]> granicus.if.org Git - imagemagick/blob - MagickCore/shear.c
(no commit message)
[imagemagick] / MagickCore / shear.c
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %                                                                             %
4 %                                                                             %
5 %                                                                             %
6 %                      SSSSS  H   H  EEEEE   AAA    RRRR                      %
7 %                      SS     H   H  E      A   A   R   R                     %
8 %                       SSS   HHHHH  EEE    AAAAA   RRRR                      %
9 %                         SS  H   H  E      A   A   R R                       %
10 %                      SSSSS  H   H  EEEEE  A   A   R  R                      %
11 %                                                                             %
12 %                                                                             %
13 %    MagickCore Methods to Shear or Rotate an Image by an Arbitrary Angle     %
14 %                                                                             %
15 %                               Software Design                               %
16 %                                 John Cristy                                 %
17 %                                  July 1992                                  %
18 %                                                                             %
19 %                                                                             %
20 %  Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization      %
21 %  dedicated to making software imaging solutions freely available.           %
22 %                                                                             %
23 %  You may not use this file except in compliance with the License.  You may  %
24 %  obtain a copy of the License at                                            %
25 %                                                                             %
26 %    http://www.imagemagick.org/script/license.php                            %
27 %                                                                             %
28 %  Unless required by applicable law or agreed to in writing, software        %
29 %  distributed under the License is distributed on an "AS IS" BASIS,          %
30 %  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
31 %  See the License for the specific language governing permissions and        %
32 %  limitations under the License.                                             %
33 %                                                                             %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %  The RotateImage, XShearImage, and YShearImage methods are based on the
37 %  paper "A Fast Algorithm for General Raster Rotatation" by Alan W. Paeth,
38 %  Graphics Interface '86 (Vancouver).  RotateImage is adapted from a similar
39 %  method based on the Paeth paper written by Michael Halle of the Spatial
40 %  Imaging Group, MIT Media Lab.
41 %
42 %
43 */
44 \f
45 /*
46   Include declarations.
47 */
48 #include "MagickCore/studio.h"
49 #include "MagickCore/artifact.h"
50 #include "MagickCore/attribute.h"
51 #include "MagickCore/blob-private.h"
52 #include "MagickCore/cache-private.h"
53 #include "MagickCore/color-private.h"
54 #include "MagickCore/colorspace-private.h"
55 #include "MagickCore/composite.h"
56 #include "MagickCore/composite-private.h"
57 #include "MagickCore/decorate.h"
58 #include "MagickCore/distort.h"
59 #include "MagickCore/draw.h"
60 #include "MagickCore/exception.h"
61 #include "MagickCore/exception-private.h"
62 #include "MagickCore/gem.h"
63 #include "MagickCore/geometry.h"
64 #include "MagickCore/image.h"
65 #include "MagickCore/image-private.h"
66 #include "MagickCore/memory_.h"
67 #include "MagickCore/list.h"
68 #include "MagickCore/monitor.h"
69 #include "MagickCore/monitor-private.h"
70 #include "MagickCore/pixel-accessor.h"
71 #include "MagickCore/quantum.h"
72 #include "MagickCore/resource_.h"
73 #include "MagickCore/shear.h"
74 #include "MagickCore/statistic.h"
75 #include "MagickCore/string_.h"
76 #include "MagickCore/string-private.h"
77 #include "MagickCore/thread-private.h"
78 #include "MagickCore/threshold.h"
79 #include "MagickCore/transform.h"
80 \f
81 /*
82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
83 %                                                                             %
84 %                                                                             %
85 %                                                                             %
86 %     A f f i n e T r a n s f o r m I m a g e                                 %
87 %                                                                             %
88 %                                                                             %
89 %                                                                             %
90 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
91 %
92 %  AffineTransformImage() transforms an image as dictated by the affine matrix.
93 %  It allocates the memory necessary for the new Image structure and returns
94 %  a pointer to the new image.
95 %
96 %  The format of the AffineTransformImage method is:
97 %
98 %      Image *AffineTransformImage(const Image *image,
99 %        AffineMatrix *affine_matrix,ExceptionInfo *exception)
100 %
101 %  A description of each parameter follows:
102 %
103 %    o image: the image.
104 %
105 %    o affine_matrix: the affine matrix.
106 %
107 %    o exception: return any errors or warnings in this structure.
108 %
109 */
110 MagickExport Image *AffineTransformImage(const Image *image,
111   const AffineMatrix *affine_matrix,ExceptionInfo *exception)
112 {
113   double
114     distort[6];
115
116   Image
117     *deskew_image;
118
119   /*
120     Affine transform image.
121   */
122   assert(image->signature == MagickSignature);
123   if (image->debug != MagickFalse)
124     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
125   assert(affine_matrix != (AffineMatrix *) NULL);
126   assert(exception != (ExceptionInfo *) NULL);
127   assert(exception->signature == MagickSignature);
128   distort[0]=affine_matrix->sx;
129   distort[1]=affine_matrix->rx;
130   distort[2]=affine_matrix->ry;
131   distort[3]=affine_matrix->sy;
132   distort[4]=affine_matrix->tx;
133   distort[5]=affine_matrix->ty;
134   deskew_image=DistortImage(image,AffineProjectionDistortion,6,distort,
135     MagickTrue,exception);
136   return(deskew_image);
137 }
138 \f
139 /*
140 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
141 %                                                                             %
142 %                                                                             %
143 %                                                                             %
144 +   C r o p T o F i t I m a g e                                               %
145 %                                                                             %
146 %                                                                             %
147 %                                                                             %
148 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
149 %
150 %  CropToFitImage() crops the sheared image as determined by the bounding box
151 %  as defined by width and height and shearing angles.
152 %
153 %  The format of the CropToFitImage method is:
154 %
155 %      MagickBooleanType CropToFitImage(Image **image,
156 %        const MagickRealType x_shear,const MagickRealType x_shear,
157 %        const MagickRealType width,const MagickRealType height,
158 %        const MagickBooleanType rotate,ExceptionInfo *exception)
159 %
160 %  A description of each parameter follows.
161 %
162 %    o image: the image.
163 %
164 %    o x_shear, y_shear, width, height: Defines a region of the image to crop.
165 %
166 %    o exception: return any errors or warnings in this structure.
167 %
168 */
169 static MagickBooleanType CropToFitImage(Image **image,
170   const MagickRealType x_shear,const MagickRealType y_shear,
171   const MagickRealType width,const MagickRealType height,
172   const MagickBooleanType rotate,ExceptionInfo *exception)
173 {
174   Image
175     *crop_image;
176
177   PointInfo
178     extent[4],
179     min,
180     max;
181
182   RectangleInfo
183     geometry,
184     page;
185
186   register ssize_t
187     i;
188
189   /*
190     Calculate the rotated image size.
191   */
192   extent[0].x=(double) (-width/2.0);
193   extent[0].y=(double) (-height/2.0);
194   extent[1].x=(double) width/2.0;
195   extent[1].y=(double) (-height/2.0);
196   extent[2].x=(double) (-width/2.0);
197   extent[2].y=(double) height/2.0;
198   extent[3].x=(double) width/2.0;
199   extent[3].y=(double) height/2.0;
200   for (i=0; i < 4; i++)
201   {
202     extent[i].x+=x_shear*extent[i].y;
203     extent[i].y+=y_shear*extent[i].x;
204     if (rotate != MagickFalse)
205       extent[i].x+=x_shear*extent[i].y;
206     extent[i].x+=(double) (*image)->columns/2.0;
207     extent[i].y+=(double) (*image)->rows/2.0;
208   }
209   min=extent[0];
210   max=extent[0];
211   for (i=1; i < 4; i++)
212   {
213     if (min.x > extent[i].x)
214       min.x=extent[i].x;
215     if (min.y > extent[i].y)
216       min.y=extent[i].y;
217     if (max.x < extent[i].x)
218       max.x=extent[i].x;
219     if (max.y < extent[i].y)
220       max.y=extent[i].y;
221   }
222   geometry.x=(ssize_t) ceil(min.x-0.5);
223   geometry.y=(ssize_t) ceil(min.y-0.5);
224   geometry.width=(size_t) floor(max.x-min.x+0.5);
225   geometry.height=(size_t) floor(max.y-min.y+0.5);
226   page=(*image)->page;
227   (void) ParseAbsoluteGeometry("0x0+0+0",&(*image)->page);
228   crop_image=CropImage(*image,&geometry,exception);
229   if (crop_image == (Image *) NULL)
230     return(MagickFalse);
231   crop_image->page=page;
232   *image=DestroyImage(*image);
233   *image=crop_image;
234   return(MagickTrue);
235 }
236 \f
237 /*
238 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
239 %                                                                             %
240 %                                                                             %
241 %                                                                             %
242 %     D e s k e w I m a g e                                                   %
243 %                                                                             %
244 %                                                                             %
245 %                                                                             %
246 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
247 %
248 %  DeskewImage() removes skew from the image.  Skew is an artifact that
249 %  occurs in scanned images because of the camera being misaligned,
250 %  imperfections in the scanning or surface, or simply because the paper was
251 %  not placed completely flat when scanned.
