]> granicus.if.org Git - imagemagick/blob - MagickCore/feature.c
(no commit message)
[imagemagick] / MagickCore / feature.c
1 /*
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %                                                                             %
4 %                                                                             %
5 %                                                                             %
6 %               FFFFF  EEEEE   AAA   TTTTT  U   U  RRRR   EEEEE               %
7 %               F      E      A   A    T    U   U  R   R  E                   %
8 %               FFF    EEE    AAAAA    T    U   U  RRRR   EEE                 %
9 %               F      E      A   A    T    U   U  R R    E                   %
10 %               F      EEEEE  A   A    T     UUU   R  R   EEEEE               %
11 %                                                                             %
12 %                                                                             %
13 %                      MagickCore Image Feature Methods                       %
14 %                                                                             %
15 %                              Software Design                                %
16 %                                   Cristy                                    %
17 %                                 July 1992                                   %
18 %                                                                             %
19 %                                                                             %
20 %  Copyright 1999-2014 ImageMagick Studio LLC, a non-profit organization      %
21 %  dedicated to making software imaging solutions freely available.           %
22 %                                                                             %
23 %  You may not use this file except in compliance with the License.  You may  %
24 %  obtain a copy of the License at                                            %
25 %                                                                             %
26 %    http://www.imagemagick.org/script/license.php                            %
27 %                                                                             %
28 %  Unless required by applicable law or agreed to in writing, software        %
29 %  distributed under the License is distributed on an "AS IS" BASIS,          %
30 %  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.   %
31 %  See the License for the specific language governing permissions and        %
32 %  limitations under the License.                                             %
33 %                                                                             %
34 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 %
36 %
37 %
38 */
39 \f
40 /*
41   Include declarations.
42 */
43 #include "MagickCore/studio.h"
44 #include "MagickCore/property.h"
45 #include "MagickCore/animate.h"
46 #include "MagickCore/blob.h"
47 #include "MagickCore/blob-private.h"
48 #include "MagickCore/cache.h"
49 #include "MagickCore/cache-private.h"
50 #include "MagickCore/cache-view.h"
51 #include "MagickCore/client.h"
52 #include "MagickCore/color.h"
53 #include "MagickCore/color-private.h"
54 #include "MagickCore/colorspace.h"
55 #include "MagickCore/colorspace-private.h"
56 #include "MagickCore/composite.h"
57 #include "MagickCore/composite-private.h"
58 #include "MagickCore/compress.h"
59 #include "MagickCore/constitute.h"
60 #include "MagickCore/display.h"
61 #include "MagickCore/draw.h"
62 #include "MagickCore/enhance.h"
63 #include "MagickCore/exception.h"
64 #include "MagickCore/exception-private.h"
65 #include "MagickCore/feature.h"
66 #include "MagickCore/gem.h"
67 #include "MagickCore/geometry.h"
68 #include "MagickCore/list.h"
69 #include "MagickCore/image-private.h"
70 #include "MagickCore/magic.h"
71 #include "MagickCore/magick.h"
72 #include "MagickCore/memory_.h"
73 #include "MagickCore/module.h"
74 #include "MagickCore/monitor.h"
75 #include "MagickCore/monitor-private.h"
76 #include "MagickCore/option.h"
77 #include "MagickCore/paint.h"
78 #include "MagickCore/pixel-accessor.h"
79 #include "MagickCore/profile.h"
80 #include "MagickCore/quantize.h"
81 #include "MagickCore/quantum-private.h"
82 #include "MagickCore/random_.h"
83 #include "MagickCore/resource_.h"
84 #include "MagickCore/segment.h"
85 #include "MagickCore/semaphore.h"
86 #include "MagickCore/signature-private.h"
87 #include "MagickCore/string_.h"
88 #include "MagickCore/thread-private.h"
89 #include "MagickCore/timer.h"
90 #include "MagickCore/utility.h"
91 #include "MagickCore/version.h"
92 \f
93 /*
94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
95 %                                                                             %
96 %                                                                             %
97 %                                                                             %
98 %   G e t I m a g e F e a t u r e s                                           %
99 %                                                                             %
100 %                                                                             %
101 %                                                                             %
102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
103 %
104 %  GetImageFeatures() returns features for each channel in the image in
105 %  each of four directions (horizontal, vertical, left and right diagonals)
106 %  for the specified distance.  The features include the angular second
107 %  moment, contrast, correlation, sum of squares: variance, inverse difference
108 %  moment, sum average, sum varience, sum entropy, entropy, difference variance,%  difference entropy, information measures of correlation 1, information
109 %  measures of correlation 2, and maximum correlation coefficient.  You can
110 %  access the red channel contrast, for example, like this:
111 %
112 %      channel_features=GetImageFeatures(image,1,exception);
113 %      contrast=channel_features[RedPixelChannel].contrast[0];
114 %
115 %  Use MagickRelinquishMemory() to free the features buffer.
