]> granicus.if.org Git - imagemagick/blob - MagickCore/quantize.c
(no commit message)
[imagemagick] / MagickCore / quantize.c
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %                                                                             %
4 %                                                                             %
5 %                                                                             %
6 %           QQQ   U   U   AAA   N   N  TTTTT  IIIII   ZZZZZ  EEEEE            %
7 %          Q   Q  U   U  A   A  NN  N    T      I        ZZ  E                %
8 %          Q   Q  U   U  AAAAA  N N N    T      I      ZZZ   EEEEE            %
9 %          Q  QQ  U   U  A   A  N  NN    T      I     ZZ     E                %
10 %           QQQQ   UUU   A   A  N   N    T    IIIII   ZZZZZ  EEEEE            %
11 %                                                                             %
12 %                                                                             %
13 %    MagickCore Methods to Reduce the Number of Unique Colors in an Image     %
14 %                                                                             %
15 %                           Software Design                                   %
16 %                             John Cristy                                     %
17 %                              July 1992                                      %
18 %                                                                             %
19 %                                                                             %
20 %  Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization      %
21 %  dedicated to making software imaging solutions freely available.           %
22 %                                                                             %
23 %  You may not use this file except in compliance with the License.  You may  %
24 %  obtain a copy of the License at                                            %
25 %                                                                             %
26 %    http://www.imagemagick.org/script/license.php                            %
27 %                                                                             %
28 %  Unless required by applicable law or agreed to in writing, software        %
29 %  distributed under the License is distributed on an "AS IS" BASIS,          %
30 %  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
31 %  See the License for the specific language governing permissions and        %
32 %  limitations under the License.                                             %
33 %                                                                             %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %  Realism in computer graphics typically requires using 24 bits/pixel to
37 %  generate an image.  Yet many graphic display devices do not contain the
38 %  amount of memory necessary to match the spatial and color resolution of
39 %  the human eye.  The Quantize methods takes a 24 bit image and reduces
40 %  the number of colors so it can be displayed on raster device with less
41 %  bits per pixel.  In most instances, the quantized image closely
42 %  resembles the original reference image.
43 %
44 %  A reduction of colors in an image is also desirable for image
45 %  transmission and real-time animation.
46 %
47 %  QuantizeImage() takes a standard RGB or monochrome images and quantizes
48 %  them down to some fixed number of colors.
49 %
50 %  For purposes of color allocation, an image is a set of n pixels, where
51 %  each pixel is a point in RGB space.  RGB space is a 3-dimensional
52 %  vector space, and each pixel, Pi,  is defined by an ordered triple of
53 %  red, green, and blue coordinates, (Ri, Gi, Bi).
54 %
55 %  Each primary color component (red, green, or blue) represents an
56 %  intensity which varies linearly from 0 to a maximum value, Cmax, which
57 %  corresponds to full saturation of that color.  Color allocation is
58 %  defined over a domain consisting of the cube in RGB space with opposite
59 %  vertices at (0,0,0) and (Cmax, Cmax, Cmax).  QUANTIZE requires Cmax =
60 %  255.
61 %
62 %  The algorithm maps this domain onto a tree in which each node
63 %  represents a cube within that domain.  In the following discussion
64 %  these cubes are defined by the coordinate of two opposite vertices:
65 %  The vertex nearest the origin in RGB space and the vertex farthest from
66 %  the origin.
67 %
68 %  The tree's root node represents the entire domain, (0,0,0) through
69 %  (Cmax,Cmax,Cmax).  Each lower level in the tree is generated by
70 %  subdividing one node's cube into eight smaller cubes of equal size.
71 %  This corresponds to bisecting the parent cube with planes passing
72 %  through the midpoints of each edge.
73 %
74 %  The basic algorithm operates in three phases: Classification,
75 %  Reduction, and Assignment.  Classification builds a color description
76 %  tree for the image.  Reduction collapses the tree until the number it
77 %  represents, at most, the number of colors desired in the output image.
78 %  Assignment defines the output image's color map and sets each pixel's
79 %  color by restorage_class in the reduced tree.  Our goal is to minimize
80 %  the numerical discrepancies between the original colors and quantized
81 %  colors (quantization error).
82 %
83 %  Classification begins by initializing a color description tree of
84 %  sufficient depth to represent each possible input color in a leaf.
85 %  However, it is impractical to generate a fully-formed color description
86 %  tree in the storage_class phase for realistic values of Cmax.  If
87 %  colors components in the input image are quantized to k-bit precision,
88 %  so that Cmax= 2k-1, the tree would need k levels below the root node to
89 %  allow representing each possible input color in a leaf.  This becomes
90 %  prohibitive because the tree's total number of nodes is 1 +
91 %  sum(i=1, k, 8k).
92 %
93 %  A complete tree would require 19,173,961 nodes for k = 8, Cmax = 255.
94 %  Therefore, to avoid building a fully populated tree, QUANTIZE: (1)
95 %  Initializes data structures for nodes only as they are needed;  (2)
96 %  Chooses a maximum depth for the tree as a function of the desired
97 %  number of colors in the output image (currently log2(colormap size)).
98 %
99 %  For each pixel in the input image, storage_class scans downward from
100 %  the root of the color description tree.  At each level of the tree it
101 %  identifies the single node which represents a cube in RGB space
102 %  containing the pixel's color.  It updates the following data for each
103 %  such node:
104 %
105 %    n1: Number of pixels whose color is contained in the RGB cube which
106 %    this node represents;
107 %
108 %    n2: Number of pixels whose color is not represented in a node at
109 %    lower depth in the tree;  initially,  n2 = 0 for all nodes except
110 %    leaves of the tree.
111 %
112 %    Sr, Sg, Sb: Sums of the red, green, and blue component values for all
113 %    pixels not classified at a lower depth. The combination of these sums
114 %    and n2  will ultimately characterize the mean color of a set of
115 %    pixels represented by this node.
116 %
117 %    E: the distance squared in RGB space between each pixel contained
118 %    within a node and the nodes' center.  This represents the
119 %    quantization error for a node.
120 %
121 %  Reduction repeatedly prunes the tree until the number of nodes with n2
122 %  > 0 is less than or equal to the maximum number of colors allowed in
123 %  the output image.  On any given iteration over the tree, it selects
124 %  those nodes whose E count is minimal for pruning and merges their color
125 %  statistics upward. It uses a pruning threshold, Ep, to govern node
126 %  selection as follows:
127 %
128 %    Ep = 0
129 %    while number of nodes with (n2 > 0) > required maximum number of colors
130 %      prune all nodes such that E <= Ep
131 %      Set Ep to minimum E in remaining nodes
132 %
133 %  This has the effect of minimizing any quantization error when merging
134 %  two nodes together.
135 %
136 %  When a node to be pruned has offspring, the pruning procedure invokes
137 %  itself recursively in order to prune the tree from the leaves upward.
138 %  n2,  Sr, Sg,  and  Sb in a node being pruned are always added to the
139 %  corresponding data in that node's parent.  This retains the pruned
140 %  node's color characteristics for later averaging.
141 %
142 %  For each node, n2 pixels exist for which that node represents the
143 %  smallest volume in RGB space containing those pixel's colors.  When n2
144 %  > 0 the node will uniquely define a color in the output image. At the
145 %  beginning of reduction,  n2 = 0  for all nodes except a the leaves of
146 %  the tree which represent colors present in the input image.
147 %
148 %  The other pixel count, n1, indicates the total number of colors within
149 %  the cubic volume which the node represents.  This includes n1 - n2
150 %  pixels whose colors should be defined by nodes at a lower level in the
151 %  tree.
152 %
153 %  Assignment generates the output image from the pruned tree.  The output
154 %  image consists of two parts: (1)  A color map, which is an array of
155 %  color descriptions (RGB triples) for each color present in the output
156 %  image;  (2)  A pixel array, which represents each pixel as an index
157 %  into the color map array.
158 %
159 %  First, the assignment phase makes one pass over the pruned color
160 %  description tree to establish the image's color map.  For each node
161 %  with n2  > 0, it divides Sr, Sg, and Sb by n2 .  This produces the mean
162 %  color of all pixels that classify no lower than this node.  Each of
163 %  these colors becomes an entry in the color map.
164 %
165 %  Finally,  the assignment phase reclassifies each pixel in the pruned
166 %  tree to identify the deepest node containing the pixel's color.  The
167 %  pixel's value in the pixel array becomes the index of this node's mean
168 %  color in the color map.
169 %
170 %  This method is based on a similar algorithm written by Paul Raveling.
171 %
172 */
173 \f
174 /*
175   Include declarations.
176 */
177 #include "MagickCore/studio.h"
178 #include "MagickCore/attribute.h"
179 #include "MagickCore/cache-view.h"
180 #include "MagickCore/color.h"
181 #include "MagickCore/color-private.h"
182 #include "MagickCore/colormap.h"
183 #include "MagickCore/colorspace.h"
184 #include "MagickCore/colorspace-private.h"
185 #include "MagickCore/enhance.h"
186 #include "MagickCore/exception.h"
187 #include "MagickCore/exception-private.h"
188 #include "MagickCore/histogram.h"
189 #include "MagickCore/image.h"
190 #include "MagickCore/image-private.h"
191 #include "MagickCore/list.h"
192 #include "MagickCore/memory_.h"
193 #include "MagickCore/monitor.h"
194 #include "MagickCore/monitor-private.h"
195 #include "MagickCore/option.h"
196 #include "MagickCore/pixel-accessor.h"
197 #include "MagickCore/quantize.h"
198 #include "MagickCore/quantum.h"
199 #include "MagickCore/quantum-private.h"
200 #include "MagickCore/string_.h"
201 #include "MagickCore/thread-private.h"
202 \f
203 /*
204   Define declarations.
205 */
206 #if !defined(__APPLE__) && !defined(TARGET_OS_IPHONE)
207 #define CacheShift  2
208 #else
209 #define CacheShift  3
210 #endif
211 #define ErrorQueueLength  16
212 #define MaxNodes  266817
213 #define MaxTreeDepth  8
214 #define NodesInAList  1920
215 \f
216 /*
217   Typdef declarations.
218 */
219 typedef struct _RealPixelInfo
220 {
221   MagickRealType
222     red,
223     green,
224     blue,
225     alpha;
226 } RealPixelInfo;
227
228 typedef struct _NodeInfo
229 {
230   struct _NodeInfo
231     *parent,
232     *child[16];
233
234   MagickSizeType
235     number_unique;
236
237   RealPixelInfo
238     total_color;
239
240   MagickRealType
241     quantize_error;
242
243   size_t
244     color_number,
245     id,
246     level;
247 } NodeInfo;
248
249 typedef struct _Nodes
250 {
251   NodeInfo
252     *nodes;
253
254   struct _Nodes
255     *next;
256 } Nodes;
257
258 typedef struct _CubeInfo
259 {
260   NodeInfo
261     *root;
262
263   size_t
264     colors,
265     maximum_colors;
266
267   ssize_t
268     transparent_index;
269
270   MagickSizeType
271     transparent_pixels;
272
273   RealPixelInfo
274     target;
275
276   MagickRealType
277     distance,
278     pruning_threshold,
279     next_threshold;
280
281   size_t
282     nodes,
283     free_nodes,
284     color_number;
285
286   NodeInfo
287     *next_node;
288
289   Nodes
290     *node_queue;
291
292   ssize_t
293     *cache;
294
295   RealPixelInfo
296     error[ErrorQueueLength];
297
298   MagickRealType
299     weights[ErrorQueueLength];
300
301   QuantizeInfo
302     *quantize_info;
303
304   MagickBooleanType
305     associate_alpha;
306
307   ssize_t
308     x,
309     y;
310
311   size_t
312     depth;
313
314   MagickOffsetType
315     offset;
316
317   MagickSizeType
318     span;
319 } CubeInfo;
320 \f
321 /*
322   Method prototypes.
323 */
324 static CubeInfo
325   *GetCubeInfo(const QuantizeInfo *,const size_t,const size_t);
326
327 static NodeInfo
328   *GetNodeInfo(CubeInfo *,const size_t,const size_t,NodeInfo *);
329
330 static MagickBooleanType
331   AssignImageColors(Image *,CubeInfo *,ExceptionInfo *),
332   ClassifyImageColors(CubeInfo *,const Image *,ExceptionInfo *),
333   DitherImage(Image *,CubeInfo *,ExceptionInfo *),
334   SetGrayscaleImage(Image *,ExceptionInfo *);
335
336 static size_t
337   DefineImageColormap(Image *,CubeInfo *,NodeInfo *);
338
339 static void
340   ClosestColor(const Image *,CubeInfo *,const NodeInfo *),
341   DestroyCubeInfo(CubeInfo *),
342   PruneLevel(const Image *,CubeInfo *,const NodeInfo *),
343   PruneToCubeDepth(const Image *,CubeInfo *,const NodeInfo *),
344   ReduceImageColors(const Image *,CubeInfo *);
345 \f
346 /*
347 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
348 %                                                                             %
349 %                                                                             %
350 %                                                                             %
351 %   A c q u i r e Q u a n t i z e I n f o                                     %
352 %                                                                             %
353 %                                                                             %
354 %                                                                             %
355 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
356 %
357 %  AcquireQuantizeInfo() allocates the QuantizeInfo structure.
358 %
359 %  The format of the AcquireQuantizeInfo method is:
360 %
361 %      QuantizeInfo *AcquireQuantizeInfo(const ImageInfo *image_info)
362 %
363 %  A description of each parameter follows:
364 %
365 %    o image_info: the image info.
366 %
367 */
368 MagickExport QuantizeInfo *AcquireQuantizeInfo(const ImageInfo *image_info)
369 {
370   QuantizeInfo
371     *quantize_info;
372
373   quantize_info=(QuantizeInfo *) AcquireMagickMemory(sizeof(*quantize_info));
374   if (quantize_info == (QuantizeInfo *) NULL)
375     ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
376   GetQuantizeInfo(quantize_info);
377   if (image_info != (ImageInfo *) NULL)
378     {
379       const char
380         *option;
381
382       quantize_info->dither=image_info->dither;
383       option=GetImageOption(image_info,"dither");
384       if (option != (const char *) NULL)
385         quantize_info->dither_method=(DitherMethod) ParseCommandOption(
386           MagickDitherOptions,MagickFalse,option);
387       quantize_info->measure_error=image_info->verbose;
388     }
389   return(quantize_info);
390 }
391 \f
392 /*
393 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
394 %                                                                             %
395 %                                                                             %
396 %                                                                             %
397 +   A s s i g n I m a g e C o l o r s                                         %
398 %                                                                             %
399 %                                                                             %
400 %                                                                             %
401 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
402 %
403 %  AssignImageColors() generates the output image from the pruned tree.  The
404 %  output image consists of two parts: (1)  A color map, which is an array
405 %  of color descriptions (RGB triples) for each color present in the
406 %  output image;  (2)  A pixel array, which represents each pixel as an
407 %  index into the color map array.
408 %
409 %  First, the assignment phase makes one pass over the pruned color
410 %  description tree to establish the image's color map.  For each node
411 %  with n2  > 0, it divides Sr, Sg, and Sb by n2 .  This produces the mean
412 %  color of all pixels that classify no lower than this node.  Each of
413 %  these colors becomes an entry in the color map.
