]> granicus.if.org Git - imagemagick/blob - MagickCore/gem.c
(no commit message)
[imagemagick] / MagickCore / gem.c
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %                                                                             %
4 %                                                                             %
5 %                                                                             %
6 %                              GGGG  EEEEE  M   M                             %
7 %                             G      E      MM MM                             %
8 %                             G GG   EEE    M M M                             %
9 %                             G   G  E      M   M                             %
10 %                              GGGG  EEEEE  M   M                             %
11 %                                                                             %
12 %                                                                             %
13 %                    Graphic Gems - Graphic Support Methods                   %
14 %                                                                             %
15 %                               Software Design                               %
16 %                                    Cristy                                   %
17 %                                 August 1996                                 %
18 %                                                                             %
19 %                                                                             %
20 %  Copyright 1999-2014 ImageMagick Studio LLC, a non-profit organization      %
21 %  dedicated to making software imaging solutions freely available.           %
22 %                                                                             %
23 %  You may not use this file except in compliance with the License.  You may  %
24 %  obtain a copy of the License at                                            %
25 %                                                                             %
26 %    http://www.imagemagick.org/script/license.php                            %
27 %                                                                             %
28 %  Unless required by applicable law or agreed to in writing, software        %
29 %  distributed under the License is distributed on an "AS IS" BASIS,          %
30 %  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
31 %  See the License for the specific language governing permissions and        %
32 %  limitations under the License.                                             %
33 %                                                                             %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %
37 %
38 */
39 \f
40 /*
41   Include declarations.
42 */
43 #include "MagickCore/studio.h"
44 #include "MagickCore/color-private.h"
45 #include "MagickCore/draw.h"
46 #include "MagickCore/gem.h"
47 #include "MagickCore/gem-private.h"
48 #include "MagickCore/image.h"
49 #include "MagickCore/image-private.h"
50 #include "MagickCore/log.h"
51 #include "MagickCore/memory_.h"
52 #include "MagickCore/pixel-accessor.h"
53 #include "MagickCore/pixel-private.h"
54 #include "MagickCore/quantum.h"
55 #include "MagickCore/quantum-private.h"
56 #include "MagickCore/random_.h"
57 #include "MagickCore/resize.h"
58 #include "MagickCore/transform.h"
59 #include "MagickCore/signature-private.h"
60 \f
61 /*
62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63 %                                                                             %
64 %                                                                             %
65 %                                                                             %
66 %   C o n v e r t H C L T o R G B                                             %
67 %                                                                             %
68 %                                                                             %
69 %                                                                             %
70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
71 %
72 %  ConvertHCLToRGB() transforms a (hue, chroma, luma) to a (red, green,
73 %  blue) triple.
74 %
75 %  The format of the ConvertHCLToRGBImage method is:
76 %
77 %      void ConvertHCLToRGB(const double hue,const double chroma,
78 %        const double luma,double *red,double *green,double *blue)
79 %
80 %  A description of each parameter follows:
81 %
82 %    o hue, chroma, luma: A double value representing a component of the
83 %      HCL color space.
84 %
85 %    o red, green, blue: A pointer to a pixel component of type Quantum.
86 %
87 */
88 MagickPrivate void ConvertHCLToRGB(const double hue,const double chroma,
89   const double luma,double *red,double *green,double *blue)
90 {
91   double
92     b,
93     c,
94     g,
95     h,
96     m,
97     r,
98     x;
99
100   /*
101     Convert HCL to RGB colorspace.
102   */
103   assert(red != (double *) NULL);
104   assert(green != (double *) NULL);
105   assert(blue != (double *) NULL);
106   h=6.0*hue;
107   c=chroma;
108   x=c*(1.0-fabs(fmod(h,2.0)-1.0));
109   r=0.0;
110   g=0.0;
111   b=0.0;
112   if ((0.0 <= h) && (h < 1.0))
113     {
114       r=c;
115       g=x;
116     }
117   else
118     if ((1.0 <= h) && (h < 2.0))
119       {
120         r=x;
121         g=c;
122       }
123     else
124       if ((2.0 <= h) && (h < 3.0))
125         {
126           g=c;
127           b=x;
128         }
129       else
130         if ((3.0 <= h) && (h < 4.0))
131           {
132             g=x;
133             b=c;
134           }
135         else
136           if ((4.0 <= h) && (h < 5.0))
137             {
138               r=x;
139               b=c;
140             }
141           else
142             if ((5.0 <= h) && (h < 6.0))
143               {
144                 r=c;
145                 b=x;
146               }
147   m=luma-(0.298839*r+0.586811*g+0.114350*b);
148   *red=QuantumRange*(r+m);
149   *green=QuantumRange*(g+m);
150   *blue=QuantumRange*(b+m);
151 }
152 \f
153 /*
154 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
155 %                                                                             %
156 %                                                                             %
157 %                                                                             %
158 %   C o n v e r t H C L p T o R G B                                           %
159 %                                                                             %
160 %                                                                             %
161 %                                                                             %
162 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
163 %
164 %  ConvertHCLpToRGB() transforms a (hue, chroma, luma) to a (red, green,
165 %  blue) triple.  Since HCL colorspace is wider than RGB, we instead choose a
166 %  saturation strategy to project it on the RGB cube.
167 %
168 %  The format of the ConvertHCLpToRGBImage method is:
169 %
170 %      void ConvertHCLpToRGB(const double hue,const double chroma,
171 %        const double luma,double *red,double *green,double *blue)
172 %
173 %  A description of each parameter follows:
174 %
175 %    o hue, chroma, luma: A double value representing a componenet of the
176 %      HCLp color space.
177 %
178 %    o red, green, blue: A pointer to a pixel component of type Quantum.
179 %
180 */
181 MagickPrivate void ConvertHCLpToRGB(const double hue,const double chroma,
182   const double luma,double *red,double *green,double *blue)
183 {
184   double
185     b,
186     c,
187     g,
188     h,
189     m,
190     r,
191     x,
192     z;