116 %
117 %  The format of the GetImageFeatures method is:
118 %
119 %      ChannelFeatures *GetImageFeatures(const Image *image,
120 %        const size_t distance,ExceptionInfo *exception)
121 %
122 %  A description of each parameter follows:
123 %
124 %    o image: the image.
125 %
126 %    o distance: the distance.
127 %
128 %    o exception: return any errors or warnings in this structure.
129 %
130 */
131
132 static inline ssize_t MagickAbsoluteValue(const ssize_t x)
133 {
134   if (x < 0)
135     return(-x);
136   return(x);
137 }
138
139 static inline double MagickLog10(const double x)
140 {
141  if (fabs(x) < MagickMinimumValue)
142    return(log10(MagickMinimumValue));
143  return(log10(fabs(x)));
144 }
145
146 MagickExport ChannelFeatures *GetImageFeatures(const Image *image,
147   const size_t distance,ExceptionInfo *exception)
148 {
149   typedef struct _ChannelStatistics
150   {
151     PixelInfo
152       direction[4];  /* horizontal, vertical, left and right diagonals */
153   } ChannelStatistics;
154
155   CacheView
156     *image_view;
157
158   ChannelFeatures
159     *channel_features;
160
161   ChannelStatistics
162     **cooccurrence,
163     correlation,
164     *density_x,
165     *density_xy,
166     *density_y,
167     entropy_x,
168     entropy_xy,
169     entropy_xy1,
170     entropy_xy2,
171     entropy_y,
172     mean,
173     **Q,
174     *sum,
175     sum_squares,
176     variance;
177
178   PixelPacket
179     gray,
180     *grays;
181
182   MagickBooleanType
183     status;
184
185   register ssize_t
186     i;
187
188   size_t
189     length;
190
191   ssize_t
192     y;
193
194   unsigned int
195     number_grays;
196
197   assert(image != (Image *) NULL);
198   assert(image->signature == MagickSignature);
199   if (image->debug != MagickFalse)
200     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
201   if ((image->columns < (distance+1)) || (image->rows < (distance+1)))
202     return((ChannelFeatures *) NULL);
203   length=CompositeChannels+1UL;
204   channel_features=(ChannelFeatures *) AcquireQuantumMemory(length,
205     sizeof(*channel_features));
206   if (channel_features == (ChannelFeatures *) NULL)
207     ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
208   (void) ResetMagickMemory(channel_features,0,length*
209     sizeof(*channel_features));