414 %
415 %  Finally,  the assignment phase reclassifies each pixel in the pruned
416 %  tree to identify the deepest node containing the pixel's color.  The
417 %  pixel's value in the pixel array becomes the index of this node's mean
418 %  color in the color map.
419 %
420 %  The format of the AssignImageColors() method is:
421 %
422 %      MagickBooleanType AssignImageColors(Image *image,CubeInfo *cube_info)
423 %
424 %  A description of each parameter follows.
425 %
426 %    o image: the image.
427 %
428 %    o cube_info: A pointer to the Cube structure.
429 %
430 */
431
432 static inline void AssociateAlphaPixel(const Image *image,
433   const CubeInfo *cube_info,const Quantum *pixel,RealPixelInfo *alpha_pixel)
434 {
435   MagickRealType
436     alpha;
437
438   if ((cube_info->associate_alpha == MagickFalse) ||
439       (GetPixelAlpha(image,pixel)== OpaqueAlpha))
440     {
441       alpha_pixel->red=(MagickRealType) GetPixelRed(image,pixel);
442       alpha_pixel->green=(MagickRealType) GetPixelGreen(image,pixel);
443       alpha_pixel->blue=(MagickRealType) GetPixelBlue(image,pixel);
444       alpha_pixel->alpha=(MagickRealType) GetPixelAlpha(image,pixel);
445       return;
446     }
447   alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,pixel));
448   alpha_pixel->red=alpha*GetPixelRed(image,pixel);
449   alpha_pixel->green=alpha*GetPixelGreen(image,pixel);
450   alpha_pixel->blue=alpha*GetPixelBlue(image,pixel);
451   alpha_pixel->alpha=(MagickRealType) GetPixelAlpha(image,pixel);
452 }
453
454 static inline void AssociateAlphaPixelInfo(const Image *image,
455   const CubeInfo *cube_info,const PixelInfo *pixel,
456   RealPixelInfo *alpha_pixel)
457 {
458   MagickRealType
459     alpha;
460
461   if ((cube_info->associate_alpha == MagickFalse) ||
462       (pixel->alpha == OpaqueAlpha))
463     {
464       alpha_pixel->red=(MagickRealType) pixel->red;
465       alpha_pixel->green=(MagickRealType) pixel->green;
466       alpha_pixel->blue=(MagickRealType) pixel->blue;
467       alpha_pixel->alpha=(MagickRealType) pixel->alpha;
468       return;
469     }
470   alpha=(MagickRealType) (QuantumScale*pixel->alpha);
471   alpha_pixel->red=alpha*pixel->red;
472   alpha_pixel->green=alpha*pixel->green;
473   alpha_pixel->blue=alpha*pixel->blue;
474   alpha_pixel->alpha=(MagickRealType) pixel->alpha;
475 }
476
477 static inline Quantum ClampToUnsignedQuantum(const MagickRealType value)
478 {
479   if (value <= 0.0)
480     return((Quantum) 0);
481   if (value >= QuantumRange)
482     return((Quantum) QuantumRange);
483   return((Quantum) (value+0.5));
484 }
485
486 static inline size_t ColorToNodeId(const CubeInfo *cube_info,
487   const RealPixelInfo *pixel,size_t index)
488 {
489   size_t
490     id;
491
492   id=(size_t) (((ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->red)) >> index) & 0x01) |
493     ((ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->green)) >> index) & 0x01) << 1 |
494     ((ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->blue)) >> index) & 0x01) << 2);
495   if (cube_info->associate_alpha != MagickFalse)
496     id|=((ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->alpha)) >> index) & 0x1) << 3;
497   return(id);
498 }
499
500 static MagickBooleanType AssignImageColors(Image *image,CubeInfo *cube_info,
501   ExceptionInfo *exception)
502 {
503 #define AssignImageTag  "Assign/Image"
504
505   ssize_t
506     y;
507
508   /*
509     Allocate image colormap.
510   */
511   if ((cube_info->quantize_info->colorspace != UndefinedColorspace) &&
512       (cube_info->quantize_info->colorspace != CMYKColorspace))
513     (void) TransformImageColorspace((Image *) image,
514       cube_info->quantize_info->colorspace,exception);
515   else
516     if ((image->colorspace != GRAYColorspace) &&
517         (IsRGBColorspace(image->colorspace) == MagickFalse) &&
518         (image->colorspace != CMYColorspace))
519       (void) TransformImageColorspace((Image *) image,RGBColorspace,exception);
520   if (AcquireImageColormap(image,cube_info->colors,exception) == MagickFalse)
521     ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
522       image->filename);
523   image->colors=0;
524   cube_info->transparent_pixels=0;
525   cube_info->transparent_index=(-1);
526   (void) DefineImageColormap(image,cube_info,cube_info->root);
527   /*
528     Create a reduced color image.
529   */
530   if ((cube_info->quantize_info->dither != MagickFalse) &&
531       (cube_info->quantize_info->dither_method != NoDitherMethod))
532     (void) DitherImage(image,cube_info,exception);
533   else
534     {
535       CacheView
536         *image_view;
537
538       ExceptionInfo
539         *exception;
540
541       MagickBooleanType
542         status;
543
544       status=MagickTrue;
545       image_view=AcquireCacheView(image);
546 #if defined(MAGICKCORE_OPENMP_SUPPORT)
547       #pragma omp parallel for schedule(dynamic,4) shared(status)
548 #endif
549       for (y=0; y < (ssize_t) image->rows; y++)
550       {
551         CubeInfo
552           cube;
553
554         register Quantum
555           *restrict q;
556
557         register ssize_t
558           x;
559
560         ssize_t
561           count;
562
563         if (status == MagickFalse)
564           continue;
565         q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
566           exception);
567         if (q == (Quantum *) NULL)
568           {
569             status=MagickFalse;
570             continue;
571           }
572         cube=(*cube_info);
573         for (x=0; x < (ssize_t) image->columns; x+=count)
574         {
575           RealPixelInfo
576             pixel;
577
578           register const NodeInfo
579             *node_info;
580
581           register ssize_t
582             i;
583
584           size_t
585             id,
586             index;
587
588           /*
589             Identify the deepest node containing the pixel's color.
590           */
591           for (count=1; (x+count) < (ssize_t) image->columns; count++)
592           {
593             PixelInfo
594               packet;
595
596             GetPixelInfoPixel(image,q+count*GetPixelChannels(image),&packet);
597             if (IsPixelEquivalent(image,q,&packet) == MagickFalse)
598               break;
599           }
600           AssociateAlphaPixel(image,&cube,q,&pixel);
601           node_info=cube.root;
602           for (index=MaxTreeDepth-1; (ssize_t) index > 0; index--)
603           {
604             id=ColorToNodeId(&cube,&pixel,index);
605             if (node_info->child[id] == (NodeInfo *) NULL)
606               break;
607             node_info=node_info->child[id];
608           }
609           /*
610             Find closest color among siblings and their children.
611           */
612           cube.target=pixel;
613           cube.distance=(MagickRealType) (4.0*(QuantumRange+1.0)*
614             (QuantumRange+1.0)+1.0);
615           ClosestColor(image,&cube,node_info->parent);
616           index=cube.color_number;
617           for (i=0; i < (ssize_t) count; i++)
618           {
619             if (image->storage_class == PseudoClass)
620               SetPixelIndex(image,(Quantum) index,q);
621             if (cube.quantize_info->measure_error == MagickFalse)
622               {
623                 SetPixelRed(image,image->colormap[index].red,q);
624                 SetPixelGreen(image,image->colormap[index].green,q);
625                 SetPixelBlue(image,image->colormap[index].blue,q);
626                 if (cube.associate_alpha != MagickFalse)
627                   SetPixelAlpha(image,image->colormap[index].alpha,q);
628               }
629             q+=GetPixelChannels(image);
630           }
631         }
632         if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
633           status=MagickFalse;
634         if (image->progress_monitor != (MagickProgressMonitor) NULL)
635           {
636             MagickBooleanType
637               proceed;
638
639 #if defined(MAGICKCORE_OPENMP_SUPPORT)
640             #pragma omp critical (MagickCore_AssignImageColors)
641 #endif
642             proceed=SetImageProgress(image,AssignImageTag,(MagickOffsetType) y,
643               image->rows);
644             if (proceed == MagickFalse)
645               status=MagickFalse;
646           }
647       }
648       image_view=DestroyCacheView(image_view);
649     }
650   if (cube_info->quantize_info->measure_error != MagickFalse)
651     (void) GetImageQuantizeError(image,exception);
652   if ((cube_info->quantize_info->number_colors == 2) &&
653       (cube_info->quantize_info->colorspace == GRAYColorspace))
654     {
655       Quantum
656         intensity;
657
658       register PixelInfo
659         *restrict q;
660
661       register ssize_t
662         i;
663
664       /*
665         Monochrome image.
666       */
667       q=image->colormap;
668       for (i=0; i < (ssize_t) image->colors; i++)
669       {
670         intensity=(Quantum) ((MagickRealType) GetPixelInfoIntensity(q) <
671           ((MagickRealType) QuantumRange/2.0) ? 0 : QuantumRange);
672         q->red=intensity;
673         q->green=intensity;
674         q->blue=intensity;
675         q++;
676       }
677     }
678   (void) SyncImage(image,exception);
679   if ((cube_info->quantize_info->colorspace != UndefinedColorspace) &&
680       (cube_info->quantize_info->colorspace != CMYKColorspace))
681     (void) TransformImageColorspace((Image *) image,RGBColorspace,exception);
682   return(MagickTrue);
683 }
684 \f
685 /*
686 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
687 %                                                                             %
688 %                                                                             %
689 %                                                                             %
690 +   C l a s s i f y I m a g e C o l o r s                                     %
691 %                                                                             %
692 %                                                                             %
693 %                                                                             %
694 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
695 %
696 %  ClassifyImageColors() begins by initializing a color description tree
697 %  of sufficient depth to represent each possible input color in a leaf.
698 %  However, it is impractical to generate a fully-formed color
699 %  description tree in the storage_class phase for realistic values of
700 %  Cmax.  If colors components in the input image are quantized to k-bit
701 %  precision, so that Cmax= 2k-1, the tree would need k levels below the
702 %  root node to allow representing each possible input color in a leaf.
703 %  This becomes prohibitive because the tree's total number of nodes is
704 %  1 + sum(i=1,k,8k).
705 %
706 %  A complete tree would require 19,173,961 nodes for k = 8, Cmax = 255.
707 %  Therefore, to avoid building a fully populated tree, QUANTIZE: (1)
708 %  Initializes data structures for nodes only as they are needed;  (2)
709 %  Chooses a maximum depth for the tree as a function of the desired
710 %  number of colors in the output image (currently log2(colormap size)).
711 %
712 %  For each pixel in the input image, storage_class scans downward from
713 %  the root of the color description tree.  At each level of the tree it
714 %  identifies the single node which represents a cube in RGB space
715 %  containing It updates the following data for each such node:
716 %
717 %    n1 : Number of pixels whose color is contained in the RGB cube
718 %    which this node represents;
719 %
720 %    n2 : Number of pixels whose color is not represented in a node at
721 %    lower depth in the tree;  initially,  n2 = 0 for all nodes except
722 %    leaves of the tree.
723 %
724 %    Sr, Sg, Sb : Sums of the red, green, and blue component values for
725 %    all pixels not classified at a lower depth. The combination of
726 %    these sums and n2  will ultimately characterize the mean color of a
727 %    set of pixels represented by this node.
728 %
729 %    E: the distance squared in RGB space between each pixel contained
730 %    within a node and the nodes' center.  This represents the quantization
731 %    error for a node.
732 %
733 %  The format of the ClassifyImageColors() method is:
734 %
735 %      MagickBooleanType ClassifyImageColors(CubeInfo *cube_info,
736 %        const Image *image,ExceptionInfo *exception)
737 %
738 %  A description of each parameter follows.
739 %
740 %    o cube_info: A pointer to the Cube structure.
741 %
742 %    o image: the image.
743 %
744 */
745
746 static inline void SetAssociatedAlpha(const Image *image,CubeInfo *cube_info)
747 {
748   MagickBooleanType
749     associate_alpha;
750
751   associate_alpha=image->matte;
752   if (cube_info->quantize_info->colorspace == TransparentColorspace)
753     associate_alpha=MagickFalse;
754   if ((cube_info->quantize_info->number_colors == 2) &&
755       (cube_info->quantize_info->colorspace == GRAYColorspace))
756     associate_alpha=MagickFalse;
757   cube_info->associate_alpha=associate_alpha;
758 }
759
760 static MagickBooleanType ClassifyImageColors(CubeInfo *cube_info,
761   const Image *image,ExceptionInfo *exception)
762 {
763 #define ClassifyImageTag  "Classify/Image"
764
765   CacheView
766     *image_view;
767
768   MagickBooleanType
769     proceed;
770
771   MagickRealType
772     bisect;
773
774   NodeInfo
775     *node_info;
776
777   RealPixelInfo
778     error,
779     mid,
780     midpoint,
781     pixel;
782
783   size_t
784     count,
785     id,
786     index,
787     level;
788
789   ssize_t
790     y;
791
792   /*
793     Classify the first cube_info->maximum_colors colors to a tree depth of 8.
794   */
795   SetAssociatedAlpha(image,cube_info);
796   if ((cube_info->quantize_info->colorspace != UndefinedColorspace) &&
797       (cube_info->quantize_info->colorspace != CMYKColorspace))
798     (void) TransformImageColorspace((Image *) image,
799       cube_info->quantize_info->colorspace,exception);
800   else
801     if ((image->colorspace != GRAYColorspace) &&
802         (image->colorspace != CMYColorspace) &&
803         (IsRGBColorspace(image->colorspace) == MagickFalse))
804       (void) TransformImageColorspace((Image *) image,RGBColorspace,exception);
805   midpoint.red=(MagickRealType) QuantumRange/2.0;
806   midpoint.green=(MagickRealType) QuantumRange/2.0;
807   midpoint.blue=(MagickRealType) QuantumRange/2.0;
808   midpoint.alpha=(MagickRealType) QuantumRange/2.0;
809   error.alpha=0.0;
810   image_view=AcquireCacheView(image);
811   for (y=0; y < (ssize_t) image->rows; y++)
812   {
813     register const Quantum
814       *restrict p;
815
816     register ssize_t
817       x;
818
819     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
820     if (p == (const Quantum *) NULL)
821       break;
822     if (cube_info->nodes > MaxNodes)
823       {
824         /*
825           Prune one level if the color tree is too large.
826         */
827         PruneLevel(image,cube_info,cube_info->root);
828         cube_info->depth--;
829       }
830     for (x=0; x < (ssize_t) image->columns; x+=(ssize_t) count)