193
194   /*
195     Convert HCLp to RGB colorspace.
196   */
197   assert(red != (double *) NULL);
198   assert(green != (double *) NULL);
199   assert(blue != (double *) NULL);
200   h=6.0*hue;
201   c=chroma;
202   x=c*(1.0-fabs(fmod(h,2.0)-1.0));
203   r=0.0;
204   g=0.0;
205   b=0.0;
206   if ((0.0 <= h) && (h < 1.0))
207     {
208       r=c;
209       g=x;
210     }
211   else
212     if ((1.0 <= h) && (h < 2.0))
213       {
214         r=x;
215         g=c;
216       }
217     else
218       if ((2.0 <= h) && (h < 3.0))
219         {
220           g=c;
221           b=x;
222         }
223       else
224         if ((3.0 <= h) && (h < 4.0))
225           {
226             g=x;
227             b=c;
228           }
229         else
230           if ((4.0 <= h) && (h < 5.0))
231             {
232               r=x;
233               b=c;
234             }
235           else
236             if ((5.0 <= h) && (h < 6.0))
237               {
238                 r=c;
239                 b=x;
240               }
241   m=luma-(0.298839*r+0.586811*g+0.114350*b);
242   z=1.0;
243   if (m < 0.0)
244     {
245       z=luma/(luma-m);
246       m=0.0;
247     }
248   else
249     if (m+c > 1.0)
250       {
251         z=(1.0-luma)/(m+c-luma);
252         m=1.0-z*c;
253       }
254   *red=QuantumRange*(z*r+m);
255   *green=QuantumRange*(z*g+m);
256   *blue=QuantumRange*(z*b+m);
257 }
258 \f
259 /*
260 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
261 %                                                                             %
262 %                                                                             %
263 %                                                                             %
264 %   C o n v e r t H S B T o R G B                                             %
265 %                                                                             %
266 %                                                                             %
267 %                                                                             %
268 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
269 %
270 %  ConvertHSBToRGB() transforms a (hue, saturation, brightness) to a (red,
271 %  green, blue) triple.
272 %
273 %  The format of the ConvertHSBToRGBImage method is:
274 %
275 %      void ConvertHSBToRGB(const double hue,const double saturation,
276 %        const double brightness,double *red,double *green,double *blue)
277 %
278 %  A description of each parameter follows:
279 %
280 %    o hue, saturation, brightness: A double value representing a
281 %      component of the HSB color space.
282 %
283 %    o red, green, blue: A pointer to a pixel component of type Quantum.
284 %
285 */
286 MagickPrivate void ConvertHSBToRGB(const double hue,const double saturation,
287   const double brightness,double *red,double *green,double *blue)
288 {
289   double
290     f,
291     h,
292     p,
293     q,
294     t;
295
296   /*
297     Convert HSB to RGB colorspace.
298   */
299   assert(red != (double *) NULL);
300   assert(green != (double *) NULL);
301   assert(blue != (double *) NULL);
302   if (saturation == 0.0)
303     {
304       *red=QuantumRange*brightness;
305       *green=(*red);
306       *blue=(*red);
307       return;
308     }
309   h=6.0*(hue-floor(hue));
310   f=h-floor((double) h);
311   p=brightness*(1.0-saturation);
312   q=brightness*(1.0-saturation*f);
313   t=brightness*(1.0-(saturation*(1.0-f)));
314   switch ((int) h)
315   {
316     case 0:
317     default:
318     {
319       *red=QuantumRange*brightness;
320       *green=QuantumRange*t;
321       *blue=QuantumRange*p;
322       break;
323     }
324     case 1:
325     {
326       *red=QuantumRange*q;
327       *green=QuantumRange*brightness;
328       *blue=QuantumRange*p;
329       break;
330     }
331     case 2:
332     {
333       *red=QuantumRange*p;
334       *green=QuantumRange*brightness;
335       *blue=QuantumRange*t;
336       break;
337     }
338     case 3:
339     {
340       *red=QuantumRange*p;
341       *green=QuantumRange*q;
342       *blue=QuantumRange*brightness;
343       break;
344     }
345     case 4:
346     {
347       *red=QuantumRange*t;
348       *green=QuantumRange*p;
349       *blue=QuantumRange*brightness;
350       break;
351     }
352     case 5:
353     {
354       *red=QuantumRange*brightness;
355       *green=QuantumRange*p;
356       *blue=QuantumRange*q;
357       break;
358     }
359   }
360 }
361 \f
362 /*
363 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
364 %                                                                             %
365 %                                                                             %
366 %                                                                             %
367 %   C o n v e r t H S I T o R G B                                             %
368 %                                                                             %
369 %                                                                             %
370 %                                                                             %
371 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
372 %
373 %  ConvertHSIToRGB() transforms a (hue, saturation, intensity) to a (red,
374 %  green, blue) triple.
375 %
376 %  The format of the ConvertHSIToRGBImage method is:
377 %
378 %      void ConvertHSIToRGB(const double hue,const double saturation,
379 %        const double intensity,double *red,double *green,double *blue)
380 %
381 %  A description of each parameter follows:
382 %
383 %    o hue, saturation, intensity: A double value representing a
384 %      component of the HSI color space.
385 %
386 %    o red, green, blue: A pointer to a pixel component of type Quantum.
387 %
388 */
389 MagickPrivate void ConvertHSIToRGB(const double hue,const double saturation,
390   const double intensity,double *red,double *green,double *blue)
391 {
392   double
393     b,
394     g,
395     h,
396     r;
397
398   /*
399     Convert HSI to RGB colorspace.
400   */
401   assert(red != (double *) NULL);
402   assert(green != (double *) NULL);
403   assert(blue != (double *) NULL);
404   h=360.0*hue;
405   h-=360.0*floor(h/360.0);
406   if (h < 120.0)
407     {
408       b=intensity*(1.0-saturation);
409       r=intensity*(1.0+saturation*cos(h*(MagickPI/180.0))/cos((60.0-h)*
410         (MagickPI/180.0)));
411       g=3.0*intensity-r-b;
412     }
413   else
414     if (h < 240.0)
415       {
416         h-=120.0;
417         r=intensity*(1.0-saturation);
418         g=intensity*(1.0+saturation*cos(h*(MagickPI/180.0))/cos((60.0-h)*
419           (MagickPI/180.0)));
420         b=3.0*intensity-r-g;
421       }
422     else
423       {
424         h-=240.0;
425         g=intensity*(1.0-saturation);
426         b=intensity*(1.0+saturation*cos(h*(MagickPI/180.0))/cos((60.0-h)*
427           (MagickPI/180.0)));
428         r=3.0*intensity-g-b;
429       }
430   *red=QuantumRange*r;
431   *green=QuantumRange*g;
432   *blue=QuantumRange*b;
433 }
434 \f
435 /*
436 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
437 %                                                                             %
438 %                                                                             %
439 %                                                                             %
440 %   C o n v e r t H S L T o R G B                                             %
441 %                                                                             %
442 %                                                                             %
443 %                                                                             %
444 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
445 %
446 %  ConvertHSLToRGB() transforms a (hue, saturation, lightness) to a (red,
447 %  green, blue) triple.
448 %
449 %  The format of the ConvertHSLToRGBImage method is:
450 %
451 %      void ConvertHSLToRGB(const double hue,const double saturation,
452 %        const double lightness,double *red,double *green,double *blue)
453 %
454 %  A description of each parameter follows:
455 %
456 %    o hue, saturation, lightness: A double value representing a
457 %      component of the HSL color space.
458 %
459 %    o red, green, blue: A pointer to a pixel component of type Quantum.
