAlpha(image,p),area,&destination);
1599           SetPixelPixelInfo(image,&destination,q);
1600           SetPixelInfo(image,p,&pixel);
1601         }
1602         CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1603           &background,(MagickRealType) background.alpha,area,&destination);
1604         q-=GetPixelChannels(image);
1605         SetPixelPixelInfo(image,&destination,q);
1606         for (i=0; i < (step-1); i++)
1607         {
1608           q-=GetPixelChannels(image);
1609           SetPixelPixelInfo(image,&background,q);
1610         }
1611         break;
1612       }
1613     }
1614     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
1615       status=MagickFalse;
1616     if (image->progress_monitor != (MagickProgressMonitor) NULL)
1617       {
1618         MagickBooleanType
1619           proceed;
1620
1621 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1622         #pragma omp critical (MagickCore_XShearImage)
1623 #endif
1624         proceed=SetImageProgress(image,XShearImageTag,progress++,height);
1625         if (proceed == MagickFalse)
1626           status=MagickFalse;
1627       }
1628   }
1629   image_view=DestroyCacheView(image_view);
1630   return(status);
1631 }
1632 \f
1633 /*
1634 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1635 %                                                                             %
1636 %                                                                             %
1637 %                                                                             %
1638 +   Y S h e a r I m a g e                                                     %
1639 %                                                                             %
1640 %                                                                             %
1641 %                                                                             %
1642 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1643 %
1644 %  YShearImage shears the image in the Y direction with a shear angle of
1645 %  'degrees'.  Positive angles shear counter-clockwise (right-hand rule), and
1646 %  negative angles shear clockwise.  Angles are measured relative to a
1647 %  horizontal X-axis.  Y shears will increase the height of an image creating
1648 %  'empty' triangles on the top and bottom of the source image.
1649 %
1650 %  The format of the YShearImage method is:
1651 %
1652 %      MagickBooleanType YShearImage(Image *image,const MagickRealType degrees,
1653 %        const size_t width,const size_t height,
1654 %        const ssize_t x_offset,const ssize_t y_offset,ExceptionInfo *exception)
1655 %
1656 %  A description of each parameter follows.
1657 %
1658 %    o image: the image.
1659 %
1660 %    o degrees: A MagickRealType representing the shearing angle along the Y
1661 %      axis.
1662 %
1663 %    o width, height, x_offset, y_offset: Defines a region of the image
1664 %      to shear.
1665 %
1666 %    o exception: return any errors or warnings in this structure.
1667 %
1668 */
1669 static MagickBooleanType YShearImage(Image *image,const MagickRealType degrees,
1670   const size_t width,const size_t height,const ssize_t x_offset,
1671   const ssize_t y_offset,ExceptionInfo *exception)
1672 {
1673 #define YShearImageTag  "YShear/Image"
1674
1675   typedef enum
1676   {
1677     UP,
1678     DOWN
1679   } ShearDirection;
1680
1681   CacheView
1682     *image_view;
1683
1684   MagickBooleanType
1685     status;
1686
1687   MagickOffsetType
1688     progress;
1689
1690   PixelInfo
1691     background;
1692
1693   ssize_t
1694     x;
1695
1696   assert(image != (Image *) NULL);
1697   assert(image->signature == MagickSignature);
1698   if (image->debug != MagickFalse)
1699     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1700   GetPixelInfo(image,&background);
1701   SetPixelInfoPacket(image,&image->background_color,&background);
1702   if (image->colorspace == CMYKColorspace)