252 %
253 %  The format of the DeskewImage method is:
254 %
255 %      Image *DeskewImage(const Image *image,const double threshold,
256 %        ExceptionInfo *exception)
257 %
258 %  A description of each parameter follows:
259 %
260 %    o image: the image.
261 %
262 %    o threshold: separate background from foreground.
263 %
264 %    o exception: return any errors or warnings in this structure.
265 %
266 */
267
268 typedef struct _RadonInfo
269 {
270   CacheType
271     type;
272
273   size_t
274     width,
275     height;
276
277   MagickSizeType
278     length;
279
280   MagickBooleanType
281     mapped;
282
283   char
284     path[MaxTextExtent];
285
286   int
287     file;
288
289   unsigned short
290     *cells;
291 } RadonInfo;
292
293 static RadonInfo *DestroyRadonInfo(RadonInfo *radon_info)
294 {
295   assert(radon_info != (RadonInfo *) NULL);
296   switch (radon_info->type)
297   {
298     case MemoryCache:
299     {
300       if (radon_info->mapped == MagickFalse)
301         radon_info->cells=(unsigned short *) RelinquishMagickMemory(
302           radon_info->cells);
303       else
304         radon_info->cells=(unsigned short *) UnmapBlob(radon_info->cells,
305           (size_t) radon_info->length);
306       RelinquishMagickResource(MemoryResource,radon_info->length);
307       break;
308     }
309     case MapCache:
310     {
311       radon_info->cells=(unsigned short *) UnmapBlob(radon_info->cells,(size_t)
312         radon_info->length);
313       RelinquishMagickResource(MapResource,radon_info->length);
314     }
315     case DiskCache:
316     {
317       if (radon_info->file != -1)
318         (void) close(radon_info->file);
319       (void) RelinquishUniqueFileResource(radon_info->path);
320       RelinquishMagickResource(DiskResource,radon_info->length);
321       break;
322     }
323     default:
324       break;
325   }
326   return((RadonInfo *) RelinquishMagickMemory(radon_info));
327 }
328
329 static MagickBooleanType ResetRadonCells(RadonInfo *radon_info)
330 {
331   register ssize_t
332     x;
333
334   ssize_t
335     count,
336     y;
337
338   unsigned short
339     value;
340
341   if (radon_info->type != DiskCache)
342     {
343       (void) ResetMagickMemory(radon_info->cells,0,(size_t) radon_info->length);
344       return(MagickTrue);
345     }
346   value=0;
347   (void) lseek(radon_info->file,0,SEEK_SET);
348   for (y=0; y < (ssize_t) radon_info->height; y++)
349   {
350     for (x=0; x < (ssize_t) radon_info->width; x++)
351     {
352       count=write(radon_info->file,&value,sizeof(*radon_info->cells));
353       if (count != (ssize_t) sizeof(*radon_info->cells))
354         break;
355     }
356     if (x < (ssize_t) radon_info->width)
357       break;
358   }
359   return(y < (ssize_t) radon_info->height ? MagickFalse : MagickTrue);
360 }
361
362 static RadonInfo *AcquireRadonInfo(const Image *image,const size_t width,
363   const size_t height,ExceptionInfo *exception)
364 {
365   MagickBooleanType
366     status;
367
368   RadonInfo
369     *radon_info;
370
371   radon_info=(RadonInfo *) AcquireMagickMemory(sizeof(*radon_info));
372   if (radon_info == (RadonInfo *) NULL)
373     return((RadonInfo *) NULL);
374   (void) ResetMagickMemory(radon_info,0,sizeof(*radon_info));
375   radon_info->width=width;
376   radon_info->height=height;
377   radon_info->length=(MagickSizeType) width*height*sizeof(*radon_info->cells);
378   radon_info->type=MemoryCache;
379   status=AcquireMagickResource(AreaResource,radon_info->length);
380   if ((status != MagickFalse) &&
381       (radon_info->length == (MagickSizeType) ((size_t) radon_info->length)))
382     {
383       status=AcquireMagickResource(MemoryResource,radon_info->length);
384       if (status != MagickFalse)
385         {
386           radon_info->mapped=MagickFalse;
387           radon_info->cells=(unsigned short *) AcquireMagickMemory((size_t)
388             radon_info->length);
389           if (radon_info->cells == (unsigned short *) NULL)
390             {
391               radon_info->mapped=MagickTrue;
392               radon_info->cells=(unsigned short *) MapBlob(-1,IOMode,0,(size_t)
393                 radon_info->length);
394             }
395           if (radon_info->cells == (unsigned short *) NULL)
396             RelinquishMagickResource(MemoryResource,radon_info->length);
397         }
398     }
399   radon_info->file=(-1);
400   if (radon_info->cells == (unsigned short *) NULL)
401     {
402       status=AcquireMagickResource(DiskResource,radon_info->length);
403       if (status == MagickFalse)
404         {
405           (void) ThrowMagickException(exception,GetMagickModule(),CacheError,
406             "CacheResourcesExhausted","`%s'",image->filename);
407           return(DestroyRadonInfo(radon_info));
408         }
409       radon_info->type=DiskCache;
410       (void) AcquireMagickResource(MemoryResource,radon_info->length);
411       radon_info->file=AcquireUniqueFileResource(radon_info->path);
412       if (radon_info->file == -1)
413         return(DestroyRadonInfo(radon_info));
414       status=AcquireMagickResource(MapResource,radon_info->length);
415       if (status != MagickFalse)
416         {
417           status=ResetRadonCells(radon_info);
418           if (status != MagickFalse)
419             {
420               radon_info->cells=(unsigned short *) MapBlob(radon_info->file,
421                 IOMode,0,(size_t) radon_info->length);
422               if (radon_info->cells != (unsigned short *) NULL)
423                 radon_info->type=MapCache;
424               else
425                 RelinquishMagickResource(MapResource,radon_info->length);
426             }
427         }
428     }
429   return(radon_info);
430 }
431
432 static inline size_t MagickMin(const size_t x,const size_t y)
433 {
434   if (x < y)
435     return(x);
436   return(y);
437 }
438
439 static inline ssize_t ReadRadonCell(const RadonInfo *radon_info,
440   const MagickOffsetType offset,const size_t length,unsigned char *buffer)
441 {
442   register ssize_t
443     i;
444
445   ssize_t
446     count;
447
448 #if !defined(MAGICKCORE_HAVE_PPREAD)
449 #if defined(MAGICKCORE_OPENMP_SUPPORT)
450   #pragma omp critical (MagickCore_ReadRadonCell)
451 #endif
452   {
453     i=(-1);
454     if (lseek(radon_info->file,offset,SEEK_SET) >= 0)
455       {
456 #endif
457         count=0;
458         for (i=0; i < (ssize_t) length; i+=count)
459         {
460 #if !defined(MAGICKCORE_HAVE_PPREAD)
461           count=read(radon_info->file,buffer+i,MagickMin(length-i,(size_t)
462             SSIZE_MAX));
463 #else
464           count=pread(radon_info->file,buffer+i,MagickMin(length-i,(size_t)
465             SSIZE_MAX),offset+i);
466 #endif
467           if (count > 0)
468             continue;
469           count=0;
470           if (errno != EINTR)
471             {
472               i=(-1);
473               break;
474             }
475         }
476 #if !defined(MAGICKCORE_HAVE_PPREAD)
477       }
478   }
479 #endif
480   return(i);
481 }
482
483 static inline ssize_t WriteRadonCell(const RadonInfo *radon_info,
484   const MagickOffsetType offset,const size_t length,const unsigned char *buffer)
485 {
486   register ssize_t
487     i;
488
489   ssize_t
490     count;
491
492 #if !defined(MAGICKCORE_HAVE_PWRITE)
493 #if defined(MAGICKCORE_OPENMP_SUPPORT)
494   #pragma omp critical (MagickCore_WriteRadonCell)
495 #endif
496   {
497     if (lseek(radon_info->file,offset,SEEK_SET) >= 0)
498       {
499 #endif
500         count=0;
501         for (i=0; i < (ssize_t) length; i+=count)
502         {
503 #if !defined(MAGICKCORE_HAVE_PWRITE)
504           count=write(radon_info->file,buffer+i,MagickMin(length-i,(size_t)
505             SSIZE_MAX));
506 #else
507           count=pwrite(radon_info->file,buffer+i,MagickMin(length-i,(size_t)
508             SSIZE_MAX),offset+i);
509 #endif
510           if (count > 0)
511             continue;
512           count=0;
513           if (errno != EINTR)
514             {
515               i=(-1);
516               break;
517             }
518         }