831     {
832       /*
833         Start at the root and descend the color cube tree.
834       */
835       for (count=1; (x+(ssize_t) count) < (ssize_t) image->columns; count++)
836       {
837         PixelInfo
838           packet;
839
840         GetPixelInfoPixel(image,p+count*GetPixelChannels(image),&packet);
841         if (IsPixelEquivalent(image,p,&packet) == MagickFalse)
842           break;
843       }
844       AssociateAlphaPixel(image,cube_info,p,&pixel);
845       index=MaxTreeDepth-1;
846       bisect=((MagickRealType) QuantumRange+1.0)/2.0;
847       mid=midpoint;
848       node_info=cube_info->root;
849       for (level=1; level <= MaxTreeDepth; level++)
850       {
851         bisect*=0.5;
852         id=ColorToNodeId(cube_info,&pixel,index);
853         mid.red+=(id & 1) != 0 ? bisect : -bisect;
854         mid.green+=(id & 2) != 0 ? bisect : -bisect;
855         mid.blue+=(id & 4) != 0 ? bisect : -bisect;
856         mid.alpha+=(id & 8) != 0 ? bisect : -bisect;
857         if (node_info->child[id] == (NodeInfo *) NULL)
858           {
859             /*
860               Set colors of new node to contain pixel.
861             */
862             node_info->child[id]=GetNodeInfo(cube_info,id,level,node_info);
863             if (node_info->child[id] == (NodeInfo *) NULL)
864               (void) ThrowMagickException(exception,GetMagickModule(),
865                 ResourceLimitError,"MemoryAllocationFailed","`%s'",
866                 image->filename);
867             if (level == MaxTreeDepth)
868               cube_info->colors++;
869           }
870         /*
871           Approximate the quantization error represented by this node.
872         */
873         node_info=node_info->child[id];
874         error.red=QuantumScale*(pixel.red-mid.red);
875         error.green=QuantumScale*(pixel.green-mid.green);
876         error.blue=QuantumScale*(pixel.blue-mid.blue);
877         if (cube_info->associate_alpha != MagickFalse)
878           error.alpha=QuantumScale*(pixel.alpha-mid.alpha);
879         node_info->quantize_error+=sqrt((double) (count*error.red*error.red+
880           count*error.green*error.green+count*error.blue*error.blue+
881           count*error.alpha*error.alpha));
882         cube_info->root->quantize_error+=node_info->quantize_error;
883         index--;
884       }
885       /*
886         Sum RGB for this leaf for later derivation of the mean cube color.
887       */
888       node_info->number_unique+=count;
889       node_info->total_color.red+=count*QuantumScale*pixel.red;
890       node_info->total_color.green+=count*QuantumScale*pixel.green;
891       node_info->total_color.blue+=count*QuantumScale*pixel.blue;
892       if (cube_info->associate_alpha != MagickFalse)
893         node_info->total_color.alpha+=count*QuantumScale*pixel.alpha;
894       p+=count*GetPixelChannels(image);
895     }
896     if (cube_info->colors > cube_info->maximum_colors)
897       {
898         PruneToCubeDepth(image,cube_info,cube_info->root);
899         break;
900       }
901     proceed=SetImageProgress(image,ClassifyImageTag,(MagickOffsetType) y,
902       image->rows);
903     if (proceed == MagickFalse)
904       break;
905   }
906   for (y++; y < (ssize_t) image->rows; y++)
907   {
908     register const Quantum
909       *restrict p;
910
911     register ssize_t
912       x;
913
914     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
915     if (p == (const Quantum *) NULL)
916       break;
917     if (cube_info->nodes > MaxNodes)
918       {
919         /*
920           Prune one level if the color tree is too large.
921         */
922         PruneLevel(image,cube_info,cube_info->root);
923         cube_info->depth--;
924       }
925     for (x=0; x < (ssize_t) image->columns; x+=(ssize_t) count)
926     {
927       /*
928         Start at the root and descend the color cube tree.
929       */
930       for (count=1; (x+(ssize_t) count) < (ssize_t) image->columns; count++)
931       {
932         PixelInfo
933           packet;
934
935         GetPixelInfoPixel(image,p+count*GetPixelChannels(image),&packet);
936         if (IsPixelEquivalent(image,p,&packet) == MagickFalse)
937           break;
938       }
939       AssociateAlphaPixel(image,cube_info,p,&pixel);
940       index=MaxTreeDepth-1;
941       bisect=((MagickRealType) QuantumRange+1.0)/2.0;
942       mid=midpoint;
943       node_info=cube_info->root;
944       for (level=1; level <= cube_info->depth; level++)
945       {
946         bisect*=0.5;
947         id=ColorToNodeId(cube_info,&pixel,index);
948         mid.red+=(id & 1) != 0 ? bisect : -bisect;
949         mid.green+=(id & 2) != 0 ? bisect : -bisect;
950         mid.blue+=(id & 4) != 0 ? bisect : -bisect;
951         mid.alpha+=(id & 8) != 0 ? bisect : -bisect;
952         if (node_info->child[id] == (NodeInfo *) NULL)
953           {
954             /*
955               Set colors of new node to contain pixel.
956             */
957             node_info->child[id]=GetNodeInfo(cube_info,id,level,node_info);
958             if (node_info->child[id] == (NodeInfo *) NULL)
959               (void) ThrowMagickException(exception,GetMagickModule(),
960                 ResourceLimitError,"MemoryAllocationFailed","%s",
961                 image->filename);
962             if (level == cube_info->depth)
963               cube_info->colors++;
964           }
965         /*
966           Approximate the quantization error represented by this node.
967         */
968         node_info=node_info->child[id];
969         error.red=QuantumScale*(pixel.red-mid.red);
970         error.green=QuantumScale*(pixel.green-mid.green);
971         error.blue=QuantumScale*(pixel.blue-mid.blue);
972         if (cube_info->associate_alpha != MagickFalse)
973           error.alpha=QuantumScale*(pixel.alpha-mid.alpha);
974         node_info->quantize_error+=sqrt((double) (count*error.red*error.red+
975           count*error.green*error.green+count*error.blue*error.blue+
976           count*error.alpha*error.alpha));
977         cube_info->root->quantize_error+=node_info->quantize_error;
978         index--;
979       }
980       /*
981         Sum RGB for this leaf for later derivation of the mean cube color.
982       */
983       node_info->number_unique+=count;
984       node_info->total_color.red+=count*QuantumScale*pixel.red;
985       node_info->total_color.green+=count*QuantumScale*pixel.green;
986       node_info->total_color.blue+=count*QuantumScale*pixel.blue;
987       if (cube_info->associate_alpha != MagickFalse)
988         node_info->total_color.alpha+=count*QuantumScale*pixel.alpha;
989       p+=count*GetPixelChannels(image);
990     }
991     proceed=SetImageProgress(image,ClassifyImageTag,(MagickOffsetType) y,
992       image->rows);
993     if (proceed == MagickFalse)
994       break;
995   }
996   image_view=DestroyCacheView(image_view);
997   if ((cube_info->quantize_info->colorspace != UndefinedColorspace) &&
998       (cube_info->quantize_info->colorspace != CMYKColorspace))
999     (void) TransformImageColorspace((Image *) image,RGBColorspace,exception);
1000   return(MagickTrue);
1001 }
1002 \f
1003 /*
1004 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1005 %                                                                             %
1006 %                                                                             %
1007 %                                                                             %
1008 %   C l o n e Q u a n t i z e I n f o                                         %
1009 %                                                                             %
1010 %                                                                             %
1011 %                                                                             %
1012 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1013 %
1014 %  CloneQuantizeInfo() makes a duplicate of the given quantize info structure,
1015 %  or if quantize info is NULL, a new one.
1016 %
1017 %  The format of the CloneQuantizeInfo method is:
1018 %
1019 %      QuantizeInfo *CloneQuantizeInfo(const QuantizeInfo *quantize_info)
1020 %
1021 %  A description of each parameter follows:
1022 %
1023 %    o clone_info: Method CloneQuantizeInfo returns a duplicate of the given
1024 %      quantize info, or if image info is NULL a new one.
1025 %
1026 %    o quantize_info: a structure of type info.
1027 %
1028 */
1029 MagickExport QuantizeInfo *CloneQuantizeInfo(const QuantizeInfo *quantize_info)
1030 {
1031   QuantizeInfo
1032     *clone_info;
1033
1034   clone_info=(QuantizeInfo *) AcquireMagickMemory(sizeof(*clone_info));
1035   if (clone_info == (QuantizeInfo *) NULL)
1036     ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
1037   GetQuantizeInfo(clone_info);
1038   if (quantize_info == (QuantizeInfo *) NULL)
1039     return(clone_info);
1040   clone_info->number_colors=quantize_info->number_colors;
1041   clone_info->tree_depth=quantize_info->tree_depth;
1042   clone_info->dither=quantize_info->dither;
1043   clone_info->dither_method=quantize_info->dither_method;
1044   clone_info->colorspace=quantize_info->colorspace;
1045   clone_info->measure_error=quantize_info->measure_error;
1046   return(clone_info);
1047 }
1048 \f
1049 /*
1050 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1051 %                                                                             %
1052 %                                                                             %
1053 %                                                                             %
1054 +   C l o s e s t C o l o r                                                   %
1055 %                                                                             %
1056 %                                                                             %
1057 %                                                                             %
1058 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1059 %
1060 %  ClosestColor() traverses the color cube tree at a particular node and
1061 %  determines which colormap entry best represents the input color.
1062 %
1063 %  The format of the ClosestColor method is:
1064 %
1065 %      void ClosestColor(const Image *image,CubeInfo *cube_info,
1066 %        const NodeInfo *node_info)
1067 %
1068 %  A description of each parameter follows.
1069 %
1070 %    o image: the image.
1071 %
1072 %    o cube_info: A pointer to the Cube structure.
1073 %
1074 %    o node_info: the address of a structure of type NodeInfo which points to a
1075 %      node in the color cube tree that is to be pruned.
1076 %
1077 */
1078 static void ClosestColor(const Image *image,CubeInfo *cube_info,
1079   const NodeInfo *node_info)
1080 {
1081   register ssize_t
1082     i;
1083
1084   size_t
1085     number_children;
1086
1087   /*
1088     Traverse any children.
1089   */
1090   number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
1091   for (i=0; i < (ssize_t) number_children; i++)
1092     if (node_info->child[i] != (NodeInfo *) NULL)
1093       ClosestColor(image,cube_info,node_info->child[i]);
1094   if (node_info->number_unique != 0)
1095     {
1096       MagickRealType
1097         pixel;
1098
1099       register MagickRealType
1100         alpha,
1101         beta,
1102         distance;
1103
1104       register PixelInfo
1105         *restrict p;
1106
1107       register RealPixelInfo
1108         *restrict q;
1109
1110       /*
1111         Determine if this color is "closest".
1112       */
1113       p=image->colormap+node_info->color_number;
1114       q=(&cube_info->target);
1115       alpha=1.0;
1116       beta=1.0;
1117       if (cube_info->associate_alpha != MagickFalse)
1118         {
1119           alpha=(MagickRealType) (QuantumScale*p->alpha);
1120           beta=(MagickRealType) (QuantumScale*q->alpha);
1121         }
1122       pixel=alpha*p->red-beta*q->red;
1123       distance=pixel*pixel;
1124       if (distance <= cube_info->distance)
1125         {
1126           pixel=alpha*p->green-beta*q->green;
1127           distance+=pixel*pixel;
1128           if (distance <= cube_info->distance)
1129             {
1130               pixel=alpha*p->blue-beta*q->blue;
1131               distance+=pixel*pixel;
1132               if (distance <= cube_info->distance)
1133                 {
1134                   pixel=alpha-beta;
1135                   distance+=pixel*pixel;
1136                   if (distance <= cube_info->distance)
1137                     {
1138                       cube_info->distance=distance;
1139                       cube_info->color_number=node_info->color_number;
1140                     }
1141                 }
1142             }
1143         }
1144     }
1145 }
1146 \f
1147 /*
1148 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1149 %                                                                             %
1150 %                                                                             %
1151 %                                                                             %
1152 %   C o m p r e s s I m a g e C o l o r m a p                                 %
1153 %                                                                             %
1154 %                                                                             %
1155 %                                                                             %
1156 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1157 %
1158 %  CompressImageColormap() compresses an image colormap by removing any
1159 %  duplicate or unused color entries.
1160 %
1161 %  The format of the CompressImageColormap method is:
1162 %
1163 %      MagickBooleanType CompressImageColormap(Image *image,
1164 %        ExceptionInfo *exception)
1165 %
1166 %  A description of each parameter follows:
1167 %
1168 %    o image: the image.
1169 %
1170 %    o exception: return any errors or warnings in this structure.
1171 %
1172 */
1173 MagickExport MagickBooleanType CompressImageColormap(Image *image,
1174   ExceptionInfo *exception)
1175 {
1176   QuantizeInfo
1177     quantize_info;
1178
1179   assert(image != (Image *) NULL);
1180   assert(image->signature == MagickSignature);
1181   if (image->debug != MagickFalse)
1182     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1183   if (IsPaletteImage(image,exception) == MagickFalse)
1184     return(MagickFalse);
1185   GetQuantizeInfo(&quantize_info);
1186   quantize_info.number_colors=image->colors;
1187   quantize_info.tree_depth=MaxTreeDepth;
1188   return(QuantizeImage(&quantize_info,image,exception));
1189 }
1190 \f
1191 /*
1192 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1193 %                                                                             %
1194 %                                                                             %
1195 %                                                                             %
1196 +   D e f i n e I m a g e C o l o r m a p                                     %
1197 %                                                                             %
1198 %                                                                             %
1199 %                                                                             %
1200 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1201 %
1202 %  DefineImageColormap() traverses the color cube tree and notes each colormap
1203 %  entry.  A colormap entry is any node in the color cube tree where the
1204 %  of unique colors is not zero.  DefineImageColormap() returns the number of
1205 %  colors in the image colormap.
1206 %
1207 %  The format of the DefineImageColormap method is:
1208 %
1209 %      size_t DefineImageColormap(Image *image,CubeInfo *cube_info,
1210 %        NodeInfo *node_info)
1211 %
1212 %  A description of each parameter follows.
1213 %
1214 %    o image: the image.
1215 %
1216 %    o cube_info: A pointer to the Cube structure.
1217 %
1218 %    o node_info: the address of a structure of type NodeInfo which points to a
1219 %      node in the color cube tree that is to be pruned.