1703     ConvertRGBToCMYK(&background);
1704   /*
1705     Y Shear image.
1706   */
1707   status=MagickTrue;
1708   progress=0;
1709   image_view=AcquireCacheView(image);
1710 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1711   #pragma omp parallel for schedule(dynamic,4) shared(progress, status)
1712 #endif
1713   for (x=0; x < (ssize_t) width; x++)
1714   {
1715     ssize_t
1716       step;
1717
1718     MagickRealType
1719       area,
1720       displacement;
1721
1722     PixelInfo
1723       pixel,
1724       source,
1725       destination;
1726
1727     register Quantum
1728       *restrict p,
1729       *restrict q;
1730
1731     register ssize_t
1732       i;
1733
1734     ShearDirection
1735       direction;
1736
1737     if (status == MagickFalse)
1738       continue;
1739     p=GetCacheViewAuthenticPixels(image_view,x_offset+x,0,1,image->rows,
1740       exception);
1741     if (p == (Quantum *) NULL)
1742       {
1743         status=MagickFalse;
1744         continue;
1745       }
1746     p+=y_offset*GetPixelChannels(image);
1747     displacement=degrees*(MagickRealType) (x-width/2.0);
1748     if (displacement == 0.0)
1749       continue;
1750     if (displacement > 0.0)
1751       direction=DOWN;
1752     else
1753       {
1754         displacement*=(-1.0);
1755         direction=UP;
1756       }
1757     step=(ssize_t) floor((double) displacement);
1758     area=(MagickRealType) (displacement-step);
1759     step++;
1760     pixel=background;
1761     GetPixelInfo(image,&source);
1762     GetPixelInfo(image,&destination);
1763     switch (direction)
1764     {
1765       case UP:
1766       {
1767         /*
1768           Transfer pixels top-to-bottom.
1769         */
1770         if (step > y_offset)
1771           break;
1772         q=p-step*GetPixelChannels(image);
1773         for (i=0; i < (ssize_t) height; i++)
1774         {
1775           if ((y_offset+i) < step)
1776             {
1777               p+=GetPixelChannels(image);
1778               SetPixelInfo(image,p,&pixel);
1779               q+=GetPixelChannels(image);
1780               continue;
1781             }
1782           SetPixelInfo(image,p,&source);
1783           CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1784             &source,(MagickRealType) GetPixelAlpha(image,p),area,
1785             &destination);
1786           SetPixelPixelInfo(image,&destination,q);
1787           SetPixelInfo(image,p,&pixel);
1788           p+=GetPixelChannels(image);
1789           q+=GetPixelChannels(image);
1790         }
1791         CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1792           &background,(MagickRealType) background.alpha,area,&destination);
1793         SetPixelPixelInfo(image,&destination,q);
1794         q+=GetPixelChannels(image);
1795         for (i=0; i < (step-1); i++)
1796         {
1797           SetPixelPixelInfo(image,&background,q);
1798           q+=GetPixelChannels(image);
1799         }
1800         break;
1801       }
1802       case DOWN:
1803       {
1804         /*
1805           Transfer pixels bottom-to-top.
1806         */
1807         p+=height*GetPixelChannels(image);
1808         q=p+step*GetPixelChannels(image);
1809         for (i=0; i < (ssize_t) height; i++)
1810         {
1811           p-=GetPixelChannels(image);
1812           q-=GetPixelChannels(image);
1813           if ((size_t) (y_offset+height+step-i) >= image->rows)
1814             continue;
1815           SetPixelInfo(image,p,&source);
1816           CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1817             &source,(MagickRealType) GetPixelAlpha(image,p),area,
1818             &destination);
1819           SetPixelPixelInfo(image,&destination,q);
1820           SetPixelInfo(image,p,&pixel);
1821         }
1822         CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1823           &background,(MagickRealType) background.alpha,area,&destination);
1824         q-=GetPixelChannels(image);
1825         SetPixelPixelInfo(image,&destination,q);
1826         for (i=0; i < (step-1); i++)
1827         {
1828           q-=GetPixelChannels(image);
1829           SetPixelPixelInfo(image,&background,q);
1830         }
1831         break;
1832       }
1833     }
1834     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
1835       status=MagickFalse;
1836     if (image->progress_monitor != (MagickProgressMonitor) NULL)
1837       {
1838         MagickBooleanType
1839           proceed;
1840
1841 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1842         #pragma omp critical (MagickCore_YShearImage)
1843 #endif
1844         proceed=SetImageProgress(image,YShearImageTag,progress++,image->rows);
1845         if (proceed == MagickFalse)
1846           status=MagickFalse;
1847       }
1848   }
1849   image_view=DestroyCacheView(image_view);
1850   return(status);
1851 }
1852 \f
1853 /*
1854 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1855 %                                                                             %
1856 %                                                                             %
1857 %                                                                             %
1858 %   R o t a t e I m a g e                                                     %
1859 %                                                                             %
1860 %                                                                             %
1861 %                                                                             %
1862 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1863 %
1864 %  RotateImage() creates a new image that is a rotated copy of an existing
1865 %  one.  Positive angles rotate counter-clockwise (right-hand rule), while
1866 %  negative angles rotate clockwise.  Rotated images are usually larger than
1867 %  the originals and have 'empty' triangular corners.  X axis.  Empty
1868 %  triangles left over from shearing the image are filled with the background
1869 %  color defined by member 'background_color' of the image.  RotateImage
1870 %  allocates the memory necessary for the new Image structure and returns a
1871 %  pointer to the new image.