519 #if !defined(MAGICKCORE_HAVE_PWRITE)
520       }
521   }
522 #endif
523   return(i);
524 }
525
526 static inline unsigned short GetRadonCell(const RadonInfo *radon_info,
527   const ssize_t x,const ssize_t y)
528 {
529   MagickOffsetType
530     i;
531
532   unsigned short
533     value;
534
535   i=(MagickOffsetType) radon_info->height*x+y;
536   if ((i < 0) ||
537       ((MagickSizeType) (i*sizeof(*radon_info->cells)) >= radon_info->length))
538     return(0);
539   if (radon_info->type != DiskCache)
540     return(radon_info->cells[i]);
541   value=0;
542   (void) ReadRadonCell(radon_info,i*sizeof(*radon_info->cells),
543     sizeof(*radon_info->cells),(unsigned char *) &value);
544   return(value);
545 }
546
547 static inline MagickBooleanType SetRadonCell(const RadonInfo *radon_info,
548   const ssize_t x,const ssize_t y,const unsigned short value)
549 {
550   MagickOffsetType
551     i;
552
553   ssize_t
554     count;
555
556   i=(MagickOffsetType) radon_info->height*x+y;
557   if ((i < 0) ||
558       ((MagickSizeType) (i*sizeof(*radon_info->cells)) >= radon_info->length))
559     return(MagickFalse);
560   if (radon_info->type != DiskCache)
561     {
562       radon_info->cells[i]=value;
563       return(MagickTrue);
564     }
565   count=WriteRadonCell(radon_info,i*sizeof(*radon_info->cells),
566     sizeof(*radon_info->cells),(const unsigned char *) &value);
567   if (count != (ssize_t) sizeof(*radon_info->cells))
568     return(MagickFalse);
569   return(MagickTrue);
570 }
571
572 static void RadonProjection(RadonInfo *source_cells,
573   RadonInfo *destination_cells,const ssize_t sign,size_t *projection)
574 {
575   RadonInfo
576     *swap;
577
578   register ssize_t
579     x;
580
581   register RadonInfo
582     *p,
583     *q;
584
585   size_t
586     step;
587
588   p=source_cells;
589   q=destination_cells;
590   for (step=1; step < p->width; step*=2)
591   {
592     for (x=0; x < (ssize_t) p->width; x+=2*(ssize_t) step)
593     {
594       register ssize_t
595         i;
596
597       ssize_t
598         y;
599
600       unsigned short
601         cell;
602
603       for (i=0; i < (ssize_t) step; i++)
604       {
605         for (y=0; y < (ssize_t) (p->height-i-1); y++)
606         {
607           cell=GetRadonCell(p,x+i,y);
608           (void) SetRadonCell(q,x+2*i,y,cell+GetRadonCell(p,x+i+(ssize_t)
609             step,y+i));
610           (void) SetRadonCell(q,x+2*i+1,y,cell+GetRadonCell(p,x+i+(ssize_t)
611             step,y+i+1));
612         }
613         for ( ; y < (ssize_t) (p->height-i); y++)
614         {
615           cell=GetRadonCell(p,x+i,y);
616           (void) SetRadonCell(q,x+2*i,y,cell+GetRadonCell(p,x+i+(ssize_t) step,
617             y+i));
618           (void) SetRadonCell(q,x+2*i+1,y,cell);
619         }
620         for ( ; y < (ssize_t) p->height; y++)
621         {
622           cell=GetRadonCell(p,x+i,y);
623           (void) SetRadonCell(q,x+2*i,y,cell);
624           (void) SetRadonCell(q,x+2*i+1,y,cell);
625         }
626       }
627     }
628     swap=p;
629     p=q;
630     q=swap;
631   }
632 #if defined(MAGICKCORE_OPENMP_SUPPORT)
633   #pragma omp parallel for schedule(dynamic,4)
634 #endif
635   for (x=0; x < (ssize_t) p->width; x++)
636   {
637     register ssize_t
638       y;
639
640     size_t
641       sum;
642
643     sum=0;
644     for (y=0; y < (ssize_t) (p->height-1); y++)
645     {
646       ssize_t
647         delta;
648
649       delta=GetRadonCell(p,x,y)-(ssize_t) GetRadonCell(p,x,y+1);
650       sum+=delta*delta;
651     }
652     projection[p->width+sign*x-1]=sum;
653   }
654 }
655
656 static MagickBooleanType RadonTransform(const Image *image,
657   const double threshold,size_t *projection,ExceptionInfo *exception)
658 {
659   CacheView
660     *image_view;
661
662   MagickBooleanType
663     status;
664
665   RadonInfo
666     *destination_cells,
667     *source_cells;
668
669   register ssize_t
670     i;
671
672   size_t
673     count,
674     width;
675
676   ssize_t
677     y;
678
679   unsigned char
680     byte;
681
682   unsigned short
683     bits[256];
684
685   for (width=1; width < ((image->columns+7)/8); width<<=1) ;
686   source_cells=AcquireRadonInfo(image,width,image->rows,exception);
687   destination_cells=AcquireRadonInfo(image,width,image->rows,exception);
688   if ((source_cells == (RadonInfo *) NULL) ||
689       (destination_cells == (RadonInfo *) NULL))
690     {
691       if (destination_cells != (RadonInfo *) NULL)
692         destination_cells=DestroyRadonInfo(destination_cells);
693       if (source_cells != (RadonInfo *) NULL)
694         source_cells=DestroyRadonInfo(source_cells);
695       return(MagickFalse);
696     }
697   if (ResetRadonCells(source_cells) == MagickFalse)
698     {
699       destination_cells=DestroyRadonInfo(destination_cells);
700       source_cells=DestroyRadonInfo(source_cells);
701       return(MagickFalse);
702     }
703   for (i=0; i < 256; i++)
704   {
705     byte=(unsigned char) i;
706     for (count=0; byte != 0; byte>>=1)
707       count+=byte & 0x01;
708     bits[i]=(unsigned short) count;
709   }
710   status=MagickTrue;
711   image_view=AcquireCacheView(image);
712 #if defined(MAGICKCORE_OPENMP_SUPPORT)
713   #pragma omp parallel for schedule(dynamic,4) shared(status)
714 #endif
715   for (y=0; y < (ssize_t) image->rows; y++)
716   {
717     register const Quantum
718       *restrict p;
719
720     register ssize_t
721       i,
722       x;
723
724     size_t
725       bit,
726       byte;
727
728     if (status == MagickFalse)
729       continue;
730     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
731     if (p == (const Quantum *) NULL)
732       {
733         status=MagickFalse;
734         continue;
735       }
736     bit=0;
737     byte=0;
738     i=(ssize_t) (image->columns+7)/8;
739     for (x=0; x < (ssize_t) image->columns; x++)
740     {
741       byte<<=1;
742       if (GetPixelIntensity(image,p) < threshold)
743         byte|=0x01;
744       bit++;
745       if (bit == 8)
746         {
747           (void) SetRadonCell(source_cells,--i,y,bits[byte]);
748           bit=0;
749           byte=0;
750         }
751       p+=GetPixelChannels(image);
752     }
753     if (bit != 0)
754       {
755         byte<<=(8-bit);
756         (void) SetRadonCell(source_cells,--i,y,bits[byte]);
757       }
758   }
759   RadonProjection(source_cells,destination_cells,-1,projection);
760   (void) ResetRadonCells(source_cells);
761 #if defined(MAGICKCORE_OPENMP_SUPPORT)
762   #pragma omp parallel for schedule(dynamic,4) shared(status)
763 #endif
764   for (y=0; y < (ssize_t) image->rows; y++)
765   {
766     register const Quantum
767       *restrict p;
768
769     register ssize_t
770       i,
771       x;
772
773     size_t
774       bit,
775       byte;
776
777     if (status == MagickFalse)
778       continue;
779     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
780     if (p == (const Quantum *) NULL)
781       {
782         status=MagickFalse;
783         continue;
784       }
785     bit=0;
786     byte=0;
787     i=0;
788     for (x=0; x < (ssize_t) image->columns; x++)
789     {
790       byte<<=1;
791       if (GetPixelIntensity(image,p) < threshold)
792         byte|=0x01;
793       bit++;
794       if (bit == 8)
795         {
796           (void) SetRadonCell(source_cells,i++,y,bits[byte]);
797           bit=0;
798           byte=0;
799         }
800       p+=GetPixelChannels(image);
801     }
802     if (bit != 0)
803       {
804         byte<<=(8-bit);
805         (void) SetRadonCell(source_cells,i++,y,bits[byte]);
806       }
807   }
808   RadonProjection(source_cells,destination_cells,1,projection);
809   image_view=DestroyCacheView(image_view);
810   destination_cells=DestroyRadonInfo(destination_cells);
811   source_cells=DestroyRadonInfo(source_cells);
812   return(MagickTrue);
813 }
814
815 static void GetImageBackgroundColor(Image *image,const ssize_t offset,
816   ExceptionInfo *exception)
817 {
818   CacheView
819     *image_view;
820
821   PixelInfo
822     background;
823
824   MagickRealType
825     count;
826
827   ssize_t
828     y;