1220 %
1221 */
1222 static size_t DefineImageColormap(Image *image,CubeInfo *cube_info,
1223   NodeInfo *node_info)
1224 {
1225   register ssize_t
1226     i;
1227
1228   size_t
1229     number_children;
1230
1231   /*
1232     Traverse any children.
1233   */
1234   number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
1235   for (i=0; i < (ssize_t) number_children; i++)
1236     if (node_info->child[i] != (NodeInfo *) NULL)
1237       (void) DefineImageColormap(image,cube_info,node_info->child[i]);
1238   if (node_info->number_unique != 0)
1239     {
1240       register MagickRealType
1241         alpha;
1242
1243       register PixelInfo
1244         *restrict q;
1245
1246       /*
1247         Colormap entry is defined by the mean color in this cube.
1248       */
1249       q=image->colormap+image->colors;
1250       alpha=(MagickRealType) ((MagickOffsetType) node_info->number_unique);
1251       alpha=1.0/(fabs(alpha) <= MagickEpsilon ? 1.0 : alpha);
1252       if (cube_info->associate_alpha == MagickFalse)
1253         {
1254           q->red=ClampToQuantum((MagickRealType)
1255             (alpha*QuantumRange*node_info->total_color.red));
1256           q->green=ClampToQuantum((MagickRealType)
1257             (alpha*QuantumRange*node_info->total_color.green));
1258           q->blue=ClampToQuantum((MagickRealType)
1259             (alpha*QuantumRange*node_info->total_color.blue));
1260           q->alpha=OpaqueAlpha;
1261         }
1262       else
1263         {
1264           MagickRealType
1265             opacity;
1266
1267           opacity=(MagickRealType) (alpha*QuantumRange*
1268             node_info->total_color.alpha);
1269           q->alpha=ClampToQuantum(opacity);
1270           if (q->alpha == OpaqueAlpha)
1271             {
1272               q->red=ClampToQuantum((MagickRealType)
1273                 (alpha*QuantumRange*node_info->total_color.red));
1274               q->green=ClampToQuantum((MagickRealType)
1275                 (alpha*QuantumRange*node_info->total_color.green));
1276               q->blue=ClampToQuantum((MagickRealType)
1277                 (alpha*QuantumRange*node_info->total_color.blue));
1278             }
1279           else
1280             {
1281               MagickRealType
1282                 gamma;
1283
1284               gamma=(MagickRealType) (QuantumScale*q->alpha);
1285               gamma=1.0/(fabs(gamma) <= MagickEpsilon ? 1.0 : gamma);
1286               q->red=ClampToQuantum((MagickRealType)
1287                 (alpha*gamma*QuantumRange*node_info->total_color.red));
1288               q->green=ClampToQuantum((MagickRealType)
1289                 (alpha*gamma*QuantumRange*node_info->total_color.green));
1290               q->blue=ClampToQuantum((MagickRealType)
1291                 (alpha*gamma*QuantumRange*node_info->total_color.blue));
1292               if (node_info->number_unique > cube_info->transparent_pixels)
1293                 {
1294                   cube_info->transparent_pixels=node_info->number_unique;
1295                   cube_info->transparent_index=(ssize_t) image->colors;
1296                 }
1297             }
1298         }
1299       node_info->color_number=image->colors++;
1300     }
1301   return(image->colors);
1302 }
1303 \f
1304 /*
1305 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1306 %                                                                             %
1307 %                                                                             %
1308 %                                                                             %
1309 +   D e s t r o y C u b e I n f o                                             %
1310 %                                                                             %
1311 %                                                                             %
1312 %                                                                             %
1313 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1314 %
1315 %  DestroyCubeInfo() deallocates memory associated with an image.
1316 %
1317 %  The format of the DestroyCubeInfo method is:
1318 %
1319 %      DestroyCubeInfo(CubeInfo *cube_info)
1320 %
1321 %  A description of each parameter follows:
1322 %
1323 %    o cube_info: the address of a structure of type CubeInfo.
1324 %
1325 */
1326 static void DestroyCubeInfo(CubeInfo *cube_info)
1327 {
1328   register Nodes
1329     *nodes;
1330
1331   /*
1332     Release color cube tree storage.
1333   */
1334   do
1335   {
1336     nodes=cube_info->node_queue->next;
1337     cube_info->node_queue->nodes=(NodeInfo *) RelinquishMagickMemory(
1338       cube_info->node_queue->nodes);
1339     cube_info->node_queue=(Nodes *) RelinquishMagickMemory(
1340       cube_info->node_queue);
1341     cube_info->node_queue=nodes;
1342   } while (cube_info->node_queue != (Nodes *) NULL);
1343   if (cube_info->cache != (ssize_t *) NULL)
1344     cube_info->cache=(ssize_t *) RelinquishMagickMemory(cube_info->cache);
1345   cube_info->quantize_info=DestroyQuantizeInfo(cube_info->quantize_info);
1346   cube_info=(CubeInfo *) RelinquishMagickMemory(cube_info);
1347 }
1348 \f
1349 /*
1350 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1351 %                                                                             %
1352 %                                                                             %
1353 %                                                                             %
1354 %   D e s t r o y Q u a n t i z e I n f o                                     %
1355 %                                                                             %
1356 %                                                                             %
1357 %                                                                             %
1358 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1359 %
1360 %  DestroyQuantizeInfo() deallocates memory associated with an QuantizeInfo
1361 %  structure.
1362 %
1363 %  The format of the DestroyQuantizeInfo method is:
1364 %
1365 %      QuantizeInfo *DestroyQuantizeInfo(QuantizeInfo *quantize_info)
1366 %
1367 %  A description of each parameter follows:
1368 %
1369 %    o quantize_info: Specifies a pointer to an QuantizeInfo structure.
1370 %
1371 */
1372 MagickExport QuantizeInfo *DestroyQuantizeInfo(QuantizeInfo *quantize_info)
1373 {
1374   (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
1375   assert(quantize_info != (QuantizeInfo *) NULL);
1376   assert(quantize_info->signature == MagickSignature);
1377   quantize_info->signature=(~MagickSignature);
1378   quantize_info=(QuantizeInfo *) RelinquishMagickMemory(quantize_info);
1379   return(quantize_info);
1380 }
1381 \f
1382 /*
1383 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1384 %                                                                             %
1385 %                                                                             %
1386 %                                                                             %
1387 +   D i t h e r I m a g e                                                     %
1388 %                                                                             %
1389 %                                                                             %
1390 %                                                                             %
1391 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1392 %
1393 %  DitherImage() distributes the difference between an original image and
1394 %  the corresponding color reduced algorithm to neighboring pixels using
1395 %  serpentine-scan Floyd-Steinberg error diffusion. DitherImage returns
1396 %  MagickTrue if the image is dithered otherwise MagickFalse.
1397 %
1398 %  The format of the DitherImage method is:
1399 %
1400 %      MagickBooleanType DitherImage(Image *image,CubeInfo *cube_info,
1401 %        ExceptionInfo *exception)
1402 %
1403 %  A description of each parameter follows.
1404 %
1405 %    o image: the image.
1406 %
1407 %    o cube_info: A pointer to the Cube structure.
1408 %
1409 %    o exception: return any errors or warnings in this structure.
1410 %
1411 */
1412
1413 static RealPixelInfo **DestroyPixelThreadSet(RealPixelInfo **pixels)
1414 {
1415   register ssize_t
1416     i;
1417
1418   assert(pixels != (RealPixelInfo **) NULL);
1419   for (i=0; i < (ssize_t) GetOpenMPMaximumThreads(); i++)
1420     if (pixels[i] != (RealPixelInfo *) NULL)
1421       pixels[i]=(RealPixelInfo *) RelinquishMagickMemory(pixels[i]);
1422   pixels=(RealPixelInfo **) RelinquishMagickMemory(pixels);
1423   return(pixels);
1424 }
1425
1426 static RealPixelInfo **AcquirePixelThreadSet(const size_t count)
1427 {
1428   RealPixelInfo
1429     **pixels;
1430
1431   register ssize_t
1432     i;
1433
1434   size_t
1435     number_threads;
1436
1437   number_threads=GetOpenMPMaximumThreads();
1438   pixels=(RealPixelInfo **) AcquireQuantumMemory(number_threads,
1439     sizeof(*pixels));
1440   if (pixels == (RealPixelInfo **) NULL)
1441     return((RealPixelInfo **) NULL);
1442   (void) ResetMagickMemory(pixels,0,number_threads*sizeof(*pixels));
1443   for (i=0; i < (ssize_t) number_threads; i++)
1444   {
1445     pixels[i]=(RealPixelInfo *) AcquireQuantumMemory(count,
1446       2*sizeof(**pixels));
1447     if (pixels[i] == (RealPixelInfo *) NULL)
1448       return(DestroyPixelThreadSet(pixels));
1449   }
1450   return(pixels);
1451 }
1452
1453 static inline ssize_t CacheOffset(CubeInfo *cube_info,
1454   const RealPixelInfo *pixel)
1455 {
1456 #define RedShift(pixel) (((pixel) >> CacheShift) << (0*(8-CacheShift)))
1457 #define GreenShift(pixel) (((pixel) >> CacheShift) << (1*(8-CacheShift)))
1458 #define BlueShift(pixel) (((pixel) >> CacheShift) << (2*(8-CacheShift)))
1459 #define AlphaShift(pixel) (((pixel) >> CacheShift) << (3*(8-CacheShift)))
1460
1461   ssize_t
1462     offset;
1463
1464   offset=(ssize_t)
1465     (RedShift(ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->red))) |
1466     GreenShift(ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->green))) |
1467     BlueShift(ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->blue))));
1468   if (cube_info->associate_alpha != MagickFalse)
1469     offset|=AlphaShift(ScaleQuantumToChar(ClampToUnsignedQuantum(
1470       pixel->alpha)));
1471   return(offset);
1472 }
1473
1474 static MagickBooleanType FloydSteinbergDither(Image *image,CubeInfo *cube_info,
1475   ExceptionInfo *exception)
1476 {
1477 #define DitherImageTag  "Dither/Image"
1478
1479   CacheView
1480     *image_view;
1481
1482   MagickBooleanType
1483     status;
1484
1485   RealPixelInfo
1486     **pixels;
1487
1488   ssize_t
1489     y;
1490
1491   /*
1492     Distribute quantization error using Floyd-Steinberg.
1493   */
1494   pixels=AcquirePixelThreadSet(image->columns);
1495   if (pixels == (RealPixelInfo **) NULL)
1496     return(MagickFalse);
1497   status=MagickTrue;
1498   image_view=AcquireCacheView(image);
1499   for (y=0; y < (ssize_t) image->rows; y++)
1500   {
1501     const int
1502       id = GetOpenMPThreadId();
1503
1504     CubeInfo
1505       cube;
1506
1507     RealPixelInfo
1508       *current,
1509       *previous;
1510
1511     register Quantum
1512       *restrict q;
1513
1514     register ssize_t
1515       x;
1516
1517     size_t
1518       index;
1519
1520     ssize_t
1521       v;
1522
1523     if (status == MagickFalse)
1524       continue;
1525     q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
1526     if (q == (Quantum *) NULL)
1527       {
1528         status=MagickFalse;
1529         continue;
1530       }
1531     q+=(y & 0x01)*image->columns*GetPixelChannels(image);
1532     cube=(*cube_info);
1533     current=pixels[id]+(y & 0x01)*image->columns;
1534     previous=pixels[id]+((y+1) & 0x01)*image->columns;
1535     v=(ssize_t) ((y & 0x01) != 0 ? -1 : 1);
1536     for (x=0; x < (ssize_t) image->columns; x++)
1537     {
1538       RealPixelInfo
1539         color,
1540         pixel;
1541
1542       register ssize_t
1543         i;
1544
1545       ssize_t
1546         u;
1547
1548       q-=(y & 0x01)*GetPixelChannels(image);
1549       u=(y & 0x01) != 0 ? (ssize_t) image->columns-1-x : x;
1550       AssociateAlphaPixel(image,&cube,q,&pixel);
1551       if (x > 0)
1552         {
1553           pixel.red+=7*current[u-v].red/16;
1554           pixel.green+=7*current[u-v].green/16;
1555           pixel.blue+=7*current[u-v].blue/16;
1556           if (cube.associate_alpha != MagickFalse)
1557             pixel.alpha+=7*current[u-v].alpha/16;
1558         }
1559       if (y > 0)
1560         {
1561           if (x < (ssize_t) (image->columns-1))
1562             {
1563               pixel.red+=previous[u+v].red/16;
1564               pixel.green+=previous[u+v].green/16;
1565               pixel.blue+=previous[u+v].blue/16;
1566               if (cube.associate_alpha != MagickFalse)
1567                 pixel.alpha+=previous[u+v].alpha/16;
1568             }
1569           pixel.red+=5*previous[u].red/16;
1570           pixel.green+=5*previous[u].green/16;
1571           pixel.blue+=5*previous[u].blue/16;
1572           if (cube.associate_alpha != MagickFalse)
1573             pixel.alpha+=5*previous[u].alpha/16;
1574           if (x > 0)
1575             {
1576               pixel.red+=3*previous[u-v].red/16;
1577               pixel.green+=3*previous[u-v].green/16;
1578               pixel.blue+=3*previous[u-v].blue/16;
1579               if (cube.associate_alpha != MagickFalse)
1580                 pixel.alpha+=3*previous[u-v].alpha/16;
1581             }
1582         }
1583       pixel.red=(MagickRealType) ClampToUnsignedQuantum(pixel.red);
1584       pixel.green=(MagickRealType) ClampToUnsignedQuantum(pixel.green);
1585       pixel.blue=(MagickRealType) ClampToUnsignedQuantum(pixel.blue);
1586       if (cube.associate_alpha != MagickFalse)
1587         pixel.alpha=(MagickRealType) ClampToUnsignedQuantum(pixel.alpha);
1588       i=CacheOffset(&cube,&pixel);
1589       if (cube.cache[i] < 0)
1590         {
1591           register NodeInfo
1592             *node_info;
1593
1594           register size_t
1595             id;
1596
1597           /*
1598             Identify the deepest node containing the pixel's color.
1599           */
1600           node_info=cube.root;
1601           for (index=MaxTreeDepth-1; (ssize_t) index > 0; index--)
1602           {
1603             id=ColorToNodeId(&cube,&pixel,index);
1604             if (node_info->child[id] == (NodeInfo *) NULL)
1605               break;
1606             node_info=node_info->child[id];
1607           }
1608           /*
1609             Find closest color among siblings and their children.
1610           */
1611           cube.target=pixel;
1612           cube.distance=(MagickRealType) (4.0*(QuantumRange+1.0)*(QuantumRange+
1613             1.0)+1.0);
1614           ClosestColor(image,&cube,node_info->parent);
1615           cube.cache[i]=(ssize_t) cube.color_number;
1616         }
1617       /*
1618         Assign pixel to closest colormap entry.
1619       */
1620       index=(size_t) cube.cache[i];
1621       if (image->storage_class == PseudoClass)
1622         SetPixelIndex(image,(Quantum) index,q);
1623       if (cube.quantize_info->measure_error == MagickFalse)
1624         {
1625           SetPixelRed(image,image->colormap[index].red,q);
1626           SetPixelGreen(image,image->colormap[index].green,q);
1627           SetPixelBlue(image,image->colormap[index].blue,q);
1628           if (cube.associate_alpha != MagickFalse)
1629             SetPixelAlpha(image,image->colormap[index].alpha,q);
1630         }
1631       if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
1632         status=MagickFalse;