460 %
461 */
462 MagickExport void ConvertHSLToRGB(const double hue,const double saturation,
463   const double lightness,double *red,double *green,double *blue)
464 {
465   double
466     c,
467     h,
468     min,
469     x;
470
471   /*
472     Convert HSL to RGB colorspace.
473   */
474   assert(red != (double *) NULL);
475   assert(green != (double *) NULL);
476   assert(blue != (double *) NULL);
477   h=hue*360.0;
478   if (lightness <= 0.5)
479     c=2.0*lightness*saturation;
480   else
481     c=(2.0-2.0*lightness)*saturation;
482   min=lightness-0.5*c;
483   h-=360.0*floor(h/360.0);
484   h/=60.0;
485   x=c*(1.0-fabs(h-2.0*floor(h/2.0)-1.0));
486   switch ((int) floor(h))
487   {
488     case 0:
489     {
490       *red=QuantumRange*(min+c);
491       *green=QuantumRange*(min+x);
492       *blue=QuantumRange*min;
493       break;
494     }
495     case 1:
496     {
497       *red=QuantumRange*(min+x);
498       *green=QuantumRange*(min+c);
499       *blue=QuantumRange*min;
500       break;
501     }
502     case 2:
503     {
504       *red=QuantumRange*min;
505       *green=QuantumRange*(min+c);
506       *blue=QuantumRange*(min+x);
507       break;
508     }
509     case 3:
510     {
511       *red=QuantumRange*min;
512       *green=QuantumRange*(min+x);
513       *blue=QuantumRange*(min+c);
514       break;
515     }
516     case 4:
517     {
518       *red=QuantumRange*(min+x);
519       *green=QuantumRange*min;
520       *blue=QuantumRange*(min+c);
521       break;
522     }
523     case 5:
524     {
525       *red=QuantumRange*(min+c);
526       *green=QuantumRange*min;
527       *blue=QuantumRange*(min+x);
528       break;
529     }
530     default:
531     {
532       *red=0.0;
533       *green=0.0;
534       *blue=0.0;
535     }
536   }
537 }
538 \f
539 /*
540 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
541 %                                                                             %
542 %                                                                             %
543 %                                                                             %
544 %   C o n v e r t H S V T o R G B                                             %
545 %                                                                             %
546 %                                                                             %
547 %                                                                             %
548 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
549 %
550 %  ConvertHSVToRGB() transforms a (hue, saturation, value) to a (red,
551 %  green, blue) triple.
552 %
553 %  The format of the ConvertHSVToRGBImage method is:
554 %
555 %      void ConvertHSVToRGB(const double hue,const double saturation,
556 %        const double value,double *red,double *green,double *blue)
557 %
558 %  A description of each parameter follows:
559 %
560 %    o hue, saturation, value: A double value representing a
561 %      component of the HSV color space.
562 %
563 %    o red, green, blue: A pointer to a pixel component of type Quantum.
564 %
565 */
566 MagickPrivate void ConvertHSVToRGB(const double hue,const double saturation,
567   const double value,double *red,double *green,double *blue)
568 {
569   double
570     c,
571     h,
572     min,
573     x;
574
575   /*
576     Convert HSV to RGB colorspace.
577   */
578   assert(red != (double *) NULL);
579   assert(green != (double *) NULL);
580   assert(blue != (double *) NULL);
581   h=hue*360.0;
582   c=value*saturation;
583   min=value-c;
584   h-=360.0*floor(h/360.0);
585   h/=60.0;
586   x=c*(1.0-fabs(h-2.0*floor(h/2.0)-1.0));
587   switch ((int) floor(h))
588   {
589     case 0:
590     {
591       *red=QuantumRange*(min+c);
592       *green=QuantumRange*(min+x);
593       *blue=QuantumRange*min;
594       break;
595     }
596     case 1:
597     {
598       *red=QuantumRange*(min+x);
599       *green=QuantumRange*(min+c);
600       *blue=QuantumRange*min;
601       break;
602     }
603     case 2:
604     {
605       *red=QuantumRange*min;
606       *green=QuantumRange*(min+c);
607       *blue=QuantumRange*(min+x);
608       break;
609     }
610     case 3:
611     {
612       *red=QuantumRange*min;
613       *green=QuantumRange*(min+x);
614       *blue=QuantumRange*(min+c);
615       break;
616     }
617     case 4:
618     {
619       *red=QuantumRange*(min+x);
620       *green=QuantumRange*min;
621       *blue=QuantumRange*(min+c);
622       break;
623     }
624     case 5:
625     {
626       *red=QuantumRange*(min+c);
627       *green=QuantumRange*min;
628       *blue=QuantumRange*(min+x);
629       break;
630     }
631     default:
632     {
633       *red=0.0;
634       *green=0.0;
635       *blue=0.0;
636     }
637   }
638 }
639 \f
640 /*
641 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
642 %                                                                             %
643 %                                                                             %
644 %                                                                             %
645 %   C o n v e r t H W B T o R G B                                             %
646 %                                                                             %
647 %                                                                             %
648 %                                                                             %
649 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
650 %
651 %  ConvertHWBToRGB() transforms a (hue, whiteness, blackness) to a (red, green,
652 %  blue) triple.
653 %
654 %  The format of the ConvertHWBToRGBImage method is:
655 %
656 %      void ConvertHWBToRGB(const double hue,const double whiteness,
657 %        const double blackness,double *red,double *green,double *blue)
658 %
659 %  A description of each parameter follows:
660 %
661 %    o hue, whiteness, blackness: A double value representing a
662 %      component of the HWB color space.
663 %
664 %    o red, green, blue: A pointer to a pixel component of type Quantum.
665 %
666 */
667 MagickPrivate void ConvertHWBToRGB(const double hue,const double whiteness,
668   const double blackness,double *red,double *green,double *blue)
669 {
670   double
671     b,
672     f,
673     g,
674     n,
675     r,
676     v;
677
678   register ssize_t
679     i;
680
681   /*
682     Convert HWB to RGB colorspace.
683   */
684   assert(red != (double *) NULL);
685   assert(green != (double *) NULL);
686   assert(blue != (double *) NULL);
687   v=1.0-blackness;
688   if (hue == -1.0)
689     {
690       *red=QuantumRange*v;
691       *green=QuantumRange*v;
692       *blue=QuantumRange*v;
693       return;
694     }
695   i=(ssize_t) floor(6.0*hue);
696   f=6.0*hue-i;
697   if ((i & 0x01) != 0)
698     f=1.0-f;
699   n=whiteness+f*(v-whiteness);  /* linear interpolation */
700   switch (i)
701   {
702     default:
703     case 6:
704     case 0: r=v; g=n; b=whiteness; break;
705     case 1: r=n; g=v; b=whiteness; break;
706     case 2: r=whiteness; g=v; b=n; break;
707     case 3: r=whiteness; g=n; b=v; break;
708     case 4: r=n; g=whiteness; b=v; break;
709     case 5: r=v; g=whiteness; b=n; break;
710   }
711   *red=QuantumRange*r;
712   *green=QuantumRange*g;
713   *blue=QuantumRange*b;
714 }
715 \f
716 /*
717 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
718 %                                                                             %
719 %                                                                             %
720 %                                                                             %
721 %   C o n v e r t L C H a b T o R G B                                         %
722 %                                                                             %
723 %                                                                             %
724 %                                                                             %
725 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
726 %
727 %  ConvertLCHabToRGB() transforms a (luma, chroma, hue) to a (red, green,
728 %  blue) triple.