829
830   /*
831     Compute average background color.
832   */
833   if (offset <= 0)
834     return;
835   GetPixelInfo(image,&background);
836   count=0.0;
837   image_view=AcquireCacheView(image);
838   for (y=0; y < (ssize_t) image->rows; y++)
839   {
840     register const Quantum
841       *restrict p;
842
843     register ssize_t
844       x;
845
846     if ((y >= offset) && (y < ((ssize_t) image->rows-offset)))
847       continue;
848     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
849     if (p == (const Quantum *) NULL)
850       continue;
851     for (x=0; x < (ssize_t) image->columns; x++)
852     {
853       if ((x >= offset) && (x < ((ssize_t) image->columns-offset)))
854         continue;
855       background.red+=QuantumScale*GetPixelRed(image,p);
856       background.green+=QuantumScale*GetPixelGreen(image,p);
857       background.blue+=QuantumScale*GetPixelBlue(image,p);
858       if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0)
859         background.alpha+=QuantumScale*GetPixelAlpha(image,p);
860       count++;
861       p+=GetPixelChannels(image);
862     }
863   }
864   image_view=DestroyCacheView(image_view);
865   image->background_color.red=ClampToQuantum((MagickRealType) QuantumRange*
866     background.red/count);
867   image->background_color.green=ClampToQuantum((MagickRealType) QuantumRange*
868     background.green/count);
869   image->background_color.blue=ClampToQuantum((MagickRealType) QuantumRange*
870     background.blue/count);
871   if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0)
872     image->background_color.alpha=ClampToQuantum((MagickRealType) QuantumRange*
873       background.alpha/count);
874 }
875
876 MagickExport Image *DeskewImage(const Image *image,const double threshold,
877   ExceptionInfo *exception)
878 {
879   AffineMatrix
880     affine_matrix;
881
882   const char
883     *artifact;
884
885   double
886     degrees;
887
888   Image
889     *clone_image,
890     *crop_image,
891     *deskew_image,
892     *median_image;
893
894   MagickBooleanType
895     status;
896
897   RectangleInfo
898     geometry;
899
900   register ssize_t
901     i;
902
903   size_t
904     max_projection,
905     *projection,
906     width;
907
908   ssize_t
909     skew;
910
911   /*
912     Compute deskew angle.
913   */
914   for (width=1; width < ((image->columns+7)/8); width<<=1) ;
915   projection=(size_t *) AcquireQuantumMemory((size_t) (2*width-1),
916     sizeof(*projection));
917   if (projection == (size_t *) NULL)
918     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
919   status=RadonTransform(image,threshold,projection,exception);
920   if (status == MagickFalse)
921     {
922       projection=(size_t *) RelinquishMagickMemory(projection);
923       ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
924     }
925   max_projection=0;
926   skew=0;
927   for (i=0; i < (ssize_t) (2*width-1); i++)
928   {
929     if (projection[i] > max_projection)
930       {
931         skew=i-(ssize_t) width+1;
932         max_projection=projection[i];
933       }
934   }
935   projection=(size_t *) RelinquishMagickMemory(projection);
936   /*
937     Deskew image.
938   */
939   clone_image=CloneImage(image,0,0,MagickTrue,exception);
940   if (clone_image == (Image *) NULL)
941     return((Image *) NULL);
942   (void) SetImageVirtualPixelMethod(clone_image,BackgroundVirtualPixelMethod);
943   degrees=RadiansToDegrees(-atan((double) skew/width/8));
944   if (image->debug != MagickFalse)
945     (void) LogMagickEvent(TransformEvent,GetMagickModule(),
946       "  Deskew angle: %g",degrees);
947   affine_matrix.sx=cos(DegreesToRadians(fmod((double) degrees,360.0)));
948   affine_matrix.rx=sin(DegreesToRadians(fmod((double) degrees,360.0)));
949   affine_matrix.ry=(-sin(DegreesToRadians(fmod((double) degrees,360.0))));
950   affine_matrix.sy=cos(DegreesToRadians(fmod((double) degrees,360.0)));
951   affine_matrix.tx=0.0;
952   affine_matrix.ty=0.0;
953   artifact=GetImageArtifact(image,"deskew:auto-crop");
954   if (artifact == (const char *) NULL)
955     {
956       deskew_image=AffineTransformImage(clone_image,&affine_matrix,exception);
957       clone_image=DestroyImage(clone_image);
958       return(deskew_image);
959     }
960   /*
961     Auto-crop image.
962   */
963   GetImageBackgroundColor(clone_image,(ssize_t) StringToLong(artifact),
964     exception);
965   deskew_image=AffineTransformImage(clone_image,&affine_matrix,exception);
966   clone_image=DestroyImage(clone_image);
967   if (deskew_image == (Image *) NULL)
968     return((Image *) NULL);
969   median_image=StatisticImage(deskew_image,MedianStatistic,3,3,exception);
970   if (median_image == (Image *) NULL)
971     {
972       deskew_image=DestroyImage(deskew_image);
973       return((Image *) NULL);
974     }
975   geometry=GetImageBoundingBox(median_image,exception);
976   median_image=DestroyImage(median_image);
977   if (image->debug != MagickFalse)
978     (void) LogMagickEvent(TransformEvent,GetMagickModule(),"  Deskew geometry: "
979       "%.20gx%.20g%+.20g%+.20g",(double) geometry.width,(double)
980       geometry.height,(double) geometry.x,(double) geometry.y);
981   crop_image=CropImage(deskew_image,&geometry,exception);
982   deskew_image=DestroyImage(deskew_image);
983   return(crop_image);
984 }
985 \f
986 /*
987 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
988 %                                                                             %
989 %                                                                             %
990 %                                                                             %
991 +   I n t e g r a l R o t a t e I m a g e                                     %
992 %                                                                             %
993 %                                                                             %
994 %                                                                             %
995 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
996 %
997 %  IntegralRotateImage() rotates the image an integral of 90 degrees.  It
998 %  allocates the memory necessary for the new Image structure and returns a
999 %  pointer to the rotated image.
1000 %
1001 %  The format of the IntegralRotateImage method is:
1002 %
1003 %      Image *IntegralRotateImage(const Image *image,size_t rotations,
1004 %        ExceptionInfo *exception)
1005 %
1006 %  A description of each parameter follows.
1007 %
1008 %    o image: the image.
1009 %
1010 %    o rotations: Specifies the number of 90 degree rotations.
1011 %
1012 */
1013 static Image *IntegralRotateImage(const Image *image,size_t rotations,
1014   ExceptionInfo *exception)
1015 {
1016 #define RotateImageTag  "Rotate/Image"
1017
1018   CacheView
1019     *image_view,
1020     *rotate_view;
1021
1022   Image
1023     *rotate_image;
1024
1025   MagickBooleanType
1026     status;
1027
1028   MagickOffsetType
1029     progress;
1030
1031   RectangleInfo
1032     page;
1033
1034   ssize_t
1035     y;
1036
1037   /*
1038     Initialize rotated image attributes.
1039   */
1040   assert(image != (Image *) NULL);
1041   page=image->page;
1042   rotations%=4;
1043   if (rotations == 0)
1044     return(CloneImage(image,0,0,MagickTrue,exception));
1045   if ((rotations == 1) || (rotations == 3))
1046     rotate_image=CloneImage(image,image->rows,image->columns,MagickTrue,
1047       exception);
1048   else
1049     rotate_image=CloneImage(image,image->columns,image->rows,MagickTrue,
1050       exception);
1051   if (rotate_image == (Image *) NULL)
1052     return((Image *) NULL);
1053   /*
1054     Integral rotate the image.
1055   */
1056   status=MagickTrue;
1057   progress=0;
1058   image_view=AcquireCacheView(image);
1059   rotate_view=AcquireCacheView(rotate_image);
1060   switch (rotations)
1061   {
1062     case 0:
1063     {
1064       /*
1065         Rotate 0 degrees.
1066       */
1067       break;
1068     }
1069     case 1:
1070     {
1071       size_t
1072         tile_height,
1073         tile_width;
1074
1075       ssize_t
1076         tile_y;