1633       /*
1634         Store the error.
1635       */
1636       AssociateAlphaPixelInfo(image,&cube,image->colormap+index,&color);
1637       current[u].red=pixel.red-color.red;
1638       current[u].green=pixel.green-color.green;
1639       current[u].blue=pixel.blue-color.blue;
1640       if (cube.associate_alpha != MagickFalse)
1641         current[u].alpha=pixel.alpha-color.alpha;
1642       if (image->progress_monitor != (MagickProgressMonitor) NULL)
1643         {
1644           MagickBooleanType
1645             proceed;
1646
1647 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1648           #pragma omp critical (MagickCore_FloydSteinbergDither)
1649 #endif
1650           proceed=SetImageProgress(image,DitherImageTag,(MagickOffsetType) y,
1651             image->rows);
1652           if (proceed == MagickFalse)
1653             status=MagickFalse;
1654         }
1655       q+=((y+1) & 0x01)*GetPixelChannels(image);
1656     }
1657   }
1658   image_view=DestroyCacheView(image_view);
1659   pixels=DestroyPixelThreadSet(pixels);
1660   return(MagickTrue);
1661 }
1662
1663 static MagickBooleanType
1664   RiemersmaDither(Image *,CacheView *,CubeInfo *,const unsigned int,
1665     ExceptionInfo *exception);
1666
1667 static void Riemersma(Image *image,CacheView *image_view,CubeInfo *cube_info,
1668   const size_t level,const unsigned int direction,ExceptionInfo *exception)
1669 {
1670   if (level == 1)
1671     switch (direction)
1672     {
1673       case WestGravity:
1674       {
1675         (void) RiemersmaDither(image,image_view,cube_info,EastGravity,
1676           exception);
1677         (void) RiemersmaDither(image,image_view,cube_info,SouthGravity,
1678           exception);
1679         (void) RiemersmaDither(image,image_view,cube_info,WestGravity,
1680           exception);
1681         break;
1682       }
1683       case EastGravity:
1684       {
1685         (void) RiemersmaDither(image,image_view,cube_info,WestGravity,
1686           exception);
1687         (void) RiemersmaDither(image,image_view,cube_info,NorthGravity,
1688           exception);
1689         (void) RiemersmaDither(image,image_view,cube_info,EastGravity,
1690           exception);
1691         break;
1692       }
1693       case NorthGravity:
1694       {
1695         (void) RiemersmaDither(image,image_view,cube_info,SouthGravity,
1696           exception);
1697         (void) RiemersmaDither(image,image_view,cube_info,EastGravity,
1698           exception);
1699         (void) RiemersmaDither(image,image_view,cube_info,NorthGravity,
1700           exception);
1701         break;
1702       }
1703       case SouthGravity:
1704       {
1705         (void) RiemersmaDither(image,image_view,cube_info,NorthGravity,
1706           exception);
1707         (void) RiemersmaDither(image,image_view,cube_info,WestGravity,
1708           exception);
1709         (void) RiemersmaDither(image,image_view,cube_info,SouthGravity,
1710           exception);
1711         break;
1712       }
1713       default:
1714         break;
1715     }
1716   else
1717     switch (direction)
1718     {
1719       case WestGravity:
1720       {
1721         Riemersma(image,image_view,cube_info,level-1,NorthGravity,
1722           exception);
1723         (void) RiemersmaDither(image,image_view,cube_info,EastGravity,
1724           exception);
1725         Riemersma(image,image_view,cube_info,level-1,WestGravity,
1726           exception);
1727         (void) RiemersmaDither(image,image_view,cube_info,SouthGravity,
1728           exception);
1729         Riemersma(image,image_view,cube_info,level-1,WestGravity,
1730           exception);
1731         (void) RiemersmaDither(image,image_view,cube_info,WestGravity,
1732           exception);
1733         Riemersma(image,image_view,cube_info,level-1,SouthGravity,
1734           exception);
1735         break;
1736       }
1737       case EastGravity:
1738       {
1739         Riemersma(image,image_view,cube_info,level-1,SouthGravity,
1740           exception);
1741         (void) RiemersmaDither(image,image_view,cube_info,WestGravity,
1742           exception);
1743         Riemersma(image,image_view,cube_info,level-1,EastGravity,
1744           exception);
1745         (void) RiemersmaDither(image,image_view,cube_info,NorthGravity,
1746           exception);
1747         Riemersma(image,image_view,cube_info,level-1,EastGravity,
1748           exception);
1749         (void) RiemersmaDither(image,image_view,cube_info,EastGravity,
1750           exception);
1751         Riemersma(image,image_view,cube_info,level-1,NorthGravity,
1752           exception);
1753         break;
1754       }
1755       case NorthGravity:
1756       {
1757         Riemersma(image,image_view,cube_info,level-1,WestGravity,
1758           exception);
1759         (void) RiemersmaDither(image,image_view,cube_info,SouthGravity,
1760           exception);
1761         Riemersma(image,image_view,cube_info,level-1,NorthGravity,
1762           exception);
1763         (void) RiemersmaDither(image,image_view,cube_info,EastGravity,
1764           exception);
1765         Riemersma(image,image_view,cube_info,level-1,NorthGravity,
1766           exception);
1767         (void) RiemersmaDither(image,image_view,cube_info,NorthGravity,
1768           exception);
1769         Riemersma(image,image_view,cube_info,level-1,EastGravity,
1770           exception);
1771         break;
1772       }
1773       case SouthGravity:
1774       {
1775         Riemersma(image,image_view,cube_info,level-1,EastGravity,
1776           exception);
1777         (void) RiemersmaDither(image,image_view,cube_info,NorthGravity,
1778           exception);
1779         Riemersma(image,image_view,cube_info,level-1,SouthGravity,
1780           exception);
1781         (void) RiemersmaDither(image,image_view,cube_info,WestGravity,
1782           exception);
1783         Riemersma(image,image_view,cube_info,level-1,SouthGravity,
1784           exception);
1785         (void) RiemersmaDither(image,image_view,cube_info,SouthGravity,
1786           exception);
1787         Riemersma(image,image_view,cube_info,level-1,WestGravity,
1788           exception);
1789         break;
1790       }
1791       default:
1792         break;
1793     }
1794 }
1795
1796 static MagickBooleanType RiemersmaDither(Image *image,CacheView *image_view,
1797   CubeInfo *cube_info,const unsigned int direction,ExceptionInfo *exception)
1798 {
1799 #define DitherImageTag  "Dither/Image"
1800
1801   MagickBooleanType
1802     proceed;
1803
1804   RealPixelInfo
1805     color,
1806     pixel;
1807
1808   register CubeInfo
1809     *p;
1810
1811   size_t
1812     index;
1813
1814   p=cube_info;
1815   if ((p->x >= 0) && (p->x < (ssize_t) image->columns) &&
1816       (p->y >= 0) && (p->y < (ssize_t) image->rows))
1817     {
1818       register Quantum
1819         *restrict q;
1820
1821       register ssize_t
1822         i;
1823
1824       /*
1825         Distribute error.
1826       */
1827       q=GetCacheViewAuthenticPixels(image_view,p->x,p->y,1,1,exception);
1828       if (q == (Quantum *) NULL)
1829         return(MagickFalse);
1830       AssociateAlphaPixel(image,cube_info,q,&pixel);
1831       for (i=0; i < ErrorQueueLength; i++)
1832       {
1833         pixel.red+=p->weights[i]*p->error[i].red;
1834         pixel.green+=p->weights[i]*p->error[i].green;
1835         pixel.blue+=p->weights[i]*p->error[i].blue;
1836         if (cube_info->associate_alpha != MagickFalse)
1837           pixel.alpha+=p->weights[i]*p->error[i].alpha;
1838       }
1839       pixel.red=(MagickRealType) ClampToUnsignedQuantum(pixel.red);
1840       pixel.green=(MagickRealType) ClampToUnsignedQuantum(pixel.green);
1841       pixel.blue=(MagickRealType) ClampToUnsignedQuantum(pixel.blue);
1842       if (cube_info->associate_alpha != MagickFalse)
1843         pixel.alpha=(MagickRealType) ClampToUnsignedQuantum(pixel.alpha);
1844       i=CacheOffset(cube_info,&pixel);
1845       if (p->cache[i] < 0)
1846         {
1847           register NodeInfo
1848             *node_info;
1849
1850           register size_t
1851             id;
1852
1853           /*
1854             Identify the deepest node containing the pixel's color.
1855           */
1856           node_info=p->root;
1857           for (index=MaxTreeDepth-1; (ssize_t) index > 0; index--)
1858           {
1859             id=ColorToNodeId(cube_info,&pixel,index);
1860             if (node_info->child[id] == (NodeInfo *) NULL)
1861               break;
1862             node_info=node_info->child[id];
1863           }
1864           node_info=node_info->parent;
1865           /*
1866             Find closest color among siblings and their children.
1867           */
1868           p->target=pixel;
1869           p->distance=(MagickRealType) (4.0*(QuantumRange+1.0)*((MagickRealType)
1870             QuantumRange+1.0)+1.0);
1871           ClosestColor(image,p,node_info->parent);
1872           p->cache[i]=(ssize_t) p->color_number;
1873         }
1874       /*
1875         Assign pixel to closest colormap entry.
1876       */
1877       index=(size_t) p->cache[i];
1878       if (image->storage_class == PseudoClass)
1879         SetPixelIndex(image,(Quantum) index,q);
1880       if (cube_info->quantize_info->measure_error == MagickFalse)
1881         {
1882           SetPixelRed(image,image->colormap[index].red,q);
1883           SetPixelGreen(image,image->colormap[index].green,q);
1884           SetPixelBlue(image,image->colormap[index].blue,q);
1885           if (cube_info->associate_alpha != MagickFalse)
1886             SetPixelAlpha(image,image->colormap[index].alpha,q);
1887         }
1888       if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
1889         return(MagickFalse);
1890       /*
1891         Propagate the error as the last entry of the error queue.
1892       */
1893       (void) CopyMagickMemory(p->error,p->error+1,(ErrorQueueLength-1)*
1894         sizeof(p->error[0]));
1895       AssociateAlphaPixelInfo(image,cube_info,image->colormap+index,&color);
1896       p->error[ErrorQueueLength-1].red=pixel.red-color.red;
1897       p->error[ErrorQueueLength-1].green=pixel.green-color.green;
1898       p->error[ErrorQueueLength-1].blue=pixel.blue-color.blue;
1899       if (cube_info->associate_alpha != MagickFalse)
1900         p->error[ErrorQueueLength-1].alpha=pixel.alpha-color.alpha;
1901       proceed=SetImageProgress(image,DitherImageTag,p->offset,p->span);
1902       if (proceed == MagickFalse)
1903         return(MagickFalse);
1904       p->offset++;
1905     }
1906   switch (direction)
1907   {
1908     case WestGravity: p->x--; break;
1909     case EastGravity: p->x++; break;
1910     case NorthGravity: p->y--; break;
1911     case SouthGravity: p->y++; break;
1912   }
1913   return(MagickTrue);
1914 }
1915
1916 static inline ssize_t MagickMax(const ssize_t x,const ssize_t y)
1917 {
1918   if (x > y)
1919     return(x);
1920   return(y);
1921 }
1922
1923 static inline ssize_t MagickMin(const ssize_t x,const ssize_t y)
1924 {
1925   if (x < y)
1926     return(x);
1927   return(y);
1928 }
1929
1930 static MagickBooleanType DitherImage(Image *image,CubeInfo *cube_info,
1931   ExceptionInfo *exception)
1932 {
1933   CacheView
1934     *image_view;
1935
1936   MagickBooleanType
1937     status;
1938
1939   register ssize_t
1940     i;
1941
1942   size_t
1943     depth;
1944
1945   if (cube_info->quantize_info->dither_method != RiemersmaDitherMethod)
1946     return(FloydSteinbergDither(image,cube_info,exception));
1947   /*
1948     Distribute quantization error along a Hilbert curve.
1949   */
1950   (void) ResetMagickMemory(cube_info->error,0,ErrorQueueLength*
1951     sizeof(*cube_info->error));
1952   cube_info->x=0;
1953   cube_info->y=0;
1954   i=MagickMax((ssize_t) image->columns,(ssize_t) image->rows);
1955   for (depth=1; i != 0; depth++)
1956     i>>=1;
1957   if ((ssize_t) (1L << depth) < MagickMax((ssize_t) image->columns,(ssize_t) image->rows))
1958     depth++;
1959   cube_info->offset=0;
1960   cube_info->span=(MagickSizeType) image->columns*image->rows;
1961   image_view=AcquireCacheView(image);
1962   if (depth > 1)
1963     Riemersma(image,image_view,cube_info,depth-1,NorthGravity,exception);
1964   status=RiemersmaDither(image,image_view,cube_info,ForgetGravity,exception);
1965   image_view=DestroyCacheView(image_view);
1966   return(status);
1967 }
1968 \f
1969 /*
1970 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1971 %                                                                             %
1972 %                                                                             %
1973 %                                                                             %
1974 +   G e t C u b e I n f o                                                     %
1975 %                                                                             %
1976 %                                                                             %
1977 %                                                                             %
1978 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1979 %
1980 %  GetCubeInfo() initialize the Cube data structure.
1981 %
1982 %  The format of the GetCubeInfo method is:
1983 %
1984 %      CubeInfo GetCubeInfo(const QuantizeInfo *quantize_info,
1985 %        const size_t depth,const size_t maximum_colors)
1986 %
1987 %  A description of each parameter follows.
1988 %
1989 %    o quantize_info: Specifies a pointer to an QuantizeInfo structure.
1990 %
1991 %    o depth: Normally, this integer value is zero or one.  A zero or
1992 %      one tells Quantize to choose a optimal tree depth of Log4(number_colors).
1993 %      A tree of this depth generally allows the best representation of the
1994 %      reference image with the least amount of memory and the fastest
1995 %      computational speed.  In some cases, such as an image with low color
1996 %      dispersion (a few number of colors), a value other than
1997 %      Log4(number_colors) is required.  To expand the color tree completely,
1998 %      use a value of 8.
1999 %
2000 %    o maximum_colors: maximum colors.
2001 %
2002 */
2003 static CubeInfo *GetCubeInfo(const QuantizeInfo *quantize_info,
2004   const size_t depth,const size_t maximum_colors)
2005 {
2006   CubeInfo
2007     *cube_info;
2008
2009   MagickRealType
2010     sum,
2011     weight;
2012
2013   register ssize_t
2014     i;
2015
2016   size_t
2017     length;
2018
2019   /*
2020     Initialize tree to describe color cube_info.
2021   */
2022   cube_info=(CubeInfo *) AcquireMagickMemory(sizeof(*cube_info));
2023   if (cube_info == (CubeInfo *) NULL)
2024     return((CubeInfo *) NULL);
2025   (void) ResetMagickMemory(cube_info,0,sizeof(*cube_info));
2026   cube_info->depth=depth;
2027   if (cube_info->depth > MaxTreeDepth)
2028     cube_info->depth=MaxTreeDepth;
2029   if (cube_info->depth < 2)
2030     cube_info->depth=2;
2031   cube_info->maximum_colors=maximum_colors;
2032   /*
2033     Initialize root node.
2034   */
2035   cube_info->root=GetNodeInfo(cube_info,0,0,(NodeInfo *) NULL);
2036   if (cube_info->root == (NodeInfo *) NULL)
2037     return((CubeInfo *) NULL);
2038   cube_info->root->parent=cube_info->root;
2039   cube_info->quantize_info=CloneQuantizeInfo(quantize_info);
2040   if (cube_info->quantize_info->dither == MagickFalse)
2041     return(cube_info);
2042   /*
2043     Initialize dither resources.
2044   */
2045   length=(size_t) (1UL << (4*(8-CacheShift)));
2046   cube_info->cache=(ssize_t *) AcquireQuantumMemory(length,
2047     sizeof(*cube_info->cache));
2048   if (cube_info->cache == (ssize_t *) NULL)
2049     return((CubeInfo *) NULL);
2050   /*
2051     Initialize color cache.
2052   */
2053   for (i=0; i < (ssize_t) length; i++)
2054     cube_info->cache[i]=(-1);
2055   /*
2056     Distribute weights along a curve of exponential decay.
2057   */
2058   weight=1.0;
2059   for (i=0; i < ErrorQueueLength; i++)
2060   {
2061     cube_info->weights[ErrorQueueLength-i-1]=1.0/weight;
2062     weight*=exp(log(((double) QuantumRange+1.0))/(ErrorQueueLength-1.0));
2063   }
2064   /*
2065     Normalize the weighting factors.
2066   */
2067   weight=0.0;
2068   for (i=0; i < ErrorQueueLength; i++)
2069     weight+=cube_info->weights[i];
2070   sum=0.0;
2071   for (i=0; i < ErrorQueueLength; i++)
2072   {
2073     cube_info->weights[i]/=weight;
2074     sum+=cube_info->weights[i];
2075   }
2076   cube_info->weights[0]+=1.0-sum;
2077   return(cube_info);
2078 }
2079 \f
2080 /*
2081 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2082 %                                                                             %
2083 %                                                                             %
2084 %                                                                             %
2085 +   G e t N o d e I n f o                                                     %
2086 %                                                                             %
2087 %                                                                             %
2088 %                                                                             %
2089 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2090 %
2091 %  GetNodeInfo() allocates memory for a new node in the color cube tree and
2092 %  presets all fields to zero.