1872 %
1873 %  RotateImage() is based on the paper "A Fast Algorithm for General
1874 %  Raster Rotatation" by Alan W. Paeth.  RotateImage is adapted from a similar
1875 %  method based on the Paeth paper written by Michael Halle of the Spatial
1876 %  Imaging Group, MIT Media Lab.
1877 %
1878 %  The format of the RotateImage method is:
1879 %
1880 %      Image *RotateImage(const Image *image,const double degrees,
1881 %        ExceptionInfo *exception)
1882 %
1883 %  A description of each parameter follows.
1884 %
1885 %    o image: the image.
1886 %
1887 %    o degrees: Specifies the number of degrees to rotate the image.
1888 %
1889 %    o exception: return any errors or warnings in this structure.
1890 %
1891 */
1892 MagickExport Image *RotateImage(const Image *image,const double degrees,
1893   ExceptionInfo *exception)
1894 {
1895   Image
1896     *integral_image,
1897     *rotate_image;
1898
1899   MagickBooleanType
1900     status;
1901
1902   MagickRealType
1903     angle;
1904
1905   PointInfo
1906     shear;
1907
1908   RectangleInfo
1909     border_info;
1910
1911   size_t
1912     height,
1913     rotations,
1914     width,
1915     y_width;
1916
1917   ssize_t
1918     x_offset,
1919     y_offset;
1920
1921   /*
1922     Adjust rotation angle.
1923   */
1924   assert(image != (Image *) NULL);
1925   assert(image->signature == MagickSignature);
1926   if (image->debug != MagickFalse)
1927     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1928   assert(exception != (ExceptionInfo *) NULL);
1929   assert(exception->signature == MagickSignature);
1930   angle=degrees;
1931   while (angle < -45.0)
1932     angle+=360.0;
1933   for (rotations=0; angle > 45.0; rotations++)
1934     angle-=90.0;
1935   rotations%=4;
1936   /*
1937     Calculate shear equations.
1938   */
1939   integral_image=IntegralRotateImage(image,rotations,exception);
1940   if (integral_image == (Image *) NULL)
1941     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
1942   shear.x=(-tan((double) DegreesToRadians(angle)/2.0));
1943   shear.y=sin((double) DegreesToRadians(angle));
1944   if ((shear.x == 0.0) && (shear.y == 0.0))
1945     return(integral_image);
1946   if (SetImageStorageClass(integral_image,DirectClass,exception) == MagickFalse)
1947     {
1948       integral_image=DestroyImage(integral_image);
1949       return(integral_image);
1950     }
1951   if (integral_image->matte == MagickFalse)
1952     (void) SetImageAlphaChannel(integral_image,OpaqueAlphaChannel,exception);
1953   /*
1954     Compute image size.
1955   */
1956   width=image->columns;
1957   height=image->rows;
1958   if ((rotations == 1) || (rotations == 3))
1959     {
1960       width=image->rows;
1961       height=image->columns;
1962     }
1963   y_width=width+(ssize_t) floor(fabs(shear.x)*height+0.5);
1964   x_offset=(ssize_t) ceil((double) width+((fabs(shear.y)*height)-width)/2.0-
1965     0.5);
1966   y_offset=(ssize_t) ceil((double) height+((fabs(shear.y)*y_width)-height)/2.0-
1967     0.5);