210   /*
211     Form grays.
212   */
213   grays=(PixelPacket *) AcquireQuantumMemory(MaxMap+1UL,sizeof(*grays));
214   if (grays == (PixelPacket *) NULL)
215     {
216       channel_features=(ChannelFeatures *) RelinquishMagickMemory(
217         channel_features);
218       (void) ThrowMagickException(exception,GetMagickModule(),
219         ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
220       return(channel_features);
221     }
222   for (i=0; i <= (ssize_t) MaxMap; i++)
223   {
224     grays[i].red=(~0U);
225     grays[i].green=(~0U);
226     grays[i].blue=(~0U);
227     grays[i].alpha=(~0U);
228     grays[i].black=(~0U);
229   }
230   status=MagickTrue;
231   image_view=AcquireVirtualCacheView(image,exception);
232 #if defined(MAGICKCORE_OPENMP_SUPPORT)
233   #pragma omp parallel for schedule(static,4) shared(status) \
234     magick_threads(image,image,image->rows,1)
235 #endif
236   for (y=0; y < (ssize_t) image->rows; y++)
237   {
238     register const Quantum
239       *restrict p;
240
241     register ssize_t
242       x;
243
244     if (status == MagickFalse)
245       continue;
246     p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
247     if (p == (const Quantum *) NULL)
248       {
249         status=MagickFalse;
250         continue;
251       }
252     for (x=0; x < (ssize_t) image->columns; x++)
253     {
254       grays[ScaleQuantumToMap(GetPixelRed(image,p))].red=
255         ScaleQuantumToMap(GetPixelRed(image,p));
256       grays[ScaleQuantumToMap(GetPixelGreen(image,p))].green=
257         ScaleQuantumToMap(GetPixelGreen(image,p));
258       grays[ScaleQuantumToMap(GetPixelBlue(image,p))].blue=
259         ScaleQuantumToMap(GetPixelBlue(image,p));
260       if (image->colorspace == CMYKColorspace)
261         grays[ScaleQuantumToMap(GetPixelBlack(image,p))].black=
262           ScaleQuantumToMap(GetPixelBlack(image,p));
263       if (image->alpha_trait == BlendPixelTrait)
264         grays[ScaleQuantumToMap(GetPixelAlpha(image,p))].alpha=
265           ScaleQuantumToMap(GetPixelAlpha(image,p));
266       p+=GetPixelChannels(image);
267     }
268   }
269   image_view=DestroyCacheView(image_view);
270   if (status == MagickFalse)
271     {
272       grays=(PixelPacket *) RelinquishMagickMemory(grays);
273       channel_features=(ChannelFeatures *) RelinquishMagickMemory(
274         channel_features);
275       return(channel_features);
276     }
277   (void) ResetMagickMemory(&gray,0,sizeof(gray));
278   for (i=0; i <= (ssize_t) MaxMap; i++)
279   {
280     if (grays[i].red != ~0U)
281       grays[gray.red++].red=grays[i].red;
282     if (grays[i].green != ~0U)
283       grays[gray.green++].green=grays[i].green;
284     if (grays[i].blue != ~0U)
285       grays[gray.blue++].blue=grays[i].blue;
286     if (image->colorspace == CMYKColorspace)
287       if (grays[i].black != ~0U)
288         grays[gray.black++].black=grays[i].black;
289     if (image->alpha_trait == BlendPixelTrait)
290       if (grays[i].alpha != ~0U)
291         grays[gray.alpha++].alpha=grays[i].alpha;