2093 %
2094 %  The format of the GetNodeInfo method is:
2095 %
2096 %      NodeInfo *GetNodeInfo(CubeInfo *cube_info,const size_t id,
2097 %        const size_t level,NodeInfo *parent)
2098 %
2099 %  A description of each parameter follows.
2100 %
2101 %    o node: The GetNodeInfo method returns a pointer to a queue of nodes.
2102 %
2103 %    o id: Specifies the child number of the node.
2104 %
2105 %    o level: Specifies the level in the storage_class the node resides.
2106 %
2107 */
2108 static NodeInfo *GetNodeInfo(CubeInfo *cube_info,const size_t id,
2109   const size_t level,NodeInfo *parent)
2110 {
2111   NodeInfo
2112     *node_info;
2113
2114   if (cube_info->free_nodes == 0)
2115     {
2116       Nodes
2117         *nodes;
2118
2119       /*
2120         Allocate a new queue of nodes.
2121       */
2122       nodes=(Nodes *) AcquireMagickMemory(sizeof(*nodes));
2123       if (nodes == (Nodes *) NULL)
2124         return((NodeInfo *) NULL);
2125       nodes->nodes=(NodeInfo *) AcquireQuantumMemory(NodesInAList,
2126         sizeof(*nodes->nodes));
2127       if (nodes->nodes == (NodeInfo *) NULL)
2128         return((NodeInfo *) NULL);
2129       nodes->next=cube_info->node_queue;
2130       cube_info->node_queue=nodes;
2131       cube_info->next_node=nodes->nodes;
2132       cube_info->free_nodes=NodesInAList;
2133     }
2134   cube_info->nodes++;
2135   cube_info->free_nodes--;
2136   node_info=cube_info->next_node++;
2137   (void) ResetMagickMemory(node_info,0,sizeof(*node_info));
2138   node_info->parent=parent;
2139   node_info->id=id;
2140   node_info->level=level;
2141   return(node_info);
2142 }
2143 \f
2144 /*
2145 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2146 %                                                                             %
2147 %                                                                             %
2148 %                                                                             %
2149 %  G e t I m a g e Q u a n t i z e E r r o r                                  %
2150 %                                                                             %
2151 %                                                                             %
2152 %                                                                             %
2153 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2154 %
2155 %  GetImageQuantizeError() measures the difference between the original
2156 %  and quantized images.  This difference is the total quantization error.
2157 %  The error is computed by summing over all pixels in an image the distance
2158 %  squared in RGB space between each reference pixel value and its quantized
2159 %  value.  These values are computed:
2160 %
2161 %    o mean_error_per_pixel:  This value is the mean error for any single
2162 %      pixel in the image.
2163 %
2164 %    o normalized_mean_square_error:  This value is the normalized mean
2165 %      quantization error for any single pixel in the image.  This distance
2166 %      measure is normalized to a range between 0 and 1.  It is independent
2167 %      of the range of red, green, and blue values in the image.
2168 %
2169 %    o normalized_maximum_square_error:  Thsi value is the normalized
2170 %      maximum quantization error for any single pixel in the image.  This
2171 %      distance measure is normalized to a range between 0 and 1.  It is
2172 %      independent of the range of red, green, and blue values in your image.
2173 %
2174 %  The format of the GetImageQuantizeError method is:
2175 %
2176 %      MagickBooleanType GetImageQuantizeError(Image *image,
2177 %        ExceptionInfo *exception)
2178 %
2179 %  A description of each parameter follows.
2180 %
2181 %    o image: the image.
2182 %
2183 %    o exception: return any errors or warnings in this structure.
2184 %
2185 */
2186 MagickExport MagickBooleanType GetImageQuantizeError(Image *image,
2187   ExceptionInfo *exception)
2188 {
2189   CacheView
2190     *image_view;
2191
2192   MagickRealType
2193     alpha,
2194     area,
2195     beta,
2196     distance,
2197     maximum_error,
2198     mean_error,
2199     mean_error_per_pixel;
2200
2201   size_t
2202     index;
2203
2204   ssize_t
2205     y;
2206
2207   assert(image != (Image *) NULL);
2208   assert(image->signature == MagickSignature);
2209   if (image->debug != MagickFalse)
2210     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2211   image->total_colors=GetNumberColors(image,(FILE *) NULL,exception);
2212   (void) ResetMagickMemory(&image->error,0,sizeof(image->error));
2213   if (image->storage_class == DirectClass)
2214     return(MagickTrue);
2215   alpha=1.0;
2216   beta=1.0;
2217   area=3.0*image->columns*image->rows;
2218   maximum_error=0.0;
2219   mean_error_per_pixel=0.0;
2220   mean_error=0.0;
2221   image_view=AcquireCacheView(image);
2222   for (y=0; y < (ssize_t) image->rows; y++)
2223   {
2224     register const Quantum
2225       *restrict p;
2226
2227     register ssize_t
2228       x;
2229
2230     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
2231     if (p == (const Quantum *) NULL)
2232       break;
2233     for (x=0; x < (ssize_t) image->columns; x++)
2234     {
2235       index=1UL*GetPixelIndex(image,p);
2236       if (image->matte != MagickFalse)
2237         {
2238           alpha=(MagickRealType) (QuantumScale*GetPixelAlpha(image,p));
2239           beta=(MagickRealType) (QuantumScale*image->colormap[index].alpha);
2240         }
2241       distance=fabs(alpha*GetPixelRed(image,p)-beta*
2242         image->colormap[index].red);
2243       mean_error_per_pixel+=distance;
2244       mean_error+=distance*distance;
2245       if (distance > maximum_error)
2246         maximum_error=distance;
2247       distance=fabs(alpha*GetPixelGreen(image,p)-beta*
2248         image->colormap[index].green);
2249       mean_error_per_pixel+=distance;
2250       mean_error+=distance*distance;
2251       if (distance > maximum_error)
2252         maximum_error=distance;
2253       distance=fabs(alpha*GetPixelBlue(image,p)-beta*
2254         image->colormap[index].blue);
2255       mean_error_per_pixel+=distance;
2256       mean_error+=distance*distance;
2257       if (distance > maximum_error)
2258         maximum_error=distance;
2259       p+=GetPixelChannels(image);
2260     }
2261   }
2262   image_view=DestroyCacheView(image_view);
2263   image->error.mean_error_per_pixel=(double) mean_error_per_pixel/area;
2264   image->error.normalized_mean_error=(double) QuantumScale*QuantumScale*
2265     mean_error/area;
2266   image->error.normalized_maximum_error=(double) QuantumScale*maximum_error;
2267   return(MagickTrue);
2268 }
2269 \f
2270 /*
2271 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2272 %                                                                             %
2273 %                                                                             %
2274 %                                                                             %
2275 %   G e t Q u a n t i z e I n f o                                             %
2276 %                                                                             %
2277 %                                                                             %
2278 %                                                                             %
2279 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2280 %
2281 %  GetQuantizeInfo() initializes the QuantizeInfo structure.
2282 %
2283 %  The format of the GetQuantizeInfo method is:
2284 %
2285 %      GetQuantizeInfo(QuantizeInfo *quantize_info)
2286 %
2287 %  A description of each parameter follows:
2288 %
2289 %    o quantize_info: Specifies a pointer to a QuantizeInfo structure.
2290 %
2291 */
2292 MagickExport void GetQuantizeInfo(QuantizeInfo *quantize_info)
2293 {
2294   (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
2295   assert(quantize_info != (QuantizeInfo *) NULL);
2296   (void) ResetMagickMemory(quantize_info,0,sizeof(*quantize_info));
2297   quantize_info->number_colors=256;
2298   quantize_info->dither=MagickTrue;
2299   quantize_info->dither_method=RiemersmaDitherMethod;
2300   quantize_info->colorspace=UndefinedColorspace;
2301   quantize_info->measure_error=MagickFalse;
2302   quantize_info->signature=MagickSignature;
2303 }
2304 \f
2305 /*
2306 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2307 %                                                                             %
2308 %                                                                             %
2309 %                                                                             %
2310 %     P o s t e r i z e I m a g e                                             %
2311 %                                                                             %
2312 %                                                                             %
2313 %                                                                             %
2314 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2315 %
2316 %  PosterizeImage() reduces the image to a limited number of colors for a
2317 %  "poster" effect.
2318 %
2319 %  The format of the PosterizeImage method is:
2320 %
2321 %      MagickBooleanType PosterizeImage(Image *image,const size_t levels,
2322 %        const MagickBooleanType dither,ExceptionInfo *exception)
2323 %
2324 %  A description of each parameter follows:
2325 %
2326 %    o image: Specifies a pointer to an Image structure.
2327 %
2328 %    o levels: Number of color levels allowed in each channel.  Very low values
2329 %      (2, 3, or 4) have the most visible effect.
2330 %
2331 %    o dither: Set this integer value to something other than zero to dither
2332 %      the mapped image.
2333 %
2334 %    o exception: return any errors or warnings in this structure.
2335 %
2336 */
2337
2338 static inline ssize_t MagickRound(MagickRealType x)
2339 {
2340   /*
2341     Round the fraction to nearest integer.
2342   */
2343   if (x >= 0.0)
2344     return((ssize_t) (x+0.5));
2345   return((ssize_t) (x-0.5));
2346 }
2347
2348 MagickExport MagickBooleanType PosterizeImage(Image *image,const size_t levels,
2349   const MagickBooleanType dither,ExceptionInfo *exception)
2350 {
2351 #define PosterizeImageTag  "Posterize/Image"
2352 #define PosterizePixel(pixel) (Quantum) (QuantumRange*(MagickRound( \
2353   QuantumScale*pixel*(levels-1)))/MagickMax((ssize_t) levels-1,1))
2354
2355   CacheView
2356     *image_view;
2357
2358   MagickBooleanType
2359     status;
2360
2361   MagickOffsetType
2362     progress;
2363
2364   QuantizeInfo
2365     *quantize_info;
2366
2367   register ssize_t
2368     i;
2369
2370   ssize_t
2371     y;
2372
2373   assert(image != (Image *) NULL);
2374   assert(image->signature == MagickSignature);
2375   if (image->debug != MagickFalse)
2376     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2377   if (image->storage_class == PseudoClass)
2378 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2379     #pragma omp parallel for schedule(dynamic,4) shared(progress,status)
2380 #endif
2381     for (i=0; i < (ssize_t) image->colors; i++)
2382     {
2383       /*
2384         Posterize colormap.
2385       */
2386       if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0)
2387         image->colormap[i].red=PosterizePixel(image->colormap[i].red);
2388       if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0)
2389         image->colormap[i].green=PosterizePixel(image->colormap[i].green);
2390       if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0)
2391         image->colormap[i].blue=PosterizePixel(image->colormap[i].blue);
2392       if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0)
2393         image->colormap[i].alpha=PosterizePixel(image->colormap[i].alpha);
2394     }
2395   /*
2396     Posterize image.
2397   */
2398   status=MagickTrue;
2399   progress=0;
2400   image_view=AcquireCacheView(image);
2401 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2402   #pragma omp parallel for schedule(dynamic,4) shared(progress,status)
2403 #endif
2404   for (y=0; y < (ssize_t) image->rows; y++)
2405   {
2406     register Quantum
2407       *restrict q;
2408
2409     register ssize_t
2410       x;
2411
2412     if (status == MagickFalse)
2413       continue;
2414     q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
2415     if (q == (Quantum *) NULL)
2416       {
2417         status=MagickFalse;
2418         continue;
2419       }
2420     for (x=0; x < (ssize_t) image->columns; x++)
2421     {
2422       if ((GetPixelRedTraits(image) & UpdatePixelTrait) != 0)
2423         SetPixelRed(image,PosterizePixel(GetPixelRed(image,q)),q);
2424       if ((GetPixelGreenTraits(image) & UpdatePixelTrait) != 0)
2425         SetPixelGreen(image,PosterizePixel(GetPixelGreen(image,q)),q);
2426       if ((GetPixelBlueTraits(image) & UpdatePixelTrait) != 0)
2427         SetPixelBlue(image,PosterizePixel(GetPixelBlue(image,q)),q);
2428       if (((GetPixelBlackTraits(image) & UpdatePixelTrait) != 0) &&
2429           (image->colorspace == CMYKColorspace))
2430         SetPixelBlack(image,PosterizePixel(GetPixelBlack(image,q)),q);
2431       if (((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0) &&
2432           (image->matte == MagickTrue))
2433         SetPixelAlpha(image,PosterizePixel(GetPixelAlpha(image,q)),q);
2434       q+=GetPixelChannels(image);
2435     }
2436     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
2437       status=MagickFalse;
2438     if (image->progress_monitor != (MagickProgressMonitor) NULL)
2439       {
2440         MagickBooleanType
2441           proceed;
2442
2443 #if defined(MAGICKCORE_OPENMP_SUPPORT)
2444         #pragma omp critical (MagickCore_PosterizeImage)
2445 #endif
2446         proceed=SetImageProgress(image,PosterizeImageTag,progress++,
2447           image->rows);
2448         if (proceed == MagickFalse)
2449           status=MagickFalse;
2450       }
2451   }
2452   image_view=DestroyCacheView(image_view);
2453   quantize_info=AcquireQuantizeInfo((ImageInfo *) NULL);
2454   quantize_info->number_colors=(size_t) MagickMin((ssize_t) levels*levels*
2455     levels,MaxColormapSize+1);
2456   quantize_info->dither=dither;
2457   quantize_info->tree_depth=MaxTreeDepth;
2458   status=QuantizeImage(quantize_info,image,exception);
2459   quantize_info=DestroyQuantizeInfo(quantize_info);
2460   return(status);
2461 }
2462 \f
2463 /*
2464 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2465 %                                                                             %
2466 %                                                                             %
2467 %                                                                             %
2468 +   P r u n e C h i l d                                                       %
2469 %                                                                             %
2470 %                                                                             %
2471 %                                                                             %
2472 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2473 %
2474 %  PruneChild() deletes the given node and merges its statistics into its
2475 %  parent.
2476 %
2477 %  The format of the PruneSubtree method is:
2478 %
2479 %      PruneChild(const Image *image,CubeInfo *cube_info,
2480 %        const NodeInfo *node_info)
2481 %
2482 %  A description of each parameter follows.
2483 %
2484 %    o image: the image.
2485 %
2486 %    o cube_info: A pointer to the Cube structure.