729 %
730 %  The format of the ConvertLCHabToRGBImage method is:
731 %
732 %      void ConvertLCHabToRGB(const double luma,const double chroma,
733 %        const double hue,double *red,double *green,double *blue)
734 %
735 %  A description of each parameter follows:
736 %
737 %    o luma, chroma, hue: A double value representing a component of the
738 %      LCHab color space.
739 %
740 %    o red, green, blue: A pointer to a pixel component of type Quantum.
741 %
742 */
743
744 static inline void ConvertLCHabToXYZ(const double luma,const double chroma,
745   const double hue,double *X,double *Y,double *Z)
746 {
747   ConvertLabToXYZ(luma,chroma*cos(hue*MagickPI/180.0),chroma*
748     sin(hue*MagickPI/180.0),X,Y,Z);
749 }
750
751 MagickPrivate void ConvertLCHabToRGB(const double luma,const double chroma,
752   const double hue,double *red,double *green,double *blue)
753 {
754   double
755     X,
756     Y,
757     Z;
758
759   /*
760     Convert LCHab to RGB colorspace.
761   */
762   assert(red != (double *) NULL);
763   assert(green != (double *) NULL);
764   assert(blue != (double *) NULL);
765   ConvertLCHabToXYZ(100.0*luma,255.0*(chroma-0.5),360.0*hue,&X,&Y,&Z);
766   ConvertXYZToRGB(X,Y,Z,red,green,blue);
767 }
768 \f
769 /*
770 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
771 %                                                                             %
772 %                                                                             %
773 %                                                                             %
774 %   C o n v e r t L C H u v T o R G B                                         %
775 %                                                                             %
776 %                                                                             %
777 %                                                                             %
778 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
779 %
780 %  ConvertLCHuvToRGB() transforms a (luma, chroma, hue) to a (red, green,
781 %  blue) triple.
782 %
783 %  The format of the ConvertLCHuvToRGBImage method is:
784 %
785 %      void ConvertLCHuvToRGB(const double luma,const double chroma,
786 %        const double hue,double *red,double *green,double *blue)
787 %
788 %  A description of each parameter follows:
789 %
790 %    o luma, chroma, hue: A double value representing a component of the
791 %      LCHuv color space.
792 %
793 %    o red, green, blue: A pointer to a pixel component of type Quantum.
794 %
795 */
796
797 static inline void ConvertLCHuvToXYZ(const double luma,const double chroma,
798   const double hue,double *X,double *Y,double *Z)
799 {
800   ConvertLuvToXYZ(luma,chroma*cos(hue*MagickPI/180.0),chroma*
801     sin(hue*MagickPI/180.0),X,Y,Z);
802 }
803
804 MagickPrivate void ConvertLCHuvToRGB(const double luma,const double chroma,
805   const double hue,double *red,double *green,double *blue)
806 {
807   double
808     X,
809     Y,
810     Z;
811
812   /*
813     Convert LCHuv to RGB colorspace.
814   */
815   assert(red != (double *) NULL);
816   assert(green != (double *) NULL);
817   assert(blue != (double *) NULL);
818   ConvertLCHuvToXYZ(100.0*luma,255.0*(chroma-0.5),360.0*hue,&X,&Y,&Z);
819   ConvertXYZToRGB(X,Y,Z,red,green,blue);
820 }
821 \f
822 /*
823 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
824 %                                                                             %
825 %                                                                             %
826 %                                                                             %
827 %   C o n v e r t R G B T o H C L                                             %
828 %                                                                             %
829 %                                                                             %
830 %                                                                             %
831 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
832 %
833 %  ConvertRGBToHCL() transforms a (red, green, blue) to a (hue, chroma,
834 %  luma) triple.
835 %
836 %  The format of the ConvertRGBToHCL method is:
837 %
838 %      void ConvertRGBToHCL(const double red,const double green,
839 %        const double blue,double *hue,double *chroma,double *luma)
840 %
841 %  A description of each parameter follows:
842 %
843 %    o red, green, blue: A Quantum value representing the red, green, and
844 %      blue component of a pixel.
845 %
846 %    o hue, chroma, luma: A pointer to a double value representing a
847 %      component of the HCL color space.
848 %
849 */
850
851 static inline double MagickMax(const double x,const double y)
852 {
853   if (x > y)
854     return(x);
855   return(y);
856 }
857
858 static inline double MagickMin(const double x,const double y)
859 {
860   if (x < y)
861     return(x);
862   return(y);
863 }
864
865 MagickPrivate void ConvertRGBToHCL(const double red,const double green,
866   const double blue,double *hue,double *chroma,double *luma)
867 {
868   double
869     b,
870     c,
871     g,
872     h,
873     max,
874     r;
875
876   /*
877     Convert RGB to HCL colorspace.
878   */
879   assert(hue != (double *) NULL);
880   assert(chroma != (double *) NULL);
881   assert(luma != (double *) NULL);
882   r=red;
883   g=green;
884   b=blue;
885   max=MagickMax(r,MagickMax(g,b));
886   c=max-(double) MagickMin(r,MagickMin(g,b));
887   h=0.0;
888   if (c == 0.0)
889     h=0.0;
890   else
891     if (red == max)
892       h=fmod((g-b)/c+6.0,6.0);
893     else
894       if (green == max)
895         h=((b-r)/c)+2.0;
896       else
897         if (blue == max)
898           h=((r-g)/c)+4.0;
899   *hue=(h/6.0);
900   *chroma=QuantumScale*c;
901   *luma=QuantumScale*(0.298839*r+0.586811*g+0.114350*b);
902 }
903 \f
904 /*
905 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
906 %                                                                             %
907 %                                                                             %
908 %                                                                             %
909 %   C o n v e r t R G B T o H C L p                                           %
910 %                                                                             %
911 %                                                                             %
912 %                                                                             %
913 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
914 %
915 %  ConvertRGBToHCLp() transforms a (red, green, blue) to a (hue, chroma,
916 %  luma) triple.
917 %
918 %  The format of the ConvertRGBToHCLp method is:
919 %
920 %      void ConvertRGBToHCLp(const double red,const double green,
921 %        const double blue,double *hue,double *chroma,double *luma)
922 %
923 %  A description of each parameter follows:
924 %
925 %    o red, green, blue: A Quantum value representing the red, green, and
926 %      blue component of a pixel.