1968   /*
1969     Surround image with a border.
1970   */
1971   integral_image->border_color=integral_image->background_color;
1972   integral_image->compose=CopyCompositeOp;
1973   border_info.width=(size_t) x_offset;
1974   border_info.height=(size_t) y_offset;
1975   rotate_image=BorderImage(integral_image,&border_info,image->compose,
1976     exception);
1977   integral_image=DestroyImage(integral_image);
1978   if (rotate_image == (Image *) NULL)
1979     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
1980   /*
1981     Rotate the image.
1982   */
1983   status=XShearImage(rotate_image,shear.x,width,height,x_offset,(ssize_t)
1984     (rotate_image->rows-height)/2,exception);
1985   if (status == MagickFalse)
1986     {
1987       rotate_image=DestroyImage(rotate_image);
1988       return((Image *) NULL);
1989     }
1990   status=YShearImage(rotate_image,shear.y,y_width,height,(ssize_t)
1991     (rotate_image->columns-y_width)/2,y_offset,exception);
1992   if (status == MagickFalse)
1993     {
1994       rotate_image=DestroyImage(rotate_image);
1995       return((Image *) NULL);
1996     }
1997   status=XShearImage(rotate_image,shear.x,y_width,rotate_image->rows,(ssize_t)
1998     (rotate_image->columns-y_width)/2,0,exception);
1999   if (status == MagickFalse)
2000     {
2001       rotate_image=DestroyImage(rotate_image);
2002       return((Image *) NULL);
2003     }
2004   status=CropToFitImage(&rotate_image,shear.x,shear.y,(MagickRealType) width,
2005     (MagickRealType) height,MagickTrue,exception);
2006   if (status == MagickFalse)
2007     {
2008       rotate_image=DestroyImage(rotate_image);
2009       return((Image *) NULL);
2010     }
2011   rotate_image->compose=image->compose;
2012   rotate_image->page.width=0;
2013   rotate_image->page.height=0;
2014   return(rotate_image);
2015 }
2016 \f
2017 /*
2018 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2019 %                                                                             %
2020 %                                                                             %
2021 %                                                                             %
2022 %   S h e a r I m a g e                                                       %
2023 %                                                                             %
2024 %                                                                             %
2025 %                                                                             %
2026 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2027 %
2028 %  ShearImage() creates a new image that is a shear_image copy of an existing
2029 %  one.  Shearing slides one edge of an image along the X or Y axis, creating
2030 %  a parallelogram.  An X direction shear slides an edge along the X axis,
2031 %  while a Y direction shear slides an edge along the Y axis.  The amount of
2032 %  the shear is controlled by a shear angle.  For X direction shears, x_shear
2033 %  is measured relative to the Y axis, and similarly, for Y direction shears
2034 %  y_shear is measured relative to the X axis.  Empty triangles left over from
2035 %  shearing the image are filled with the background color defined by member
2036 %  'background_color' of the image..  ShearImage() allocates the memory
2037 %  necessary for the new Image structure and returns a pointer to the new image.
2038 %
2039 %  ShearImage() is based on the paper "A Fast Algorithm for General Raster
2040 %  Rotatation" by Alan W. Paeth.
2041 %
2042 %  The format of the ShearImage method is:
2043 %
2044 %      Image *ShearImage(const Image *image,const double x_shear,
2045 %        const double y_shear,ExceptionInfo *exception)
2046 %
2047 %  A description of each parameter follows.
2048 %
2049 %    o image: the image.
2050 %
2051 %    o x_shear, y_shear: Specifies the number of degrees to shear the image.
2052 %
2053 %    o exception: return any errors or warnings in this structure.