2487 %
2488 %    o node_info: pointer to node in color cube tree that is to be pruned.
2489 %
2490 */
2491 static void PruneChild(const Image *image,CubeInfo *cube_info,
2492   const NodeInfo *node_info)
2493 {
2494   NodeInfo
2495     *parent;
2496
2497   register ssize_t
2498     i;
2499
2500   size_t
2501     number_children;
2502
2503   /*
2504     Traverse any children.
2505   */
2506   number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
2507   for (i=0; i < (ssize_t) number_children; i++)
2508     if (node_info->child[i] != (NodeInfo *) NULL)
2509       PruneChild(image,cube_info,node_info->child[i]);
2510   /*
2511     Merge color statistics into parent.
2512   */
2513   parent=node_info->parent;
2514   parent->number_unique+=node_info->number_unique;
2515   parent->total_color.red+=node_info->total_color.red;
2516   parent->total_color.green+=node_info->total_color.green;
2517   parent->total_color.blue+=node_info->total_color.blue;
2518   parent->total_color.alpha+=node_info->total_color.alpha;
2519   parent->child[node_info->id]=(NodeInfo *) NULL;
2520   cube_info->nodes--;
2521 }
2522 \f
2523 /*
2524 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2525 %                                                                             %
2526 %                                                                             %
2527 %                                                                             %
2528 +  P r u n e L e v e l                                                        %
2529 %                                                                             %
2530 %                                                                             %
2531 %                                                                             %
2532 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2533 %
2534 %  PruneLevel() deletes all nodes at the bottom level of the color tree merging
2535 %  their color statistics into their parent node.
2536 %
2537 %  The format of the PruneLevel method is:
2538 %
2539 %      PruneLevel(const Image *image,CubeInfo *cube_info,
2540 %        const NodeInfo *node_info)
2541 %
2542 %  A description of each parameter follows.
2543 %
2544 %    o image: the image.
2545 %
2546 %    o cube_info: A pointer to the Cube structure.
2547 %
2548 %    o node_info: pointer to node in color cube tree that is to be pruned.
2549 %
2550 */
2551 static void PruneLevel(const Image *image,CubeInfo *cube_info,
2552   const NodeInfo *node_info)
2553 {
2554   register ssize_t
2555     i;
2556
2557   size_t
2558     number_children;
2559
2560   /*
2561     Traverse any children.
2562   */
2563   number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
2564   for (i=0; i < (ssize_t) number_children; i++)
2565     if (node_info->child[i] != (NodeInfo *) NULL)
2566       PruneLevel(image,cube_info,node_info->child[i]);
2567   if (node_info->level == cube_info->depth)
2568     PruneChild(image,cube_info,node_info);
2569 }
2570 \f
2571 /*
2572 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2573 %                                                                             %
2574 %                                                                             %
2575 %                                                                             %
2576 +  P r u n e T o C u b e D e p t h                                            %
2577 %                                                                             %
2578 %                                                                             %
2579 %                                                                             %
2580 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2581 %
2582 %  PruneToCubeDepth() deletes any nodes at a depth greater than
2583 %  cube_info->depth while merging their color statistics into their parent
2584 %  node.
2585 %
2586 %  The format of the PruneToCubeDepth method is:
2587 %
2588 %      PruneToCubeDepth(const Image *image,CubeInfo *cube_info,
2589 %        const NodeInfo *node_info)
2590 %
2591 %  A description of each parameter follows.
2592 %
2593 %    o cube_info: A pointer to the Cube structure.
2594 %
2595 %    o node_info: pointer to node in color cube tree that is to be pruned.
2596 %
2597 */
2598 static void PruneToCubeDepth(const Image *image,CubeInfo *cube_info,
2599   const NodeInfo *node_info)
2600 {
2601   register ssize_t
2602     i;
2603
2604   size_t
2605     number_children;
2606
2607   /*
2608     Traverse any children.
2609   */
2610   number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
2611   for (i=0; i < (ssize_t) number_children; i++)
2612     if (node_info->child[i] != (NodeInfo *) NULL)
2613       PruneToCubeDepth(image,cube_info,node_info->child[i]);
2614   if (node_info->level > cube_info->depth)
2615     PruneChild(image,cube_info,node_info);
2616 }
2617 \f
2618 /*
2619 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2620 %                                                                             %
2621 %                                                                             %
2622 %                                                                             %
2623 %  Q u a n t i z e I m a g e                                                  %
2624 %                                                                             %
2625 %                                                                             %
2626 %                                                                             %
2627 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2628 %
2629 %  QuantizeImage() analyzes the colors within a reference image and chooses a
2630 %  fixed number of colors to represent the image.  The goal of the algorithm
2631 %  is to minimize the color difference between the input and output image while
2632 %  minimizing the processing time.
2633 %
2634 %  The format of the QuantizeImage method is:
2635 %
2636 %      MagickBooleanType QuantizeImage(const QuantizeInfo *quantize_info,
2637 %        Image *image,ExceptionInfo *exception)
2638 %
2639 %  A description of each parameter follows:
2640 %
2641 %    o quantize_info: Specifies a pointer to an QuantizeInfo structure.
2642 %
2643 %    o image: the image.
2644 %
2645 %    o exception: return any errors or warnings in this structure.
2646 %
2647 */
2648
2649 static MagickBooleanType DirectToColormapImage(Image *image,
2650   ExceptionInfo *exception)
2651 {
2652   CacheView
2653     *image_view;
2654
2655   MagickBooleanType
2656     status;
2657
2658   register ssize_t
2659     i;
2660
2661   size_t
2662     number_colors;
2663
2664   ssize_t
2665     y;
2666
2667   status=MagickTrue;
2668   number_colors=(size_t) (image->columns*image->rows);
2669   if (AcquireImageColormap(image,number_colors,exception) == MagickFalse)
2670     ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
2671       image->filename);
2672   if (image->colors != number_colors)
2673     return(MagickFalse);
2674   i=0;
2675   image_view=AcquireCacheView(image);
2676   for (y=0; y < (ssize_t) image->rows; y++)
2677   {
2678     MagickBooleanType
2679       proceed;
2680
2681     register Quantum
2682       *restrict q;
2683
2684     register ssize_t
2685       x;
2686
2687     q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
2688     if (q == (Quantum *) NULL)
2689       break;
2690     for (x=0; x < (ssize_t) image->columns; x++)
2691     {
2692       image->colormap[i].red=GetPixelRed(image,q);
2693       image->colormap[i].green=GetPixelGreen(image,q);
2694       image->colormap[i].blue=GetPixelBlue(image,q);
2695       image->colormap[i].alpha=GetPixelAlpha(image,q);
2696       SetPixelIndex(image,(Quantum) i,q);
2697       i++;
2698       q+=GetPixelChannels(image);
2699     }
2700     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
2701       break;
2702     proceed=SetImageProgress(image,AssignImageTag,(MagickOffsetType) y,
2703       image->rows);
2704     if (proceed == MagickFalse)
2705       status=MagickFalse;
2706   }
2707   image_view=DestroyCacheView(image_view);
2708   return(status);
2709 }
2710
2711 MagickExport MagickBooleanType QuantizeImage(const QuantizeInfo *quantize_info,
2712   Image *image,ExceptionInfo *exception)
2713 {
2714   CubeInfo
2715     *cube_info;
2716
2717   MagickBooleanType
2718     status;
2719
2720   size_t
2721     depth,
2722     maximum_colors;
2723
2724   assert(quantize_info != (const QuantizeInfo *) NULL);
2725   assert(quantize_info->signature == MagickSignature);
2726   assert(image != (Image *) NULL);
2727   assert(image->signature == MagickSignature);
2728   if (image->debug != MagickFalse)
2729     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2730   maximum_colors=quantize_info->number_colors;
2731   if (maximum_colors == 0)
2732     maximum_colors=MaxColormapSize;
2733   if (maximum_colors > MaxColormapSize)
2734     maximum_colors=MaxColormapSize;
2735   if ((image->columns*image->rows) <= maximum_colors)
2736     (void) DirectToColormapImage(image,exception);
2737   if ((IsImageGray(image,exception) != MagickFalse) &&
2738       (image->matte == MagickFalse))
2739     (void) SetGrayscaleImage(image,exception);
2740   if ((image->storage_class == PseudoClass) &&
2741       (image->colors <= maximum_colors))
2742     return(MagickTrue);
2743   depth=quantize_info->tree_depth;
2744   if (depth == 0)
2745     {
2746       size_t
2747         colors;
2748
2749       /*
2750         Depth of color tree is: Log4(colormap size)+2.
2751       */
2752       colors=maximum_colors;
2753       for (depth=1; colors != 0; depth++)
2754         colors>>=2;
2755       if ((quantize_info->dither != MagickFalse) && (depth > 2))
2756         depth--;
2757       if ((image->matte != MagickFalse) && (depth > 5))
2758         depth--;
2759     }
2760   /*
2761     Initialize color cube.
2762   */
2763   cube_info=GetCubeInfo(quantize_info,depth,maximum_colors);
2764   if (cube_info == (CubeInfo *) NULL)
2765     ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
2766       image->filename);
2767   status=ClassifyImageColors(cube_info,image,exception);
2768   if (status != MagickFalse)
2769     {
2770       /*
2771         Reduce the number of colors in the image.
2772       */
2773       ReduceImageColors(image,cube_info);
2774       status=AssignImageColors(image,cube_info,exception);
2775     }
2776   DestroyCubeInfo(cube_info);
2777   return(status);
2778 }
2779 \f
2780 /*
2781 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2782 %                                                                             %
2783 %                                                                             %
2784 %                                                                             %
2785 %   Q u a n t i z e I m a g e s                                               %
2786 %                                                                             %
2787 %                                                                             %
2788 %                                                                             %
2789 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2790 %
2791 %  QuantizeImages() analyzes the colors within a set of reference images and
2792 %  chooses a fixed number of colors to represent the set.  The goal of the
2793 %  algorithm is to minimize the color difference between the input and output
2794 %  images while minimizing the processing time.
2795 %
2796 %  The format of the QuantizeImages method is:
2797 %
2798 %      MagickBooleanType QuantizeImages(const QuantizeInfo *quantize_info,
2799 %        Image *images,ExceptionInfo *exception)
2800 %
2801 %  A description of each parameter follows:
2802 %
2803 %    o quantize_info: Specifies a pointer to an QuantizeInfo structure.
2804 %
2805 %    o images: Specifies a pointer to a list of Image structures.
2806 %
2807 %    o exception: return any errors or warnings in this structure.
2808 %
2809 */
2810 MagickExport MagickBooleanType QuantizeImages(const QuantizeInfo *quantize_info,
2811   Image *images,ExceptionInfo *exception)
2812 {
2813   CubeInfo
2814     *cube_info;
2815
2816   Image
2817     *image;
2818
2819   MagickBooleanType
2820     proceed,
2821     status;
2822
2823   MagickProgressMonitor
2824     progress_monitor;
2825
2826   register ssize_t
2827     i;
2828
2829   size_t
2830     depth,
2831     maximum_colors,
2832     number_images;
2833
2834   assert(quantize_info != (const QuantizeInfo *) NULL);
2835   assert(quantize_info->signature == MagickSignature);
2836   assert(images != (Image *) NULL);
2837   assert(images->signature == MagickSignature);
2838   if (images->debug != MagickFalse)
2839     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
2840   if (GetNextImageInList(images) == (Image *) NULL)
2841     {
2842       /*
2843         Handle a single image with QuantizeImage.
2844       */
2845       status=QuantizeImage(quantize_info,images,exception);
2846       return(status);
2847     }
2848   status=MagickFalse;
2849   maximum_colors=quantize_info->number_colors;
2850   if (maximum_colors == 0)
2851     maximum_colors=MaxColormapSize;
2852   if (maximum_colors > MaxColormapSize)
2853     maximum_colors=MaxColormapSize;
2854   depth=quantize_info->tree_depth;
2855   if (depth == 0)
2856     {
2857       size_t
2858         colors;
2859
2860       /*
2861         Depth of color tree is: Log4(colormap size)+2.
2862       */
2863       colors=maximum_colors;
2864       for (depth=1; colors != 0; depth++)
2865         colors>>=2;
2866       if (quantize_info->dither != MagickFalse)
2867         depth--;
2868     }
2869   /*
2870     Initialize color cube.
2871   */
2872   cube_info=GetCubeInfo(quantize_info,depth,maximum_colors);
2873   if (cube_info == (CubeInfo *) NULL)
2874     {
2875       (void) ThrowMagickException(exception,GetMagickModule(),
2876         ResourceLimitError,"MemoryAllocationFailed","`%s'",images->filename);
2877       return(MagickFalse);
2878     }
2879   number_images=GetImageListLength(images);
2880   image=images;
2881   for (i=0; image != (Image *) NULL; i++)
2882   {
2883     progress_monitor=SetImageProgressMonitor(image,(MagickProgressMonitor) NULL,
2884       image->client_data);
2885     status=ClassifyImageColors(cube_info,image,exception);
2886     if (status == MagickFalse)
2887       break;
2888     (void) SetImageProgressMonitor(image,progress_monitor,image->client_data);
2889     proceed=SetImageProgress(image,AssignImageTag,(MagickOffsetType) i,
2890       number_images);
2891     if (proceed == MagickFalse)
2892       break;
2893     image=GetNextImageInList(image);
2894   }
2895   if (status != MagickFalse)
2896     {
2897       /*
2898         Reduce the number of colors in an image sequence.
2899       */
2900       ReduceImageColors(images,cube_info);
2901       image=images;
2902       for (i=0; image != (Image *) NULL; i++)
2903       {
2904         progress_monitor=SetImageProgressMonitor(image,(MagickProgressMonitor)
2905           NULL,image->client_data);
2906         status=AssignImageColors(image,cube_info,exception);
2907         if (status == MagickFalse)
2908           break;
2909         (void) SetImageProgressMonitor(image,progress_monitor,
2910           image->client_data);
2911         proceed=SetImageProgress(image,AssignImageTag,(MagickOffsetType) i,
2912           number_images);
2913         if (proceed == MagickFalse)
2914           break;
2915         image=GetNextImageInList(image);
2916       }
2917     }
2918   DestroyCubeInfo(cube_info);
2919   return(status);
2920 }
2921 \f
2922 /*
2923 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2924 %                                                                             %
2925 %                                                                             %
2926 %                                                                             %
2927 +   R e d u c e                                                               %
2928 %                                                                             %
2929 %                                                                             %
2930 %                                                                             %
2931 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2932 %
2933 %  Reduce() traverses the color cube tree and prunes any node whose
2934 %  quantization error falls below a particular threshold.
2935 %
2936 %  The format of the Reduce method is:
2937 %
2938 %      Reduce(const Image *image,CubeInfo *cube_info,const NodeInfo *node_info)
2939 %
2940 %  A description of each parameter follows.
2941 %
2942 %    o image: the image.
2943 %
2944 %    o cube_info: A pointer to the Cube structure.
2945 %
2946 %    o node_info: pointer to node in color cube tree that is to be pruned.