927 %
928 %    o hue, chroma, luma: A pointer to a double value representing a
929 %      component of the HCL color space.
930 %
931 */
932 MagickPrivate void ConvertRGBToHCLp(const double red,const double green,
933   const double blue,double *hue,double *chroma,double *luma)
934 {
935   double
936     b,
937     c,
938     g,
939     h,
940     max,
941     r;
942
943   /*
944     Convert RGB to HCL colorspace.
945   */
946   assert(hue != (double *) NULL);
947   assert(chroma != (double *) NULL);
948   assert(luma != (double *) NULL);
949   r=red;
950   g=green;
951   b=blue;
952   max=MagickMax(r,MagickMax(g,b));
953   c=max-(double) MagickMin(r,MagickMin(g,b));
954   h=0.0;
955   if (c == 0.0)
956     h=0.0;
957   else
958     if (red == max)
959       h=fmod((g-b)/c+6.0,6.0);
960     else
961       if (green == max)
962         h=((b-r)/c)+2.0;
963       else
964         if (blue == max)
965           h=((r-g)/c)+4.0;
966   *hue=(h/6.0);
967   *chroma=QuantumScale*c;
968   *luma=QuantumScale*(0.298839*r+0.586811*g+0.114350*b);
969 }
970 \f
971 /*
972 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
973 %                                                                             %
974 %                                                                             %
975 %                                                                             %
976 %   C o n v e r t R G B T o H S B                                             %
977 %                                                                             %
978 %                                                                             %
979 %                                                                             %
980 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
981 %
982 %  ConvertRGBToHSB() transforms a (red, green, blue) to a (hue, saturation,
983 %  brightness) triple.
984 %
985 %  The format of the ConvertRGBToHSB method is:
986 %
987 %      void ConvertRGBToHSB(const double red,const double green,
988 %        const double blue,double *hue,double *saturation,double *brightness)
989 %
990 %  A description of each parameter follows:
991 %
992 %    o red, green, blue: A Quantum value representing the red, green, and
993 %      blue component of a pixel..
994 %
995 %    o hue, saturation, brightness: A pointer to a double value representing a
996 %      component of the HSB color space.
997 %
998 */
999 MagickPrivate void ConvertRGBToHSB(const double red,const double green,
1000   const double blue,double *hue,double *saturation,double *brightness)
1001 {
1002   double
1003     b,
1004     delta,
1005     g,
1006     max,
1007     min,
1008     r;
1009
1010   /*
1011     Convert RGB to HSB colorspace.
1012   */
1013   assert(hue != (double *) NULL);
1014   assert(saturation != (double *) NULL);
1015   assert(brightness != (double *) NULL);
1016   *hue=0.0;
1017   *saturation=0.0;
1018   *brightness=0.0;
1019   r=red;
1020   g=green;
1021   b=blue;
1022   min=r < g ? r : g;
1023   if (b < min)
1024     min=b;
1025   max=r > g ? r : g;
1026   if (b > max)
1027     max=b;
1028   if (max == 0.0)
1029     return;
1030   delta=max-min;
1031   *saturation=delta/max;
1032   *brightness=QuantumScale*max;
1033   if (delta == 0.0)
1034     return;
1035   if (r == max)
1036     *hue=(g-b)/delta;
1037   else
1038     if (g == max)
1039       *hue=2.0+(b-r)/delta;
1040     else
1041       *hue=4.0+(r-g)/delta;
1042   *hue/=6.0;
1043   if (*hue < 0.0)
1044     *hue+=1.0;
1045 }
1046 \f
1047 /*
1048 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1049 %                                                                             %
1050 %                                                                             %
1051 %                                                                             %
1052 %   C o n v e r t R G B T o H S I                                             %
1053 %                                                                             %
1054 %                                                                             %
1055 %                                                                             %
1056 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1057 %
1058 %  ConvertRGBToHSI() transforms a (red, green, blue) to a (hue, saturation,
1059 %  intensity) triple.
1060 %
1061 %  The format of the ConvertRGBToHSI method is:
1062 %
1063 %      void ConvertRGBToHSI(const double red,const double green,
1064 %        const double blue,double *hue,double *saturation,double *intensity)
1065 %
1066 %  A description of each parameter follows:
1067 %
1068 %    o red, green, blue: A Quantum value representing the red, green, and
1069 %      blue component of a pixel..
1070 %
1071 %    o hue, saturation, intensity: A pointer to a double value representing a
1072 %      component of the HSI color space.
1073 %
1074 */
1075 MagickPrivate void ConvertRGBToHSI(const double red,const double green,
1076   const double blue,double *hue,double *saturation,double *intensity)
1077 {
1078   double
1079     alpha,
1080     beta;
1081
1082   /*
1083     Convert RGB to HSI colorspace.
1084   */
1085   assert(hue != (double *) NULL);
1086   assert(saturation != (double *) NULL);
1087   assert(intensity != (double *) NULL);
1088   *intensity=(QuantumScale*red+QuantumScale*green+QuantumScale*blue)/3.0;
1089   if (*intensity <= 0.0)
1090     {
1091       *hue=0.0;
1092       *saturation=0.0;
1093       return;
1094     }
1095   *saturation=1.0-MagickMin(QuantumScale*red,MagickMin(QuantumScale*green,
1096     QuantumScale*blue))/(*intensity);
1097   alpha=0.5*(2.0*QuantumScale*red-QuantumScale*green-QuantumScale*blue);
1098   beta=0.8660254037844385*(QuantumScale*green-QuantumScale*blue);
1099   *hue=atan2(beta,alpha)*(180.0/MagickPI)/360.0;
1100   if (*hue < 0.0)
1101     *hue+=1.0;
1102 }
1103 \f
1104 /*
1105 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1106 %                                                                             %
1107 %                                                                             %
1108 %                                                                             %
1109 %   C o n v e r t R G B T o H S L                                             %
1110 %                                                                             %
1111 %                                                                             %
1112 %                                                                             %
1113 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1114 %
1115 %  ConvertRGBToHSL() transforms a (red, green, blue) to a (hue, saturation,
1116 %  lightness) triple.
1117 %
1118 %  The format of the ConvertRGBToHSL method is:
1119 %
1120 %      void ConvertRGBToHSL(const double red,const double green,
1121 %        const double blue,double *hue,double *saturation,double *lightness)
1122 %
1123 %  A description of each parameter follows:
1124 %
1125 %    o red, green, blue: A Quantum value representing the red, green, and
1126 %      blue component of a pixel..
1127 %
1128 %    o hue, saturation, lightness: A pointer to a double value representing a
1129 %      component of the HSL color space.