1077
1078       /*
1079         Rotate 90 degrees.
1080       */
1081       GetPixelCacheTileSize(image,&tile_width,&tile_height);
1082       tile_y=0;
1083       for ( ; tile_y < (ssize_t) image->rows; tile_y+=(ssize_t) tile_height)
1084       {
1085         register ssize_t
1086           tile_x;
1087
1088         if (status == MagickFalse)
1089           continue;
1090         tile_x=0;
1091         for ( ; tile_x < (ssize_t) image->columns; tile_x+=(ssize_t) tile_width)
1092         {
1093           MagickBooleanType
1094             sync;
1095
1096           register const Quantum
1097             *restrict p;
1098
1099           register ssize_t
1100             y;
1101
1102           register Quantum
1103             *restrict q;
1104
1105           size_t
1106             height,
1107             width;
1108
1109           width=tile_width;
1110           if ((tile_x+(ssize_t) tile_width) > (ssize_t) image->columns)
1111             width=(size_t) (tile_width-(tile_x+tile_width-image->columns));
1112           height=tile_height;
1113           if ((tile_y+(ssize_t) tile_height) > (ssize_t) image->rows)
1114             height=(size_t) (tile_height-(tile_y+tile_height-image->rows));
1115           p=GetCacheViewVirtualPixels(image_view,tile_x,tile_y,width,height,
1116             exception);
1117           if (p == (const Quantum *) NULL)
1118             {
1119               status=MagickFalse;
1120               break;
1121             }
1122 #if defined(MAGICKCORE_OPENMP_SUPPORT) 
1123           #pragma omp parallel for schedule(static,1) shared(progress, status)
1124 #endif
1125           for (y=0; y < (ssize_t) width; y++)
1126           {
1127             register const Quantum
1128               *restrict tile_pixels;
1129
1130             register ssize_t
1131               x;
1132
1133             if (status == MagickFalse)
1134               continue;
1135             q=QueueCacheViewAuthenticPixels(rotate_view,(ssize_t)
1136               (rotate_image->columns-(tile_y+height)),y+tile_x,height,1,
1137               exception);
1138             if (q == (Quantum *) NULL)
1139               {
1140                 status=MagickFalse;
1141                 continue;
1142               }
1143             tile_pixels=p+((height-1)*width+y)*GetPixelChannels(image);
1144             for (x=0; x < (ssize_t) height; x++)
1145             {
1146               register ssize_t
1147                 i;
1148
1149               for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1150               {
1151                 PixelChannel
1152                   channel;
1153
1154                 PixelTrait
1155                   rotate_traits,
1156                   traits;
1157
1158                 traits=GetPixelChannelMapTraits(image,(PixelChannel) i);
1159                 channel=GetPixelChannelMapChannel(image,(PixelChannel) i);
1160                 rotate_traits=GetPixelChannelMapTraits(rotate_image,channel);
1161                 if ((traits == UndefinedPixelTrait) ||
1162                     (rotate_traits == UndefinedPixelTrait))
1163                   continue;
1164                 if ((rotate_traits & CopyPixelTrait) != 0)
1165                   {
1166                     q[channel]=tile_pixels[i];
1167                     continue;
1168                   }
1169                 q[channel]=tile_pixels[i];
1170               }
1171               tile_pixels-=width*GetPixelChannels(image);
1172               q+=GetPixelChannels(rotate_image);
1173             }
1174             sync=SyncCacheViewAuthenticPixels(rotate_view,exception);
1175             if (sync == MagickFalse)
1176               status=MagickFalse;
1177           }
1178         }
1179         if (image->progress_monitor != (MagickProgressMonitor) NULL)
1180           {
1181             MagickBooleanType
1182               proceed;
1183
1184             proceed=SetImageProgress(image,RotateImageTag,progress+=tile_height,
1185               image->rows);
1186             if (proceed == MagickFalse)
1187               status=MagickFalse;
1188           }
1189       }
1190       (void) SetImageProgress(image,RotateImageTag,(MagickOffsetType)
1191         image->rows-1,image->rows);
1192       Swap(page.width,page.height);
1193       Swap(page.x,page.y);
1194       if (page.width != 0)
1195         page.x=(ssize_t) (page.width-rotate_image->columns-page.x);
1196       break;
1197     }
1198     case 2:
1199     {
1200       /*
1201         Rotate 180 degrees.
1202       */
1203 #if defined(MAGICKCORE_OPENMP_SUPPORT) 
1204   #pragma omp parallel for schedule(static,8) shared(progress,status)
1205 #endif
1206       for (y=0; y < (ssize_t) image->rows; y++)
1207       {
1208         MagickBooleanType
1209           sync;
1210
1211         register const Quantum
1212           *restrict p;
1213
1214         register ssize_t
1215           x;
1216
1217         register Quantum
1218           *restrict q;
1219
1220         if (status == MagickFalse)
1221           continue;
1222         p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
1223         q=QueueCacheViewAuthenticPixels(rotate_view,0,(ssize_t) (image->rows-y-
1224           1),image->columns,1,exception);
1225         if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
1226           {
1227             status=MagickFalse;
1228             continue;
1229           }
1230         q+=GetPixelChannels(rotate_image)*image->columns;
1231         for (x=0; x < (ssize_t) image->columns; x++)
1232         {
1233           register ssize_t
1234             i;
1235
1236           q-=GetPixelChannels(rotate_image);
1237           for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1238           {
1239             PixelChannel
1240               channel;
1241
1242             PixelTrait
1243               rotate_traits,
1244               traits;
1245
1246             traits=GetPixelChannelMapTraits(image,(PixelChannel) i);
1247             channel=GetPixelChannelMapChannel(image,(PixelChannel) i);
1248             rotate_traits=GetPixelChannelMapTraits(rotate_image,channel);
1249             if ((traits == UndefinedPixelTrait) ||
1250                 (rotate_traits == UndefinedPixelTrait))
1251               continue;
1252             if ((rotate_traits & CopyPixelTrait) != 0)
1253               {
1254                 q[channel]=p[i];
1255                 continue;
1256               }
1257             q[channel]=p[i];
1258           }
1259           p+=GetPixelChannels(image);
1260         }
1261         sync=SyncCacheViewAuthenticPixels(rotate_view,exception);
1262         if (sync == MagickFalse)
1263           status=MagickFalse;
1264         if (image->progress_monitor != (MagickProgressMonitor) NULL)
1265           {
1266             MagickBooleanType
1267               proceed;
1268
1269             proceed=SetImageProgress(image,RotateImageTag,progress++,
1270               image->rows);
1271             if (proceed == MagickFalse)
1272               status=MagickFalse;
1273           }
1274       }
1275       if (page.width != 0)
1276         page.x=(ssize_t) (page.width-rotate_image->columns-page.x);
1277       if (page.height != 0)
1278         page.y=(ssize_t) (page.height-rotate_image->rows-page.y);
1279       break;
1280     }
1281     case 3:
1282     {
1283       size_t
1284         tile_height,
1285         tile_width;
1286
1287       ssize_t
1288         tile_y;
1289
1290       /*
1291         Rotate 270 degrees.
1292       */
1293       GetPixelCacheTileSize(image,&tile_width,&tile_height);
1294       tile_y=0;
1295       for ( ; tile_y < (ssize_t) image->rows; tile_y+=(ssize_t) tile_height)
1296       {
1297         register ssize_t
1298           tile_x;
1299
1300         if (status == MagickFalse)
1301           continue;
1302         tile_x=0;
1303         for ( ; tile_x < (ssize_t) image->columns; tile_x+=(ssize_t) tile_width)
1304         {
1305           MagickBooleanType
1306             sync;
1307
1308           register const Quantum
1309             *restrict p;
1310
1311           register ssize_t
1312             y;
1313
1314           register Quantum
1315             *restrict q;
1316
1317           size_t
1318             height,
1319             width;
1320
1321           width=tile_width;
1322           if ((tile_x+(ssize_t) tile_width) > (ssize_t) image->columns)
1323             width=(size_t) (tile_width-(tile_x+tile_width-image->columns));
1324           height=tile_height;
1325           if ((tile_y+(ssize_t) tile_height) > (ssize_t) image->rows)
1326             height=(size_t) (tile_height-(tile_y+tile_height-image->rows));
1327           p=GetCacheViewVirtualPixels(image_view,tile_x,tile_y,width,height,
1328             exception);
1329           if (p == (const Quantum *) NULL)
1330             {
1331               status=MagickFalse;
1332               break;
1333             }
1334 #if defined(MAGICKCORE_OPENMP_SUPPORT) 
1335           #pragma omp parallel for schedule(static,1) shared(progress,status)
1336 #endif
1337           for (y=0; y < (ssize_t) width; y++)
1338           {
1339             register const Quantum
1340               *restrict tile_pixels;
1341
1342             register ssize_t
1343               x;
1344
1345             if (status == MagickFalse)
1346               continue;
1347             q=QueueCacheViewAuthenticPixels(rotate_view,tile_y,(ssize_t) (y+
1348               rotate_image->rows-(tile_x+width)),height,1,exception);
1349             if (q == (Quantum *) NULL)
1350               {
1351                 status=MagickFalse;
1352                 continue;
1353               }
1354             tile_pixels=p+((width-1)-y)*GetPixelChannels(image);
1355             for (x=0; x < (ssize_t) height; x++)
1356             {
1357               register ssize_t
1358                 i;
1359
1360               for (i=0; i < (ssize_t) GetPixelChannels(image); i++)
1361               {
1362                 PixelChannel
1363                   channel;
1364
1365                 PixelTrait
1366                   rotate_traits,
1367                   traits;
1368
1369                 traits=GetPixelChannelMapTraits(image,(PixelChannel) i);
1370                 channel=GetPixelChannelMapChannel(image,(PixelChannel) i);
1371                 rotate_traits=GetPixelChannelMapTraits(rotate_image,channel);
1372                 if ((traits == UndefinedPixelTrait) ||
1373                     (rotate_traits == UndefinedPixelTrait))
1374                   continue;
1375                 if ((rotate_traits & CopyPixelTrait) != 0)
1376                   {
1377                     q[channel]=tile_pixels[i];
1378                     continue;
1379                   }
1380                 q[channel]=tile_pixels[i];
1381               }
1382               tile_pixels+=width*GetPixelChannels(image);
1383               q+=GetPixelChannels(rotate_image);
1384             }
1385             sync=SyncCacheViewAuthenticPixels(rotate_view,exception);
1386             if (sync == MagickFalse)
1387               status=MagickFalse;
1388           }
1389         }
1390         if (image->progress_monitor != (MagickProgressMonitor) NULL)
1391           {
1392             MagickBooleanType
1393               proceed;
1394
1395             proceed=SetImageProgress(image,RotateImageTag,progress+=tile_height,
1396               image->rows);
1397             if (proceed == MagickFalse)
1398               status=MagickFalse;
1399           }
1400       }
1401       (void) SetImageProgress(image,RotateImageTag,(MagickOffsetType)
1402         image->rows-1,image->rows);
1403       Swap(page.width,page.height);
1404       Swap(page.x,page.y);
1405       if (page.height != 0)
1406         page.y=(ssize_t) (page.height-rotate_image->rows-page.y);
1407       break;
1408     }
1409   }
1410   rotate_view=DestroyCacheView(rotate_view);
1411   image_view=DestroyCacheView(image_view);
1412   rotate_image->type=image->type;
1413   rotate_image->page=page;
1414   if (status == MagickFalse)
1415     rotate_image=DestroyImage(rotate_image);
1416   return(rotate_image);
1417 }
1418 \f
1419 /*
1420 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1421 %                                                                             %
1422 %                                                                             %
1423 %                                                                             %
1424 +   X S h e a r I m a g e                                                     %
1425 %                                                                             %
1426 %                                                                             %
1427 %                                                                             %
1428 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1429 %
1430 %  XShearImage() shears the image in the X direction with a shear angle of
1431 %  'degrees'.  Positive angles shear counter-clockwise (right-hand rule), and
1432 %  negative angles shear clockwise.  Angles are measured relative to a vertical
1433 %  Y-axis.  X shears will widen an image creating 'empty' triangles on the left
1434 %  and right sides of the source image.