292   }
293   /*
294     Allocate spatial dependence matrix.
295   */
296   number_grays=gray.red;
297   if (gray.green > number_grays)
298     number_grays=gray.green;
299   if (gray.blue > number_grays)
300     number_grays=gray.blue;
301   if (image->colorspace == CMYKColorspace)
302     if (gray.black > number_grays)
303       number_grays=gray.black;
304   if (image->alpha_trait == BlendPixelTrait)
305     if (gray.alpha > number_grays)
306       number_grays=gray.alpha;
307   cooccurrence=(ChannelStatistics **) AcquireQuantumMemory(number_grays,
308     sizeof(*cooccurrence));
309   density_x=(ChannelStatistics *) AcquireQuantumMemory(2*(number_grays+1),
310     sizeof(*density_x));
311   density_xy=(ChannelStatistics *) AcquireQuantumMemory(2*(number_grays+1),
312     sizeof(*density_xy));
313   density_y=(ChannelStatistics *) AcquireQuantumMemory(2*(number_grays+1),
314     sizeof(*density_y));
315   Q=(ChannelStatistics **) AcquireQuantumMemory(number_grays,sizeof(*Q));
316   sum=(ChannelStatistics *) AcquireQuantumMemory(number_grays,sizeof(*sum));
317   if ((cooccurrence == (ChannelStatistics **) NULL) ||
318       (density_x == (ChannelStatistics *) NULL) ||
319       (density_xy == (ChannelStatistics *) NULL) ||
320       (density_y == (ChannelStatistics *) NULL) ||
321       (Q == (ChannelStatistics **) NULL) ||
322       (sum == (ChannelStatistics *) NULL))
323     {
324       if (Q != (ChannelStatistics **) NULL)
325         {
326           for (i=0; i < (ssize_t) number_grays; i++)
327             Q[i]=(ChannelStatistics *) RelinquishMagickMemory(Q[i]);
328           Q=(ChannelStatistics **) RelinquishMagickMemory(Q);
329         }
330       if (sum != (ChannelStatistics *) NULL)
331         sum=(ChannelStatistics *) RelinquishMagickMemory(sum);
332       if (density_y != (ChannelStatistics *) NULL)
333         density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
334       if (density_xy != (ChannelStatistics *) NULL)
335         density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
336       if (density_x != (ChannelStatistics *) NULL)
337         density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
338       if (cooccurrence != (ChannelStatistics **) NULL)
339         {
340           for (i=0; i < (ssize_t) number_grays; i++)
341             cooccurrence[i]=(ChannelStatistics *)
342               RelinquishMagickMemory(cooccurrence[i]);
343           cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(
344             cooccurrence);
345         }
346       grays=(PixelPacket *) RelinquishMagickMemory(grays);
347       channel_features=(ChannelFeatures *) RelinquishMagickMemory(
348         channel_features);
349       (void) ThrowMagickException(exception,GetMagickModule(),
350         ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
351       return(channel_features);
352     }
353   (void) ResetMagickMemory(&correlation,0,sizeof(correlation));
354   (void) ResetMagickMemory(density_x,0,2*(number_grays+1)*sizeof(*density_x));
355   (void) ResetMagickMemory(density_xy,0,2*(number_grays+1)*sizeof(*density_xy));
356   (void) ResetMagickMemory(density_y,0,2*(number_grays+1)*sizeof(*density_y));
357   (void) ResetMagickMemory(&mean,0,sizeof(mean));
358   (void) ResetMagickMemory(sum,0,number_grays*sizeof(*sum));
359   (void) ResetMagickMemory(&sum_squares,0,sizeof(sum_squares));
360   (void) ResetMagickMemory(density_xy,0,2*number_grays*sizeof(*density_xy));
361   (void) ResetMagickMemory(&entropy_x,0,sizeof(entropy_x));
362   (void) ResetMagickMemory(&entropy_xy,0,sizeof(entropy_xy));
363   (void) ResetMagickMemory(&entropy_xy1,0,sizeof(entropy_xy1));
364   (void) ResetMagickMemory(&entropy_xy2,0,sizeof(entropy_xy2));
365   (void) ResetMagickMemory(&entropy_y,0,sizeof(entropy_y));
366   (void) ResetMagickMemory(&variance,0,sizeof(variance));
367   for (i=0; i < (ssize_t) number_grays; i++)
368   {
369     cooccurrence[i]=(ChannelStatistics *) AcquireQuantumMemory(number_grays,
370       sizeof(**cooccurrence));
371     Q[i]=(ChannelStatistics *) AcquireQuantumMemory(number_grays,sizeof(**Q));
372     if ((cooccurrence[i] == (ChannelStatistics *) NULL) ||
373         (Q[i] == (ChannelStatistics *) NULL))
374       break;
375     (void) ResetMagickMemory(cooccurrence[i],0,number_grays*
376       sizeof(**cooccurrence));
377     (void) ResetMagickMemory(Q[i],0,number_grays*sizeof(**Q));
378   }
379   if (i < (ssize_t) number_grays)
380     {
381       for (i--; i >= 0; i--)
382       {
383         if (Q[i] != (ChannelStatistics *) NULL)
384           Q[i]=(ChannelStatistics *) RelinquishMagickMemory(Q[i]);
385         if (cooccurrence[i] != (ChannelStatistics *) NULL)
386           cooccurrence[i]=(ChannelStatistics *)
387             RelinquishMagickMemory(cooccurrence[i]);
388       }
389       Q=(ChannelStatistics **) RelinquishMagickMemory(Q);
390       cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
391       sum=(ChannelStatistics *) RelinquishMagickMemory(sum);
392       density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
393       density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
394       density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
395       grays=(PixelPacket *) RelinquishMagickMemory(grays);
396       channel_features=(ChannelFeatures *) RelinquishMagickMemory(
397         channel_features);
398       (void) ThrowMagickException(exception,GetMagickModule(),
399         ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
400       return(channel_features);