1130 %
1131 */
1132 MagickExport void ConvertRGBToHSL(const double red,const double green,
1133   const double blue,double *hue,double *saturation,double *lightness)
1134 {
1135   double
1136     c,
1137     max,
1138     min;
1139
1140   /*
1141     Convert RGB to HSL colorspace.
1142   */
1143   assert(hue != (double *) NULL);
1144   assert(saturation != (double *) NULL);
1145   assert(lightness != (double *) NULL);
1146   max=MagickMax(QuantumScale*red,MagickMax(QuantumScale*green,
1147     QuantumScale*blue));
1148   min=MagickMin(QuantumScale*red,MagickMin(QuantumScale*green,
1149     QuantumScale*blue));
1150   c=max-min;
1151   *lightness=(max+min)/2.0;
1152   if (c <= 0.0)
1153     {
1154       *hue=0.0;
1155       *saturation=0.0;
1156       return;
1157     }
1158   if (max == (QuantumScale*red))
1159     {
1160       *hue=(QuantumScale*green-QuantumScale*blue)/c;
1161       if ((QuantumScale*green) < (QuantumScale*blue))
1162         *hue+=6.0;
1163     }
1164   else
1165     if (max == (QuantumScale*green))
1166       *hue=2.0+(QuantumScale*blue-QuantumScale*red)/c;
1167     else
1168       *hue=4.0+(QuantumScale*red-QuantumScale*green)/c;
1169   *hue*=60.0/360.0;
1170   if (*lightness <= 0.5)
1171     *saturation=c/(2.0*(*lightness));
1172   else
1173     *saturation=c/(2.0-2.0*(*lightness));
1174 }
1175 \f
1176 /*
1177 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1178 %                                                                             %
1179 %                                                                             %
1180 %                                                                             %
1181 %   C o n v e r t R G B T o H S V                                             %
1182 %                                                                             %
1183 %                                                                             %
1184 %                                                                             %
1185 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1186 %
1187 %  ConvertRGBToHSV() transforms a (red, green, blue) to a (hue, saturation,
1188 %  value) triple.
1189 %
1190 %  The format of the ConvertRGBToHSV method is:
1191 %
1192 %      void ConvertRGBToHSV(const double red,const double green,
1193 %        const double blue,double *hue,double *saturation,double *value)
1194 %
1195 %  A description of each parameter follows:
1196 %
1197 %    o red, green, blue: A Quantum value representing the red, green, and
1198 %      blue component of a pixel..
1199 %
1200 %    o hue, saturation, value: A pointer to a double value representing a
1201 %      component of the HSV color space.
1202 %
1203 */
1204 MagickPrivate void ConvertRGBToHSV(const double red,const double green,
1205   const double blue,double *hue,double *saturation,double *value)
1206 {
1207   double
1208     c,
1209     max,
1210     min;
1211
1212   /*
1213     Convert RGB to HSV colorspace.
1214   */
1215   assert(hue != (double *) NULL);
1216   assert(saturation != (double *) NULL);
1217   assert(value != (double *) NULL);
1218   max=MagickMax(QuantumScale*red,MagickMax(QuantumScale*green,
1219     QuantumScale*blue));
1220   min=MagickMin(QuantumScale*red,MagickMin(QuantumScale*green,
1221     QuantumScale*blue));
1222   c=max-min;
1223   *value=max;
1224   if (c <= 0.0)
1225     {
1226       *hue=0.0;
1227       *saturation=0.0;
1228       return;
1229     }
1230   if (max == (QuantumScale*red))
1231     {
1232       *hue=(QuantumScale*green-QuantumScale*blue)/c;
1233       if ((QuantumScale*green) < (QuantumScale*blue))
1234         *hue+=6.0;
1235     }
1236   else
1237     if (max == (QuantumScale*green))
1238       *hue=2.0+(QuantumScale*blue-QuantumScale*red)/c;
1239     else
1240       *hue=4.0+(QuantumScale*red-QuantumScale*green)/c;
1241   *hue*=60.0/360.0;
1242   *saturation=c/max;
1243 }
1244 \f
1245 /*
1246 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1247 %                                                                             %
1248 %                                                                             %
1249 %                                                                             %
1250 %   C o n v e r t R G B T o H W B                                             %
1251 %                                                                             %
1252 %                                                                             %
1253 %                                                                             %
1254 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1255 %
1256 %  ConvertRGBToHWB() transforms a (red, green, blue) to a (hue, whiteness,
1257 %  blackness) triple.
1258 %
1259 %  The format of the ConvertRGBToHWB method is:
1260 %
1261 %      void ConvertRGBToHWB(const double red,const double green,
1262 %        const double blue,double *hue,double *whiteness,double *blackness)
1263 %
1264 %  A description of each parameter follows:
1265 %
1266 %    o red, green, blue: A Quantum value representing the red, green, and
1267 %      blue component of a pixel.
1268 %
1269 %    o hue, whiteness, blackness: A pointer to a double value representing a
1270 %      component of the HWB color space.
1271 %
1272 */
1273 MagickPrivate void ConvertRGBToHWB(const double red,const double green,
1274   const double blue,double *hue,double *whiteness,double *blackness)
1275 {
1276   double
1277     b,
1278     f,
1279     g,
1280     p,
1281     r,
1282     v,
1283     w;
1284
1285   /*
1286     Convert RGB to HWB colorspace.
1287   */
1288   assert(hue != (double *) NULL);
1289   assert(whiteness != (double *) NULL);
1290   assert(blackness != (double *) NULL);
1291   r=red;
1292   g=green;
1293   b=blue;
1294   w=MagickMin(r,MagickMin(g,b));
1295   v=MagickMax(r,MagickMax(g,b));
1296   *blackness=1.0-QuantumScale*v;
1297   *whiteness=QuantumScale*w;
1298   if (v == w)
1299     {
1300       *hue=(-1.0);
1301       return;
1302     }
1303   f=(r == w) ? g-b : ((g == w) ? b-r : r-g);
1304   p=(r == w) ? 3.0 : ((g == w) ? 5.0 : 1.0);
1305   *hue=(p-f/(v-1.0*w))/6.0;
1306 }
1307 \f
1308 /*
1309 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1310 %                                                                             %
1311 %                                                                             %
1312 %                                                                             %
1313 %   C o n v e r t R G B T o L C H a b                                         %
1314 %                                                                             %
1315 %                                                                             %
1316 %                                                                             %
1317 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1318 %
1319 %  ConvertRGBToLCHab() transforms a (red, green, blue) to a (luma, chroma,
1320 %  hue) triple.
1321 %
1322 %  The format of the ConvertRGBToLCHab method is:
1323 %
1324 %      void ConvertRGBToLCHab(const double red,const double green,
1325 %        const double blue,double *luma,double *chroma,double *hue)
1326 %
1327 %  A description of each parameter follows:
1328 %
1329 %    o red, green, blue: A Quantum value representing the red, green, and
1330 %      blue component of a pixel.