1435 %
1436 %  The format of the XShearImage method is:
1437 %
1438 %      MagickBooleanType XShearImage(Image *image,const MagickRealType degrees,
1439 %        const size_t width,const size_t height,
1440 %        const ssize_t x_offset,const ssize_t y_offset,ExceptionInfo *exception)
1441 %
1442 %  A description of each parameter follows.
1443 %
1444 %    o image: the image.
1445 %
1446 %    o degrees: A MagickRealType representing the shearing angle along the X
1447 %      axis.
1448 %
1449 %    o width, height, x_offset, y_offset: Defines a region of the image
1450 %      to shear.
1451 %
1452 %    o exception: return any errors or warnings in this structure.
1453 %
1454 */
1455 static MagickBooleanType XShearImage(Image *image,const MagickRealType degrees,
1456   const size_t width,const size_t height,const ssize_t x_offset,
1457   const ssize_t y_offset,ExceptionInfo *exception)
1458 {
1459 #define XShearImageTag  "XShear/Image"
1460
1461   typedef enum
1462   {
1463     LEFT,
1464     RIGHT
1465   } ShearDirection;
1466
1467   CacheView
1468     *image_view;
1469
1470   MagickBooleanType
1471     status;
1472
1473   MagickOffsetType
1474     progress;
1475
1476   PixelInfo
1477     background;
1478
1479   ssize_t
1480     y;
1481
1482   assert(image != (Image *) NULL);
1483   assert(image->signature == MagickSignature);
1484   if (image->debug != MagickFalse)
1485     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1486   GetPixelInfo(image,&background);
1487   SetPixelInfoPacket(image,&image->background_color,&background);
1488   if (image->colorspace == CMYKColorspace)
1489     ConvertRGBToCMYK(&background);
1490   /*
1491     X shear image.
1492   */
1493   status=MagickTrue;
1494   progress=0;
1495   image_view=AcquireCacheView(image);
1496 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1497   #pragma omp parallel for schedule(dynamic,4) shared(progress, status)
1498 #endif
1499   for (y=0; y < (ssize_t) height; y++)
1500   {
1501     PixelInfo
1502       pixel,
1503       source,
1504       destination;
1505
1506     MagickRealType
1507       area,
1508       displacement;
1509
1510     register Quantum
1511       *restrict p,
1512       *restrict q;
1513
1514     register ssize_t
1515       i;
1516
1517     ShearDirection
1518       direction;
1519
1520     ssize_t
1521       step;
1522
1523     if (status == MagickFalse)
1524       continue;
1525     p=GetCacheViewAuthenticPixels(image_view,0,y_offset+y,image->columns,1,
1526       exception);
1527     if (p == (Quantum *) NULL)
1528       {
1529         status=MagickFalse;
1530         continue;
1531       }
1532     p+=x_offset*GetPixelChannels(image);
1533     displacement=degrees*(MagickRealType) (y-height/2.0);
1534     if (displacement == 0.0)
1535       continue;
1536     if (displacement > 0.0)
1537       direction=RIGHT;
1538     else
1539       {
1540         displacement*=(-1.0);
1541         direction=LEFT;
1542       }
1543     step=(ssize_t) floor((double) displacement);
1544     area=(MagickRealType) (displacement-step);
1545     step++;
1546     pixel=background;
1547     GetPixelInfo(image,&source);
1548     GetPixelInfo(image,&destination);
1549     switch (direction)
1550     {
1551       case LEFT:
1552       {
1553         /*
1554           Transfer pixels left-to-right.
1555         */
1556         if (step > x_offset)
1557           break;
1558         q=p-step*GetPixelChannels(image);
1559         for (i=0; i < (ssize_t) width; i++)
1560         {
1561           if ((x_offset+i) < step)
1562             {
1563               p+=GetPixelChannels(image);
1564               SetPixelInfo(image,p,&pixel);
1565               q+=GetPixelChannels(image);
1566               continue;
1567             }
1568           SetPixelInfo(image,p,&source);
1569           CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1570             &source,(MagickRealType) GetPixelAlpha(image,p),area,
1571             &destination);
1572           SetPixelPixelInfo(image,&destination,q);
1573           SetPixelInfo(image,p,&pixel);
1574           p+=GetPixelChannels(image);
1575           q+=GetPixelChannels(image);
1576         }
1577         CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1578           &background,(MagickRealType) background.alpha,area,&destination);
1579         SetPixelPixelInfo(image,&destination,q);
1580         q+=GetPixelChannels(image);
1581         for (i=0; i < (step-1); i++)
1582         {
1583           SetPixelPixelInfo(image,&background,q);
1584           q+=GetPixelChannels(image);
1585         }
1586         break;
1587       }
1588       case RIGHT:
1589       {
1590         /*
1591           Transfer pixels right-to-left.
1592         */
1593         p+=width*GetPixelChannels(image);
1594         q=p+step*GetPixelChannels(image);
1595         for (i=0; i < (ssize_t) width; i++)
1596         {
1597           p-=GetPixelChannels(image);
1598           q-=GetPixelChannels(image);
1599           if ((size_t) (x_offset+width+step-i) >= image->columns)
1600             continue;
1601           SetPixelInfo(image,p,&source);
1602           CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1603             &source,(MagickRealType) GetPixelAlpha(image,p),area,
1604             &destination);
1605           SetPixelPixelInfo(image,&destination,q);
1606           SetPixelInfo(image,p,&pixel);
1607         }
1608         CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1609           &background,(MagickRealType) background.alpha,area,&destination);
1610         q-=GetPixelChannels(image);
1611         SetPixelPixelInfo(image,&destination,q);
1612         for (i=0; i < (step-1); i++)
1613         {
1614           q-=GetPixelChannels(image);
1615           SetPixelPixelInfo(image,&background,q);
1616         }
1617         break;
1618       }
1619     }
1620     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
1621       status=MagickFalse;
1622     if (image->progress_monitor != (MagickProgressMonitor) NULL)
1623       {
1624         MagickBooleanType
1625           proceed;
1626
1627 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1628   #pragma omp critical (MagickCore_XShearImage)
1629 #endif
1630         proceed=SetImageProgress(image,XShearImageTag,progress++,height);
1631         if (proceed == MagickFalse)
1632           status=MagickFalse;
1633       }
1634   }
1635   image_view=DestroyCacheView(image_view);
1636   return(status);
1637 }
1638 \f
1639 /*
1640 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1641 %                                                                             %
1642 %                                                                             %
1643 %                                                                             %
1644 +   Y S h e a r I m a g e                                                     %
1645 %                                                                             %
1646 %                                                                             %
1647 %                                                                             %
1648 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1649 %
1650 %  YShearImage shears the image in the Y direction with a shear angle of
1651 %  'degrees'.  Positive angles shear counter-clockwise (right-hand rule), and
1652 %  negative angles shear clockwise.  Angles are measured relative to a
1653 %  horizontal X-axis.  Y shears will increase the height of an image creating
1654 %  'empty' triangles on the top and bottom of the source image.