2054 %
2055 */
2056 MagickExport Image *ShearImage(const Image *image,const double x_shear,
2057   const double y_shear,ExceptionInfo *exception)
2058 {
2059   Image
2060     *integral_image,
2061     *shear_image;
2062
2063   ssize_t
2064     x_offset,
2065     y_offset;
2066
2067   MagickBooleanType
2068     status;
2069
2070   PointInfo
2071     shear;
2072
2073   RectangleInfo
2074     border_info;
2075
2076   size_t
2077     y_width;
2078
2079   assert(image != (Image *) NULL);
2080   assert(image->signature == MagickSignature);
2081   if (image->debug != MagickFalse)
2082     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2083   assert(exception != (ExceptionInfo *) NULL);
2084   assert(exception->signature == MagickSignature);
2085   if ((x_shear != 0.0) && (fmod(x_shear,90.0) == 0.0))
2086     ThrowImageException(ImageError,"AngleIsDiscontinuous");
2087   if ((y_shear != 0.0) && (fmod(y_shear,90.0) == 0.0))
2088     ThrowImageException(ImageError,"AngleIsDiscontinuous");
2089   /*
2090     Initialize shear angle.
2091   */
2092   integral_image=CloneImage(image,0,0,MagickTrue,exception);
2093   if (integral_image == (Image *) NULL)
2094     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
2095   shear.x=(-tan(DegreesToRadians(fmod(x_shear,360.0))));
2096   shear.y=tan(DegreesToRadians(fmod(y_shear,360.0)));
2097   if ((shear.x == 0.0) && (shear.y == 0.0))
2098     return(integral_image);
2099   if (SetImageStorageClass(integral_image,DirectClass,exception) == MagickFalse)
2100     {
2101       integral_image=DestroyImage(integral_image);
2102       return(integral_image);
2103     }
2104   if (integral_image->matte == MagickFalse)
2105     (void) SetImageAlphaChannel(integral_image,OpaqueAlphaChannel,exception);
2106   /*
2107     Compute image size.
2108   */
2109   y_width=image->columns+(ssize_t) floor(fabs(shear.x)*image->rows+0.5);
2110   x_offset=(ssize_t) ceil((double) image->columns+((fabs(shear.x)*image->rows)-
2111     image->columns)/2.0-0.5);
2112   y_offset=(ssize_t) ceil((double) image->rows+((fabs(shear.y)*y_width)-
2113     image->rows)/2.0-0.5);
2114   /*
2115     Surround image with border.
2116   */
2117   integral_image->border_color=integral_image->background_color;
2118   integral_image->compose=CopyCompositeOp;
2119   border_info.width=(size_t) x_offset;
2120   border_info.height=(size_t) y_offset;
2121   shear_image=BorderImage(integral_image,&border_info,image->compose,exception);
2122   integral_image=DestroyImage(integral_image);
2123   if (shear_image == (Image *) NULL)
2124     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
2125   /*
2126     Shear the image.
2127   */
2128   if (shear_image->matte == MagickFalse)
2129     (void) SetImageAlphaChannel(shear_image,OpaqueAlphaChannel,exception);
2130   status=XShearImage(shear_image,shear.x,image->columns,image->rows,x_offset,
2131     (ssize_t) (shear_image->rows-image->rows)/2,exception);
2132   if (status == MagickFalse)
2133     {
2134       shear_image=DestroyImage(shear_image);
2135       return((Image *) NULL);
2136     }
2137   status=YShearImage(shear_image,shear.y,y_width,image->rows,(ssize_t)
2138     (shear_image->columns-y_width)/2,y_offset,exception);
2139   if (status == MagickFalse)
2140     {
2141       shear_image=DestroyImage(shear_image);
2142       return((Image *) NULL);
2143     }
2144   status=CropToFitImage(&shear_image,shear.x,shear.y,(MagickRealType)
2145     image->columns,(MagickRealType) image->rows,MagickFalse,exception);
2146   if (status == MagickFalse)
2147     {
2148       shear_image=DestroyImage(shear_image);
2149       return((Image *) NULL);
2150     }
2151   shear_image->compose=image->compose;
2152   shear_image->page.width=0;
2153   shear_image->page.height=0;
2154   return(shear_image);
2155 }