1331 %
1332 %    o luma, chroma, hue: A pointer to a double value representing a
1333 %      component of the LCH color space.
1334 %
1335 */
1336
1337 static inline void ConvertXYZToLCHab(const double X,const double Y,
1338   const double Z,double *luma,double *chroma,double *hue)
1339 {
1340   double
1341     a,
1342     b;
1343
1344   ConvertXYZToLab(X,Y,Z,luma,&a,&b);
1345   *chroma=hypot(255.0*(a-0.5),255.0*(b-0.5))/255.0+0.5;
1346   *hue=180.0*atan2(255.0*(b-0.5),255.0*(a-0.5))/MagickPI/360.0;
1347   if (*hue < 0.0)
1348     *hue+=1.0;
1349 }
1350
1351 MagickPrivate void ConvertRGBToLCHab(const double red,const double green,
1352   const double blue,double *luma,double *chroma,double *hue)
1353 {
1354   double
1355     X,
1356     Y,
1357     Z;
1358
1359   /*
1360     Convert RGB to LCHab colorspace.
1361   */
1362   assert(luma != (double *) NULL);
1363   assert(chroma != (double *) NULL);
1364   assert(hue != (double *) NULL);
1365   ConvertRGBToXYZ(red,green,blue,&X,&Y,&Z);
1366   ConvertXYZToLCHab(X,Y,Z,luma,chroma,hue);
1367 }
1368 \f
1369 /*
1370 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1371 %                                                                             %
1372 %                                                                             %
1373 %                                                                             %
1374 %   C o n v e r t R G B T o L C H u v                                         %
1375 %                                                                             %
1376 %                                                                             %
1377 %                                                                             %
1378 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1379 %
1380 %  ConvertRGBToLCHuv() transforms a (red, green, blue) to a (luma, chroma,
1381 %  hue) triple.
1382 %
1383 %  The format of the ConvertRGBToLCHuv method is:
1384 %
1385 %      void ConvertRGBToLCHuv(const double red,const double green,
1386 %        const double blue,double *luma,double *chroma,double *hue)
1387 %
1388 %  A description of each parameter follows:
1389 %
1390 %    o red, green, blue: A Quantum value representing the red, green, and
1391 %      blue component of a pixel.
1392 %
1393 %    o luma, chroma, hue: A pointer to a double value representing a
1394 %      component of the LCHuv color space.
1395 %
1396 */
1397
1398 static inline void ConvertXYZToLCHuv(const double X,const double Y,
1399   const double Z,double *luma,double *chroma,double *hue)
1400 {
1401   double
1402     u,
1403     v;
1404
1405   ConvertXYZToLuv(X,Y,Z,luma,&u,&v);
1406   *chroma=hypot(354.0*u-134.0,262.0*v-140.0)/255.0+0.5;
1407   *hue=180.0*atan2(262.0*v-140.0,354.0*u-134.0)/MagickPI/360.0;
1408   if (*hue < 0.0)
1409     *hue+=1.0;
1410 }
1411
1412 MagickPrivate void ConvertRGBToLCHuv(const double red,const double green,
1413   const double blue,double *luma,double *chroma,double *hue)
1414 {
1415   double
1416     X,
1417     Y,
1418     Z;
1419
1420   /*
1421     Convert RGB to LCHuv colorspace.
1422   */
1423   assert(luma != (double *) NULL);
1424   assert(chroma != (double *) NULL);
1425   assert(hue != (double *) NULL);
1426   ConvertRGBToXYZ(red,green,blue,&X,&Y,&Z);
1427   ConvertXYZToLCHuv(X,Y,Z,luma,chroma,hue);
1428 }
1429 \f
1430 /*
1431 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1432 %                                                                             %
1433 %                                                                             %
1434 %                                                                             %
1435 %   E x p a n d A f f i n e                                                   %
1436 %                                                                             %
1437 %                                                                             %
1438 %                                                                             %
1439 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1440 %
1441 %  ExpandAffine() computes the affine's expansion factor, i.e. the square root
1442 %  of the factor by which the affine transform affects area. In an affine
1443 %  transform composed of scaling, rotation, shearing, and translation, returns
1444 %  the amount of scaling.
1445 %
1446 %  The format of the ExpandAffine method is:
1447 %
1448 %      double ExpandAffine(const AffineMatrix *affine)
1449 %
1450 %  A description of each parameter follows:
1451 %
1452 %    o expansion: ExpandAffine returns the affine's expansion factor.
1453 %
1454 %    o affine: A pointer the affine transform of type AffineMatrix.
1455 %
1456 */
1457 MagickExport double ExpandAffine(const AffineMatrix *affine)
1458 {
1459   assert(affine != (const AffineMatrix *) NULL);
1460   return(sqrt(fabs(affine->sx*affine->sy-affine->rx*affine->ry)));
1461 }
1462 \f
1463 /*
1464 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1465 %                                                                             %
1466 %                                                                             %
1467 %                                                                             %
1468 %   G e n e r a t e D i f f e r e n t i a l N o i s e                         %
1469 %                                                                             %
1470 %                                                                             %
1471 %                                                                             %
1472 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1473 %
1474 %  GenerateDifferentialNoise() generates differentual noise.
1475 %
1476 %  The format of the GenerateDifferentialNoise method is:
1477 %
1478 %      double GenerateDifferentialNoise(RandomInfo *random_info,
1479 %        const Quantum pixel,const NoiseType noise_type,const double attenuate)
1480 %
1481 %  A description of each parameter follows:
1482 %
1483 %    o random_info: the random info.
1484 %
1485 %    o pixel: noise is relative to this pixel value.
1486 %
1487 %    o noise_type: the type of noise.
1488 %
1489 %    o attenuate:  attenuate the noise.