1655 %
1656 %  The format of the YShearImage method is:
1657 %
1658 %      MagickBooleanType YShearImage(Image *image,const MagickRealType degrees,
1659 %        const size_t width,const size_t height,
1660 %        const ssize_t x_offset,const ssize_t y_offset,ExceptionInfo *exception)
1661 %
1662 %  A description of each parameter follows.
1663 %
1664 %    o image: the image.
1665 %
1666 %    o degrees: A MagickRealType representing the shearing angle along the Y
1667 %      axis.
1668 %
1669 %    o width, height, x_offset, y_offset: Defines a region of the image
1670 %      to shear.
1671 %
1672 %    o exception: return any errors or warnings in this structure.
1673 %
1674 */
1675 static MagickBooleanType YShearImage(Image *image,const MagickRealType degrees,
1676   const size_t width,const size_t height,const ssize_t x_offset,
1677   const ssize_t y_offset,ExceptionInfo *exception)
1678 {
1679 #define YShearImageTag  "YShear/Image"
1680
1681   typedef enum
1682   {
1683     UP,
1684     DOWN
1685   } ShearDirection;
1686
1687   CacheView
1688     *image_view;
1689
1690   MagickBooleanType
1691     status;
1692
1693   MagickOffsetType
1694     progress;
1695
1696   PixelInfo
1697     background;
1698
1699   ssize_t
1700     x;
1701
1702   assert(image != (Image *) NULL);
1703   assert(image->signature == MagickSignature);
1704   if (image->debug != MagickFalse)
1705     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1706   GetPixelInfo(image,&background);
1707   SetPixelInfoPacket(image,&image->background_color,&background);
1708   if (image->colorspace == CMYKColorspace)
1709     ConvertRGBToCMYK(&background);
1710   /*
1711     Y Shear image.
1712   */
1713   status=MagickTrue;
1714   progress=0;
1715   image_view=AcquireCacheView(image);
1716 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1717   #pragma omp parallel for schedule(dynamic,4) shared(progress, status)
1718 #endif
1719   for (x=0; x < (ssize_t) width; x++)
1720   {
1721     ssize_t
1722       step;
1723
1724     MagickRealType
1725       area,
1726       displacement;
1727
1728     PixelInfo
1729       pixel,
1730       source,
1731       destination;
1732
1733     register Quantum
1734       *restrict p,
1735       *restrict q;
1736
1737     register ssize_t
1738       i;
1739
1740     ShearDirection
1741       direction;
1742
1743     if (status == MagickFalse)
1744       continue;
1745     p=GetCacheViewAuthenticPixels(image_view,x_offset+x,0,1,image->rows,
1746       exception);
1747     if (p == (Quantum *) NULL)
1748       {
1749         status=MagickFalse;
1750         continue;
1751       }
1752     p+=y_offset*GetPixelChannels(image);
1753     displacement=degrees*(MagickRealType) (x-width/2.0);
1754     if (displacement == 0.0)
1755       continue;
1756     if (displacement > 0.0)
1757       direction=DOWN;
1758     else
1759       {
1760         displacement*=(-1.0);
1761         direction=UP;
1762       }
1763     step=(ssize_t) floor((double) displacement);
1764     area=(MagickRealType) (displacement-step);
1765     step++;
1766     pixel=background;
1767     GetPixelInfo(image,&source);
1768     GetPixelInfo(image,&destination);
1769     switch (direction)
1770     {
1771       case UP:
1772       {
1773         /*
1774           Transfer pixels top-to-bottom.
1775         */
1776         if (step > y_offset)
1777           break;
1778         q=p-step*GetPixelChannels(image);
1779         for (i=0; i < (ssize_t) height; i++)
1780         {
1781           if ((y_offset+i) < step)
1782             {
1783               p+=GetPixelChannels(image);
1784               SetPixelInfo(image,p,&pixel);
1785               q+=GetPixelChannels(image);
1786               continue;
1787             }
1788           SetPixelInfo(image,p,&source);
1789           CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1790             &source,(MagickRealType) GetPixelAlpha(image,p),area,
1791             &destination);
1792           SetPixelPixelInfo(image,&destination,q);
1793           SetPixelInfo(image,p,&pixel);
1794           p+=GetPixelChannels(image);
1795           q+=GetPixelChannels(image);
1796         }
1797         CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1798           &background,(MagickRealType) background.alpha,area,&destination);
1799         SetPixelPixelInfo(image,&destination,q);
1800         q+=GetPixelChannels(image);
1801         for (i=0; i < (step-1); i++)
1802         {
1803           SetPixelPixelInfo(image,&background,q);
1804           q+=GetPixelChannels(image);
1805         }
1806         break;
1807       }
1808       case DOWN:
1809       {
1810         /*
1811           Transfer pixels bottom-to-top.
1812         */
1813         p+=height*GetPixelChannels(image);
1814         q=p+step*GetPixelChannels(image);
1815         for (i=0; i < (ssize_t) height; i++)
1816         {
1817           p-=GetPixelChannels(image);
1818           q-=GetPixelChannels(image);
1819           if ((size_t) (y_offset+height+step-i) >= image->rows)
1820             continue;
1821           SetPixelInfo(image,p,&source);
1822           CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1823             &source,(MagickRealType) GetPixelAlpha(image,p),area,
1824             &destination);
1825           SetPixelPixelInfo(image,&destination,q);
1826           SetPixelInfo(image,p,&pixel);
1827         }
1828         CompositePixelInfoAreaBlend(&pixel,(MagickRealType) pixel.alpha,
1829           &background,(MagickRealType) background.alpha,area,&destination);
1830         q-=GetPixelChannels(image);
1831         SetPixelPixelInfo(image,&destination,q);
1832         for (i=0; i < (step-1); i++)
1833         {
1834           q-=GetPixelChannels(image);
1835           SetPixelPixelInfo(image,&background,q);
1836         }
1837         break;
1838       }
1839     }
1840     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
1841       status=MagickFalse;
1842     if (image->progress_monitor != (MagickProgressMonitor) NULL)
1843       {
1844         MagickBooleanType
1845           proceed;
1846
1847 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1848   #pragma omp critical (MagickCore_YShearImage)
1849 #endif
1850         proceed=SetImageProgress(image,YShearImageTag,progress++,image->rows);
1851         if (proceed == MagickFalse)
1852           status=MagickFalse;
1853       }
1854   }
1855   image_view=DestroyCacheView(image_view);
1856   return(status);
1857 }
1858 \f
1859 /*
1860 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1861 %                                                                             %
1862 %                                                                             %
1863 %                                                                             %
1864 %   R o t a t e I m a g e                                                     %
1865 %                                                                             %
1866 %                                                                             %
1867 %                                                                             %
1868 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1869 %
1870 %  RotateImage() creates a new image that is a rotated copy of an existing
1871 %  one.  Positive angles rotate counter-clockwise (right-hand rule), while
1872 %  negative angles rotate clockwise.  Rotated images are usually larger than
1873 %  the originals and have 'empty' triangular corners.  X axis.  Empty
1874 %  triangles left over from shearing the image are filled with the background
1875 %  color defined by member 'background_color' of the image.  RotateImage
1876 %  allocates the memory necessary for the new Image structure and returns a
1877 %  pointer to the new image.
1878 %
1879 %  RotateImage() is based on the paper "A Fast Algorithm for General
1880 %  Raster Rotatation" by Alan W. Paeth.  RotateImage is adapted from a similar
1881 %  method based on the Paeth paper written by Michael Halle of the Spatial
1882 %  Imaging Group, MIT Media Lab.
1883 %
1884 %  The format of the RotateImage method is:
1885 %
1886 %      Image *RotateImage(const Image *image,const double degrees,
1887 %        ExceptionInfo *exception)
1888 %
1889 %  A description of each parameter follows.
1890 %
1891 %    o image: the image.
1892 %
1893 %    o degrees: Specifies the number of degrees to rotate the image.
1894 %
1895 %    o exception: return any errors or warnings in this structure.