401     }
402   /*
403     Initialize spatial dependence matrix.
404   */
405   status=MagickTrue;
406   image_view=AcquireVirtualCacheView(image,exception);
407   for (y=0; y < (ssize_t) image->rows; y++)
408   {
409     register const Quantum
410       *restrict p;
411
412     register ssize_t
413       x;
414
415     ssize_t
416       i,
417       offset,
418       u,
419       v;
420
421     if (status == MagickFalse)
422       continue;
423     p=GetCacheViewVirtualPixels(image_view,-(ssize_t) distance,y,image->columns+
424       2*distance,distance+2,exception);
425     if (p == (const Quantum *) NULL)
426       {
427         status=MagickFalse;
428         continue;
429       }
430     p+=distance*GetPixelChannels(image);;
431     for (x=0; x < (ssize_t) image->columns; x++)
432     {
433       for (i=0; i < 4; i++)
434       {
435         switch (i)
436         {
437           case 0:
438           default:
439           {
440             /*
441               Horizontal adjacency.
442             */
443             offset=(ssize_t) distance;
444             break;
445           }
446           case 1:
447           {
448             /*
449               Vertical adjacency.
450             */
451             offset=(ssize_t) (image->columns+2*distance);
452             break;
453           }
454           case 2:
455           {
456             /*
457               Right diagonal adjacency.
458             */
459             offset=(ssize_t) ((image->columns+2*distance)-distance);
460             break;
461           }
462           case 3:
463           {
464             /*
465               Left diagonal adjacency.
466             */
467             offset=(ssize_t) ((image->columns+2*distance)+distance);
468             break;
469           }
470         }
471         u=0;
472         v=0;
473         while (grays[u].red != ScaleQuantumToMap(GetPixelRed(image,p)))
474           u++;
475         while (grays[v].red != ScaleQuantumToMap(GetPixelRed(image,p+offset*GetPixelChannels(image))))
476           v++;
477         cooccurrence[u][v].direction[i].red++;
478         cooccurrence[v][u].direction[i].red++;
479         u=0;
480         v=0;
481         while (grays[u].green != ScaleQuantumToMap(GetPixelGreen(image,p)))
482           u++;
483         while (grays[v].green != ScaleQuantumToMap(GetPixelGreen(image,p+offset*GetPixelChannels(image))))
484           v++;
485         cooccurrence[u][v].direction[i].green++;
486         cooccurrence[v][u].direction[i].green++;
487         u=0;
488         v=0;
489         while (grays[u].blue != ScaleQuantumToMap(GetPixelBlue(image,p)))
490           u++;
491         while (grays[v].blue != ScaleQuantumToMap(GetPixelBlue(image,p+offset*GetPixelChannels(image))))
492           v++;
493         cooccurrence[u][v].direction[i].blue++;
494         cooccurrence[v][u].direction[i].blue++;
495         if (image->colorspace == CMYKColorspace)
496           {
497             u=0;
498             v=0;
499             while (grays[u].black != ScaleQuantumToMap(GetPixelBlack(image,p)))
500               u++;
501             while (grays[v].black != ScaleQuantumToMap(GetPixelBlack(image,p+offset*GetPixelChannels(image))))
502               v++;
503             cooccurrence[u][v].direction[i].black++;
504             cooccurrence[v][u].direction[i].black++;
505           }
506         if (image->alpha_trait == BlendPixelTrait)
507           {
508             u=0;
509             v=0;
510             while (grays[u].alpha != ScaleQuantumToMap(GetPixelAlpha(image,p)))
511               u++;
512             while (grays[v].alpha != ScaleQuantumToMap(GetPixelAlpha(image,p+offset*GetPixelChannels(image))))
513               v++;
514             cooccurrence[u][v].direction[i].alpha++;
515             cooccurrence[v][u].direction[i].alpha++;
516           }
517       }
518       p+=GetPixelChannels(image);
519     }
520   }