2947 %
2948 */
2949 static void Reduce(const Image *image,CubeInfo *cube_info,
2950   const NodeInfo *node_info)
2951 {
2952   register ssize_t
2953     i;
2954
2955   size_t
2956     number_children;
2957
2958   /*
2959     Traverse any children.
2960   */
2961   number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
2962   for (i=0; i < (ssize_t) number_children; i++)
2963     if (node_info->child[i] != (NodeInfo *) NULL)
2964       Reduce(image,cube_info,node_info->child[i]);
2965   if (node_info->quantize_error <= cube_info->pruning_threshold)
2966     PruneChild(image,cube_info,node_info);
2967   else
2968     {
2969       /*
2970         Find minimum pruning threshold.
2971       */
2972       if (node_info->number_unique > 0)
2973         cube_info->colors++;
2974       if (node_info->quantize_error < cube_info->next_threshold)
2975         cube_info->next_threshold=node_info->quantize_error;
2976     }
2977 }
2978 \f
2979 /*
2980 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2981 %                                                                             %
2982 %                                                                             %
2983 %                                                                             %
2984 +   R e d u c e I m a g e C o l o r s                                         %
2985 %                                                                             %
2986 %                                                                             %
2987 %                                                                             %
2988 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2989 %
2990 %  ReduceImageColors() repeatedly prunes the tree until the number of nodes
2991 %  with n2 > 0 is less than or equal to the maximum number of colors allowed
2992 %  in the output image.  On any given iteration over the tree, it selects
2993 %  those nodes whose E value is minimal for pruning and merges their
2994 %  color statistics upward. It uses a pruning threshold, Ep, to govern
2995 %  node selection as follows:
2996 %
2997 %    Ep = 0
2998 %    while number of nodes with (n2 > 0) > required maximum number of colors
2999 %      prune all nodes such that E <= Ep
3000 %      Set Ep to minimum E in remaining nodes
3001 %
3002 %  This has the effect of minimizing any quantization error when merging
3003 %  two nodes together.
3004 %
3005 %  When a node to be pruned has offspring, the pruning procedure invokes
3006 %  itself recursively in order to prune the tree from the leaves upward.
3007 %  n2,  Sr, Sg,  and  Sb in a node being pruned are always added to the
3008 %  corresponding data in that node's parent.  This retains the pruned
3009 %  node's color characteristics for later averaging.
3010 %
3011 %  For each node, n2 pixels exist for which that node represents the
3012 %  smallest volume in RGB space containing those pixel's colors.  When n2
3013 %  > 0 the node will uniquely define a color in the output image. At the
3014 %  beginning of reduction,  n2 = 0  for all nodes except a the leaves of
3015 %  the tree which represent colors present in the input image.
3016 %
3017 %  The other pixel count, n1, indicates the total number of colors
3018 %  within the cubic volume which the node represents.  This includes n1 -
3019 %  n2  pixels whose colors should be defined by nodes at a lower level in
3020 %  the tree.
3021 %
3022 %  The format of the ReduceImageColors method is:
3023 %
3024 %      ReduceImageColors(const Image *image,CubeInfo *cube_info)
3025 %
3026 %  A description of each parameter follows.
3027 %
3028 %    o image: the image.
3029 %
3030 %    o cube_info: A pointer to the Cube structure.
3031 %
3032 */
3033 static void ReduceImageColors(const Image *image,CubeInfo *cube_info)
3034 {
3035 #define ReduceImageTag  "Reduce/Image"
3036
3037   MagickBooleanType
3038     proceed;
3039
3040   MagickOffsetType
3041     offset;
3042
3043   size_t
3044     span;
3045
3046   cube_info->next_threshold=0.0;
3047   for (span=cube_info->colors; cube_info->colors > cube_info->maximum_colors; )
3048   {
3049     cube_info->pruning_threshold=cube_info->next_threshold;
3050     cube_info->next_threshold=cube_info->root->quantize_error-1;
3051     cube_info->colors=0;
3052     Reduce(image,cube_info,cube_info->root);
3053     offset=(MagickOffsetType) span-cube_info->colors;
3054     proceed=SetImageProgress(image,ReduceImageTag,offset,span-
3055       cube_info->maximum_colors+1);
3056     if (proceed == MagickFalse)
3057       break;
3058   }
3059 }
3060 \f
3061 /*
3062 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3063 %                                                                             %
3064 %                                                                             %
3065 %                                                                             %
3066 %   R e m a p I m a g e                                                       %
3067 %                                                                             %
3068 %                                                                             %
3069 %                                                                             %
3070 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3071 %
3072 %  RemapImage() replaces the colors of an image with the closest color from
3073 %  a reference image.
3074 %
3075 %  The format of the RemapImage method is:
3076 %
3077 %      MagickBooleanType RemapImage(const QuantizeInfo *quantize_info,
3078 %        Image *image,const Image *remap_image,ExceptionInfo *exception)
3079 %
3080 %  A description of each parameter follows:
3081 %
3082 %    o quantize_info: Specifies a pointer to an QuantizeInfo structure.
3083 %
3084 %    o image: the image.
3085 %
3086 %    o remap_image: the reference image.
3087 %
3088 %    o exception: return any errors or warnings in this structure.
3089 %
3090 */
3091 MagickExport MagickBooleanType RemapImage(const QuantizeInfo *quantize_info,
3092   Image *image,const Image *remap_image,ExceptionInfo *exception)
3093 {
3094   CubeInfo
3095     *cube_info;
3096
3097   MagickBooleanType
3098     status;
3099
3100   /*
3101     Initialize color cube.
3102   */
3103   assert(image != (Image *) NULL);
3104   assert(image->signature == MagickSignature);
3105   if (image->debug != MagickFalse)
3106     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
3107   assert(remap_image != (Image *) NULL);
3108   assert(remap_image->signature == MagickSignature);
3109   cube_info=GetCubeInfo(quantize_info,MaxTreeDepth,
3110     quantize_info->number_colors);
3111   if (cube_info == (CubeInfo *) NULL)
3112     ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3113       image->filename);
3114   status=ClassifyImageColors(cube_info,remap_image,exception);
3115   if (status != MagickFalse)
3116     {
3117       /*
3118         Classify image colors from the reference image.
3119       */
3120       cube_info->quantize_info->number_colors=cube_info->colors;
3121       status=AssignImageColors(image,cube_info,exception);
3122     }
3123   DestroyCubeInfo(cube_info);
3124   return(status);
3125 }
3126 \f
3127 /*
3128 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3129 %                                                                             %
3130 %                                                                             %
3131 %                                                                             %
3132 %   R e m a p I m a g e s                                                     %
3133 %                                                                             %
3134 %                                                                             %
3135 %                                                                             %
3136 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3137 %
3138 %  RemapImages() replaces the colors of a sequence of images with the
3139 %  closest color from a reference image.
3140 %
3141 %  The format of the RemapImage method is:
3142 %
3143 %      MagickBooleanType RemapImages(const QuantizeInfo *quantize_info,
3144 %        Image *images,Image *remap_image,ExceptionInfo *exception)
3145 %
3146 %  A description of each parameter follows:
3147 %
3148 %    o quantize_info: Specifies a pointer to an QuantizeInfo structure.
3149 %
3150 %    o images: the image sequence.
3151 %
3152 %    o remap_image: the reference image.
3153 %
3154 %    o exception: return any errors or warnings in this structure.
3155 %
3156 */
3157 MagickExport MagickBooleanType RemapImages(const QuantizeInfo *quantize_info,
3158   Image *images,const Image *remap_image,ExceptionInfo *exception)
3159 {
3160   CubeInfo
3161     *cube_info;
3162
3163   Image
3164     *image;
3165
3166   MagickBooleanType
3167     status;
3168
3169   assert(images != (Image *) NULL);
3170   assert(images->signature == MagickSignature);
3171   if (images->debug != MagickFalse)
3172     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
3173   image=images;
3174   if (remap_image == (Image *) NULL)
3175     {
3176       /*
3177         Create a global colormap for an image sequence.
3178       */
3179       status=QuantizeImages(quantize_info,images,exception);
3180       return(status);
3181     }
3182   /*
3183     Classify image colors from the reference image.
3184   */
3185   cube_info=GetCubeInfo(quantize_info,MaxTreeDepth,
3186     quantize_info->number_colors);
3187   if (cube_info == (CubeInfo *) NULL)
3188     ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3189       image->filename);
3190   status=ClassifyImageColors(cube_info,remap_image,exception);
3191   if (status != MagickFalse)
3192     {
3193       /*
3194         Classify image colors from the reference image.
3195       */
3196       cube_info->quantize_info->number_colors=cube_info->colors;
3197       image=images;
3198       for ( ; image != (Image *) NULL; image=GetNextImageInList(image))
3199       {
3200         status=AssignImageColors(image,cube_info,exception);
3201         if (status == MagickFalse)
3202           break;
3203       }
3204     }
3205   DestroyCubeInfo(cube_info);
3206   return(status);
3207 }
3208 \f
3209 /*
3210 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3211 %                                                                             %
3212 %                                                                             %
3213 %                                                                             %
3214 %   S e t G r a y s c a l e I m a g e                                         %
3215 %                                                                             %
3216 %                                                                             %
3217 %                                                                             %
3218 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3219 %
3220 %  SetGrayscaleImage() converts an image to a PseudoClass grayscale image.
3221 %
3222 %  The format of the SetGrayscaleImage method is:
3223 %
3224 %      MagickBooleanType SetGrayscaleImage(Image *image,ExceptionInfo *exeption)
3225 %
3226 %  A description of each parameter follows:
3227 %
3228 %    o image: The image.
3229 %
3230 %    o exception: return any errors or warnings in this structure.
3231 %
3232 */
3233
3234 #if defined(__cplusplus) || defined(c_plusplus)
3235 extern "C" {
3236 #endif
3237
3238 static int IntensityCompare(const void *x,const void *y)
3239 {
3240   PixelInfo
3241     *color_1,
3242     *color_2;
3243
3244   ssize_t
3245     intensity;
3246
3247   color_1=(PixelInfo *) x;
3248   color_2=(PixelInfo *) y;
3249   intensity=GetPixelInfoIntensity(color_1)-(ssize_t)
3250     GetPixelInfoIntensity(color_2);
3251   return((int) intensity);
3252 }
3253
3254 #if defined(__cplusplus) || defined(c_plusplus)
3255 }
3256 #endif
3257
3258 static MagickBooleanType SetGrayscaleImage(Image *image,
3259   ExceptionInfo *exception)
3260 {
3261   CacheView
3262     *image_view;
3263
3264   MagickBooleanType
3265     status;
3266
3267   PixelInfo
3268     *colormap;
3269
3270   register ssize_t
3271     i;
3272
3273   ssize_t
3274     *colormap_index,
3275     j,
3276     y;
3277
3278   assert(image != (Image *) NULL);
3279   assert(image->signature == MagickSignature);
3280   if (image->type != GrayscaleType)
3281     (void) TransformImageColorspace(image,GRAYColorspace,exception);
3282   colormap_index=(ssize_t *) AcquireQuantumMemory(MaxMap+1,
3283     sizeof(*colormap_index));
3284   if (colormap_index == (ssize_t *) NULL)
3285     ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3286       image->filename);
3287   if (image->storage_class != PseudoClass)
3288     {
3289       for (i=0; i <= (ssize_t) MaxMap; i++)
3290         colormap_index[i]=(-1);
3291       if (AcquireImageColormap(image,MaxMap+1,exception) == MagickFalse)
3292         ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3293           image->filename);
3294       image->colors=0;
3295       status=MagickTrue;
3296       image_view=AcquireCacheView(image);
3297 #if defined(MAGICKCORE_OPENMP_SUPPORT)
3298       #pragma omp parallel for schedule(dynamic,4) shared(status)
3299 #endif
3300       for (y=0; y < (ssize_t) image->rows; y++)
3301       {
3302         register Quantum
3303           *restrict q;
3304
3305         register ssize_t
3306           x;
3307
3308         if (status == MagickFalse)
3309           continue;
3310         q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
3311           exception);
3312         if (q == (Quantum *) NULL)
3313           {
3314             status=MagickFalse;
3315             continue;
3316           }
3317         for (x=0; x < (ssize_t) image->columns; x++)
3318         {
3319           register size_t
3320             intensity;
3321
3322           intensity=ScaleQuantumToMap(GetPixelRed(image,q));
3323           if (colormap_index[intensity] < 0)
3324             {
3325 #if defined(MAGICKCORE_OPENMP_SUPPORT)
3326     #pragma omp critical (MagickCore_SetGrayscaleImage)
3327 #endif
3328               if (colormap_index[intensity] < 0)
3329                 {
3330                   colormap_index[intensity]=(ssize_t) image->colors;
3331                   image->colormap[image->colors].red=GetPixelRed(image,q);
3332                   image->colormap[image->colors].green=GetPixelGreen(image,q);
3333                   image->colormap[image->colors].blue=GetPixelBlue(image,q);
3334                   image->colors++;
3335                }
3336             }
3337           SetPixelIndex(image,(Quantum) 
3338             colormap_index[intensity],q);
3339           q+=GetPixelChannels(image);
3340         }
3341         if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
3342           status=MagickFalse;
3343       }
3344       image_view=DestroyCacheView(image_view);
3345     }
3346   for (i=0; i < (ssize_t) image->colors; i++)
3347     image->colormap[i].alpha=(unsigned short) i;
3348   qsort((void *) image->colormap,image->colors,sizeof(PixelInfo),
3349     IntensityCompare);
3350   colormap=(PixelInfo *) AcquireQuantumMemory(image->colors,
3351     sizeof(*colormap));
3352   if (colormap == (PixelInfo *) NULL)
3353     ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3354       image->filename);
3355   j=0;
3356   colormap[j]=image->colormap[0];
3357   for (i=0; i < (ssize_t) image->colors; i++)
3358   {
3359     if (IsPixelInfoEquivalent(&colormap[j],&image->colormap[i]) == MagickFalse)
3360       {
3361         j++;
3362         colormap[j]=image->colormap[i];
3363       }
3364     colormap_index[(ssize_t) image->colormap[i].alpha]=j;
3365   }
3366   image->colors=(size_t) (j+1);
3367   image->colormap=(PixelInfo *) RelinquishMagickMemory(image->colormap);
3368   image->colormap=colormap;
3369   status=MagickTrue;
3370   image_view=AcquireCacheView(image);
3371 #if defined(MAGICKCORE_OPENMP_SUPPORT)
3372   #pragma omp parallel for schedule(dynamic,4) shared(status)
3373 #endif
3374   for (y=0; y < (ssize_t) image->rows; y++)
3375   {
3376     register Quantum
3377       *restrict q;
3378
3379     register ssize_t
3380       x;
3381
3382     if (status == MagickFalse)
3383       continue;
3384     q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
3385     if (q == (Quantum *) NULL)
3386       {
3387         status=MagickFalse;
3388         continue;
3389       }
3390     for (x=0; x < (ssize_t) image->columns; x++)
3391     {
3392       SetPixelIndex(image,(Quantum) colormap_index[ScaleQuantumToMap(
3393         GetPixelIndex(image,q))],q);
3394       q+=GetPixelChannels(image);
3395     }
3396     if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
3397       status=MagickFalse;
3398   }
3399   image_view=DestroyCacheView(image_view);
3400   colormap_index=(ssize_t *) RelinquishMagickMemory(colormap_index);
3401   image->type=GrayscaleType;
3402   if (IsImageMonochrome(image,exception) != MagickFalse)
3403     image->type=BilevelType;
3404   return(status);
3405 }