1896 %
1897 */
1898 MagickExport Image *RotateImage(const Image *image,const double degrees,
1899   ExceptionInfo *exception)
1900 {
1901   Image
1902     *integral_image,
1903     *rotate_image;
1904
1905   MagickBooleanType
1906     status;
1907
1908   MagickRealType
1909     angle;
1910
1911   PointInfo
1912     shear;
1913
1914   RectangleInfo
1915     border_info;
1916
1917   size_t
1918     height,
1919     rotations,
1920     width,
1921     y_width;
1922
1923   ssize_t
1924     x_offset,
1925     y_offset;
1926
1927   /*
1928     Adjust rotation angle.
1929   */
1930   assert(image != (Image *) NULL);
1931   assert(image->signature == MagickSignature);
1932   if (image->debug != MagickFalse)
1933     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1934   assert(exception != (ExceptionInfo *) NULL);
1935   assert(exception->signature == MagickSignature);
1936   angle=degrees;
1937   while (angle < -45.0)
1938     angle+=360.0;
1939   for (rotations=0; angle > 45.0; rotations++)
1940     angle-=90.0;
1941   rotations%=4;
1942   /*
1943     Calculate shear equations.
1944   */
1945   integral_image=IntegralRotateImage(image,rotations,exception);
1946   if (integral_image == (Image *) NULL)
1947     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
1948   shear.x=(-tan((double) DegreesToRadians(angle)/2.0));
1949   shear.y=sin((double) DegreesToRadians(angle));
1950   if ((shear.x == 0.0) && (shear.y == 0.0))
1951     return(integral_image);
1952   if (SetImageStorageClass(integral_image,DirectClass,exception) == MagickFalse)
1953     {
1954       integral_image=DestroyImage(integral_image);
1955       return(integral_image);
1956     }
1957   if (integral_image->matte == MagickFalse)
1958     (void) SetImageAlphaChannel(integral_image,OpaqueAlphaChannel,exception);
1959   /*
1960     Compute image size.
1961   */
1962   width=image->columns;
1963   height=image->rows;
1964   if ((rotations == 1) || (rotations == 3))
1965     {
1966       width=image->rows;
1967       height=image->columns;
1968     }
1969   y_width=width+(ssize_t) floor(fabs(shear.x)*height+0.5);
1970   x_offset=(ssize_t) ceil((double) width+((fabs(shear.y)*height)-width)/2.0-
1971     0.5);
1972   y_offset=(ssize_t) ceil((double) height+((fabs(shear.y)*y_width)-height)/2.0-
1973     0.5);
1974   /*
1975     Surround image with a border.
1976   */
1977   integral_image->border_color=integral_image->background_color;
1978   integral_image->compose=CopyCompositeOp;
1979   border_info.width=(size_t) x_offset;
1980   border_info.height=(size_t) y_offset;
1981   rotate_image=BorderImage(integral_image,&border_info,image->compose,
1982     exception);
1983   integral_image=DestroyImage(integral_image);
1984   if (rotate_image == (Image *) NULL)
1985     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
1986   /*
1987     Rotate the image.
1988   */
1989   status=XShearImage(rotate_image,shear.x,width,height,x_offset,(ssize_t)
1990     (rotate_image->rows-height)/2,exception);
1991   if (status == MagickFalse)
1992     {
1993       rotate_image=DestroyImage(rotate_image);
1994       return((Image *) NULL);
1995     }
1996   status=YShearImage(rotate_image,shear.y,y_width,height,(ssize_t)
1997     (rotate_image->columns-y_width)/2,y_offset,exception);
1998   if (status == MagickFalse)
1999     {
2000       rotate_image=DestroyImage(rotate_image);
2001       return((Image *) NULL);
2002     }
2003   status=XShearImage(rotate_image,shear.x,y_width,rotate_image->rows,(ssize_t)
2004     (rotate_image->columns-y_width)/2,0,exception);
2005   if (status == MagickFalse)
2006     {
2007       rotate_image=DestroyImage(rotate_image);
2008       return((Image *) NULL);
2009     }
2010   status=CropToFitImage(&rotate_image,shear.x,shear.y,(MagickRealType) width,
2011     (MagickRealType) height,MagickTrue,exception);
2012   if (status == MagickFalse)
2013     {
2014       rotate_image=DestroyImage(rotate_image);
2015       return((Image *) NULL);
2016     }
2017   rotate_image->compose=image->compose;
2018   rotate_image->page.width=0;
2019   rotate_image->page.height=0;
2020   return(rotate_image);
2021 }
2022 \f
2023 /*
2024 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2025 %                                                                             %
2026 %                                                                             %
2027 %                                                                             %
2028 %   S h e a r I m a g e                                                       %
2029 %                                                                             %
2030 %                                                                             %
2031 %                                                                             %
2032 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2033 %
2034 %  ShearImage() creates a new image that is a shear_image copy of an existing
2035 %  one.  Shearing slides one edge of an image along the X or Y axis, creating
2036 %  a parallelogram.  An X direction shear slides an edge along the X axis,
2037 %  while a Y direction shear slides an edge along the Y axis.  The amount of
2038 %  the shear is controlled by a shear angle.  For X direction shears, x_shear
2039 %  is measured relative to the Y axis, and similarly, for Y direction shears
2040 %  y_shear is measured relative to the X axis.  Empty triangles left over from
2041 %  shearing the image are filled with the background color defined by member
2042 %  'background_color' of the image..  ShearImage() allocates the memory
2043 %  necessary for the new Image structure and returns a pointer to the new image.
2044 %
2045 %  ShearImage() is based on the paper "A Fast Algorithm for General Raster
2046 %  Rotatation" by Alan W. Paeth.
2047 %
2048 %  The format of the ShearImage method is:
2049 %
2050 %      Image *ShearImage(const Image *image,const double x_shear,
2051 %        const double y_shear,ExceptionInfo *exception)
2052 %
2053 %  A description of each parameter follows.
2054 %
2055 %    o image: the image.
2056 %
2057 %    o x_shear, y_shear: Specifies the number of degrees to shear the image.
2058 %
2059 %    o exception: return any errors or warnings in this structure.
2060 %
2061 */
2062 MagickExport Image *ShearImage(const Image *image,const double x_shear,
2063   const double y_shear,ExceptionInfo *exception)
2064 {
2065   Image
2066     *integral_image,
2067     *shear_image;
2068
2069   ssize_t
2070     x_offset,
2071     y_offset;
2072
2073   MagickBooleanType
2074     status;
2075
2076   PointInfo
2077     shear;
2078
2079   RectangleInfo
2080     border_info;
2081
2082   size_t
2083     y_width;
2084
2085   assert(image != (Image *) NULL);
2086   assert(image->signature == MagickSignature);
2087   if (image->debug != MagickFalse)
2088     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2089   assert(exception != (ExceptionInfo *) NULL);
2090   assert(exception->signature == MagickSignature);
2091   if ((x_shear != 0.0) && (fmod(x_shear,90.0) == 0.0))
2092     ThrowImageException(ImageError,"AngleIsDiscontinuous");
2093   if ((y_shear != 0.0) && (fmod(y_shear,90.0) == 0.0))
2094     ThrowImageException(ImageError,"AngleIsDiscontinuous");
2095   /*
2096     Initialize shear angle.
2097   */
2098   integral_image=CloneImage(image,0,0,MagickTrue,exception);
2099   if (integral_image == (Image *) NULL)
2100     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
2101   shear.x=(-tan(DegreesToRadians(fmod(x_shear,360.0))));
2102   shear.y=tan(DegreesToRadians(fmod(y_shear,360.0)));
2103   if ((shear.x == 0.0) && (shear.y == 0.0))
2104     return(integral_image);
2105   if (SetImageStorageClass(integral_image,DirectClass,exception) == MagickFalse)
2106     {
2107       integral_image=DestroyImage(integral_image);
2108       return(integral_image);
2109     }
2110   if (integral_image->matte == MagickFalse)
2111     (void) SetImageAlphaChannel(integral_image,OpaqueAlphaChannel,exception);
2112   /*
2113     Compute image size.
2114   */
2115   y_width=image->columns+(ssize_t) floor(fabs(shear.x)*image->rows+0.5);
2116   x_offset=(ssize_t) ceil((double) image->columns+((fabs(shear.x)*image->rows)-
2117     image->columns)/2.0-0.5);
2118   y_offset=(ssize_t) ceil((double) image->rows+((fabs(shear.y)*y_width)-
2119     image->rows)/2.0-0.5);
2120   /*
2121     Surround image with border.
2122   */
2123   integral_image->border_color=integral_image->background_color;
2124   integral_image->compose=CopyCompositeOp;
2125   border_info.width=(size_t) x_offset;
2126   border_info.height=(size_t) y_offset;
2127   shear_image=BorderImage(integral_image,&border_info,image->compose,exception);
2128   integral_image=DestroyImage(integral_image);
2129   if (shear_image == (Image *) NULL)
2130     ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
2131   /*
2132     Shear the image.
2133   */
2134   if (shear_image->matte == MagickFalse)
2135     (void) SetImageAlphaChannel(shear_image,OpaqueAlphaChannel,exception);
2136   status=XShearImage(shear_image,shear.x,image->columns,image->rows,x_offset,
2137     (ssize_t) (shear_image->rows-image->rows)/2,exception);
2138   if (status == MagickFalse)
2139     {
2140       shear_image=DestroyImage(shear_image);
2141       return((Image *) NULL);
2142     }
2143   status=YShearImage(shear_image,shear.y,y_width,image->rows,(ssize_t)
2144     (shear_image->columns-y_width)/2,y_offset,exception);
2145   if (status == MagickFalse)
2146     {
2147       shear_image=DestroyImage(shear_image);
2148       return((Image *) NULL);
2149     }
2150   status=CropToFitImage(&shear_image,shear.x,shear.y,(MagickRealType)
2151     image->columns,(MagickRealType) image->rows,MagickFalse,exception);
2152   if (status == MagickFalse)
2153     {
2154       shear_image=DestroyImage(shear_image);
2155       return((Image *) NULL);
2156     }
2157   shear_image->compose=image->compose;
2158   shear_image->page.width=0;
2159   shear_image->page.height=0;
2160   return(shear_image);
2161 }