521   grays=(PixelPacket *) RelinquishMagickMemory(grays);
522   image_view=DestroyCacheView(image_view);
523   if (status == MagickFalse)
524     {
525       for (i=0; i < (ssize_t) number_grays; i++)
526         cooccurrence[i]=(ChannelStatistics *)
527           RelinquishMagickMemory(cooccurrence[i]);
528       cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
529       channel_features=(ChannelFeatures *) RelinquishMagickMemory(
530         channel_features);
531       (void) ThrowMagickException(exception,GetMagickModule(),
532         ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
533       return(channel_features);
534     }
535   /*
536     Normalize spatial dependence matrix.
537   */
538   for (i=0; i < 4; i++)
539   {
540     double
541       normalize;
542
543     register ssize_t
544       y;
545
546     switch (i)
547     {
548       case 0:
549       default:
550       {
551         /*
552           Horizontal adjacency.
553         */
554         normalize=2.0*image->rows*(image->columns-distance);
555         break;
556       }
557       case 1:
558       {
559         /*
560           Vertical adjacency.
561         */
562         normalize=2.0*(image->rows-distance)*image->columns;
563         break;
564       }
565       case 2:
566       {
567         /*
568           Right diagonal adjacency.
569         */
570         normalize=2.0*(image->rows-distance)*(image->columns-distance);
571         break;
572       }
573       case 3:
574       {
575         /*
576           Left diagonal adjacency.
577         */
578         normalize=2.0*(image->rows-distance)*(image->columns-distance);
579         break;
580       }
581     }
582     normalize=PerceptibleReciprocal(normalize);
583     for (y=0; y < (ssize_t) number_grays; y++)
584     {
585       register ssize_t
586         x;
587
588       for (x=0; x < (ssize_t) number_grays; x++)
589       {
590         cooccurrence[x][y].direction[i].red*=normalize;
591         cooccurrence[x][y].direction[i].green*=normalize;
592         cooccurrence[x][y].direction[i].blue*=normalize;
593         if (image->colorspace == CMYKColorspace)
594           cooccurrence[x][y].direction[i].black*=normalize;
595         if (image->alpha_trait == BlendPixelTrait)
596           cooccurrence[x][y].direction[i].alpha*=normalize;
597       }
598     }
599   }
600   /*
601     Compute texture features.
602   */
603 #if defined(MAGICKCORE_OPENMP_SUPPORT)
604   #pragma omp parallel for schedule(static,4) shared(status) \
605     magick_threads(image,image,number_grays,1)
606 #endif
607   for (i=0; i < 4; i++)
608   {
609     register ssize_t
610       y;
611
612     for (y=0; y < (ssize_t) number_grays; y++)
613     {
614       register ssize_t
615         x;
616
617       for (x=0; x < (ssize_t) number_grays; x++)
618       {
619         /*
620           Angular second moment:  measure of homogeneity of the image.
621         */
622         channel_features[RedPixelChannel].angular_second_moment[i]+=
623           cooccurrence[x][y].direction[i].red*
624           cooccurrence[x][y].direction[i].red;
625         channel_features[GreenPixelChannel].angular_second_moment[i]+=
626           cooccurrence[x][y].direction[i].green*
627           cooccurrence[x][y].direction[i].green;
628         channel_features[BluePixelChannel].angular_second_moment[i]+=
629           cooccurrence[x][y].direction[i].blue*
630           cooccurrence[x][y].direction[i].blue;
631         if (image->colorspace == CMYKColorspace)
632           channel_features[BlackPixelChannel].angular_second_moment[i]+=
633             cooccurrence[x][y].direction[i].black*
634             cooccurrence[x][y].direction[i].black;
635         if (image->alpha_trait == BlendPixelTrait)
636           channel_features[AlphaPixelChannel].angular_second_moment[i]+=
637             cooccurrence[x][y].direction[i].alpha*
638             cooccurrence[x][y].direction[i].alpha;