1490 %
1491 */
1492 MagickPrivate double GenerateDifferentialNoise(RandomInfo *random_info,
1493   const Quantum pixel,const NoiseType noise_type,const double attenuate)
1494 {
1495 #define SigmaUniform  (attenuate*0.015625)
1496 #define SigmaGaussian  (attenuate*0.015625)
1497 #define SigmaImpulse  (attenuate*0.1)
1498 #define SigmaLaplacian (attenuate*0.0390625)
1499 #define SigmaMultiplicativeGaussian  (attenuate*0.5)
1500 #define SigmaPoisson  (attenuate*12.5)
1501 #define SigmaRandom  (attenuate)
1502 #define TauGaussian  (attenuate*0.078125)
1503
1504   double
1505     alpha,
1506     beta,
1507     noise,
1508     sigma;
1509
1510   alpha=GetPseudoRandomValue(random_info);
1511   switch (noise_type)
1512   {
1513     case UniformNoise:
1514     default:
1515     {
1516       noise=(double) (pixel+QuantumRange*SigmaUniform*(alpha-0.5));
1517       break;
1518     }
1519     case GaussianNoise:
1520     {
1521       double
1522         gamma,
1523         tau;
1524
1525       if (alpha == 0.0)
1526         alpha=1.0;
1527       beta=GetPseudoRandomValue(random_info);
1528       gamma=sqrt(-2.0*log(alpha));
1529       sigma=gamma*cos((double) (2.0*MagickPI*beta));
1530       tau=gamma*sin((double) (2.0*MagickPI*beta));
1531       noise=(double) (pixel+sqrt((double) pixel)*SigmaGaussian*sigma+
1532         QuantumRange*TauGaussian*tau);
1533       break;
1534     }
1535     case ImpulseNoise:
1536     {
1537       if (alpha < (SigmaImpulse/2.0))
1538         noise=0.0;
1539       else
1540         if (alpha >= (1.0-(SigmaImpulse/2.0)))
1541           noise=(double) QuantumRange;
1542         else
1543           noise=(double) pixel;
1544       break;
1545     }
1546     case LaplacianNoise:
1547     {
1548       if (alpha <= 0.5)
1549         {
1550           if (alpha <= MagickEpsilon)
1551             noise=(double) (pixel-QuantumRange);
1552           else
1553             noise=(double) (pixel+QuantumRange*SigmaLaplacian*log(2.0*alpha)+
1554               0.5);
1555           break;
1556         }
1557       beta=1.0-alpha;
1558       if (beta <= (0.5*MagickEpsilon))
1559         noise=(double) (pixel+QuantumRange);
1560       else
1561         noise=(double) (pixel-QuantumRange*SigmaLaplacian*log(2.0*beta)+0.5);
1562       break;
1563     }
1564     case MultiplicativeGaussianNoise:
1565     {
1566       sigma=1.0;
1567       if (alpha > MagickEpsilon)
1568         sigma=sqrt(-2.0*log(alpha));
1569       beta=GetPseudoRandomValue(random_info);
1570       noise=(double) (pixel+pixel*SigmaMultiplicativeGaussian*sigma*
1571         cos((double) (2.0*MagickPI*beta))/2.0);
1572       break;
1573     }
1574     case PoissonNoise:
1575     {
1576       double
1577         poisson;
1578
1579       register ssize_t
1580         i;
1581
1582       poisson=exp(-SigmaPoisson*QuantumScale*pixel);
1583       for (i=0; alpha > poisson; i++)
1584       {
1585         beta=GetPseudoRandomValue(random_info);
1586         alpha*=beta;
1587       }
1588       noise=(double) (QuantumRange*i/SigmaPoisson);
1589       break;
1590     }
1591     case RandomNoise:
1592     {
1593       noise=(double) (QuantumRange*SigmaRandom*alpha);
1594       break;
1595     }
1596   }
1597   return(noise);
1598 }
1599 \f
1600 /*
1601 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1602 %                                                                             %
1603 %                                                                             %
1604 %                                                                             %
1605 %   G e t O p t i m a l K e r n e l W i d t h                                 %
1606 %                                                                             %
1607 %                                                                             %
1608 %                                                                             %
1609 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1610 %
1611 %  GetOptimalKernelWidth() computes the optimal kernel radius for a convolution
1612 %  filter.  Start with the minimum value of 3 pixels and walk out until we drop
1613 %  below the threshold of one pixel numerical accuracy.
1614 %
1615 %  The format of the GetOptimalKernelWidth method is:
1616 %
1617 %      size_t GetOptimalKernelWidth(const double radius,
1618 %        const double sigma)
1619 %
1620 %  A description of each parameter follows:
1621 %
1622 %    o width: GetOptimalKernelWidth returns the optimal width of a
1623 %      convolution kernel.
1624 %
1625 %    o radius: the radius of the Gaussian, in pixels, not counting the center
1626 %      pixel.
1627 %
1628 %    o sigma: the standard deviation of the Gaussian, in pixels.
1629 %
1630 */
1631 MagickPrivate size_t GetOptimalKernelWidth1D(const double radius,
1632   const double sigma)
1633 {
1634   double
1635     alpha,
1636     beta,
1637     gamma,
1638     normalize,
1639     value;
1640
1641   register ssize_t
1642     i;
1643
1644   size_t
1645     width;
1646
1647   ssize_t
1648     j;
1649
1650   (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
1651   if (radius > MagickEpsilon)
1652     return((size_t) (2.0*ceil(radius)+1.0));
1653   gamma=fabs(sigma);
1654   if (gamma <= MagickEpsilon)
1655     return(3UL);
1656   alpha=PerceptibleReciprocal(2.0*gamma*gamma);
1657   beta=(double) PerceptibleReciprocal((double) MagickSQ2PI*gamma);
1658   for (width=5; ; )
1659   {
1660     normalize=0.0;
1661     j=(ssize_t) (width-1)/2;
1662     for (i=(-j); i <= j; i++)
1663       normalize+=exp(-((double) (i*i))*alpha)*beta;
1664     value=exp(-((double) (j*j))*alpha)*beta/normalize;
1665     if ((value < QuantumScale) || (value < MagickEpsilon))
1666       break;
1667     width+=2;
1668   }
1669   return((size_t) (width-2));
1670 }
1671
1672 MagickPrivate size_t GetOptimalKernelWidth2D(const double radius,
1673   const double sigma)
1674 {
1675   double
1676     alpha,
1677     beta,
1678     gamma,
1679     normalize,
1680     value;
1681
1682   size_t
1683     width;
1684
1685   ssize_t
1686     j,
1687     u,
1688     v;
1689
1690   (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
1691   if (radius > MagickEpsilon)
1692     return((size_t) (2.0*ceil(radius)+1.0));
1693   gamma=fabs(sigma);
1694   if (gamma <= MagickEpsilon)
1695     return(3UL);
1696   alpha=PerceptibleReciprocal(2.0*gamma*gamma);
1697   beta=(double) PerceptibleReciprocal((double) Magick2PI*gamma*gamma);
1698   for (width=5; ; )
1699   {
1700     normalize=0.0;
1701     j=(ssize_t) (width-1)/2;
1702     for (v=(-j); v <= j; v++)
1703       for (u=(-j); u <= j; u++)
1704         normalize+=exp(-((double) (u*u+v*v))*alpha)*beta;
1705     value=exp(-((double) (j*j))*alpha)*beta/normalize;
1706     if ((value < QuantumScale) || (value < MagickEpsilon))
1707       break;
1708     width+=2;
1709   }
1710   return((size_t) (width-2));
1711 }
1712
1713 MagickPrivate size_t  GetOptimalKernelWidth(const double radius,
1714   const double sigma)
1715 {
1716   return(GetOptimalKernelWidth1D(radius,sigma));
1717 }