639         /*
640           Correlation: measure of linear-dependencies in the image.
641         */
642         sum[y].direction[i].red+=cooccurrence[x][y].direction[i].red;
643         sum[y].direction[i].green+=cooccurrence[x][y].direction[i].green;
644         sum[y].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
645         if (image->colorspace == CMYKColorspace)
646           sum[y].direction[i].black+=cooccurrence[x][y].direction[i].black;
647         if (image->alpha_trait == BlendPixelTrait)
648           sum[y].direction[i].alpha+=cooccurrence[x][y].direction[i].alpha;
649         correlation.direction[i].red+=x*y*cooccurrence[x][y].direction[i].red;
650         correlation.direction[i].green+=x*y*
651           cooccurrence[x][y].direction[i].green;
652         correlation.direction[i].blue+=x*y*
653           cooccurrence[x][y].direction[i].blue;
654         if (image->colorspace == CMYKColorspace)
655           correlation.direction[i].black+=x*y*
656             cooccurrence[x][y].direction[i].black;
657         if (image->alpha_trait == BlendPixelTrait)
658           correlation.direction[i].alpha+=x*y*
659             cooccurrence[x][y].direction[i].alpha;
660         /*
661           Inverse Difference Moment.
662         */
663         channel_features[RedPixelChannel].inverse_difference_moment[i]+=
664           cooccurrence[x][y].direction[i].red/((y-x)*(y-x)+1);
665         channel_features[GreenPixelChannel].inverse_difference_moment[i]+=
666           cooccurrence[x][y].direction[i].green/((y-x)*(y-x)+1);
667         channel_features[BluePixelChannel].inverse_difference_moment[i]+=
668           cooccurrence[x][y].direction[i].blue/((y-x)*(y-x)+1);
669         if (image->colorspace == CMYKColorspace)
670           channel_features[BlackPixelChannel].inverse_difference_moment[i]+=
671             cooccurrence[x][y].direction[i].black/((y-x)*(y-x)+1);
672         if (image->alpha_trait == BlendPixelTrait)
673           channel_features[AlphaPixelChannel].inverse_difference_moment[i]+=
674             cooccurrence[x][y].direction[i].alpha/((y-x)*(y-x)+1);
675         /*
676           Sum average.
677         */
678         density_xy[y+x+2].direction[i].red+=
679           cooccurrence[x][y].direction[i].red;
680         density_xy[y+x+2].direction[i].green+=
681           cooccurrence[x][y].direction[i].green;
682         density_xy[y+x+2].direction[i].blue+=
683           cooccurrence[x][y].direction[i].blue;
684         if (image->colorspace == CMYKColorspace)
685           density_xy[y+x+2].direction[i].black+=
686             cooccurrence[x][y].direction[i].black;
687         if (image->alpha_trait == BlendPixelTrait)
688           density_xy[y+x+2].direction[i].alpha+=
689             cooccurrence[x][y].direction[i].alpha;
690         /*
691           Entropy.
692         */
693         channel_features[RedPixelChannel].entropy[i]-=
694           cooccurrence[x][y].direction[i].red*
695           MagickLog10(cooccurrence[x][y].direction[i].red);
696         channel_features[GreenPixelChannel].entropy[i]-=
697           cooccurrence[x][y].direction[i].green*
698           MagickLog10(cooccurrence[x][y].direction[i].green);
699         channel_features[BluePixelChannel].entropy[i]-=
700           cooccurrence[x][y].direction[i].blue*
701           MagickLog10(cooccurrence[x][y].direction[i].blue);
702         if (image->colorspace == CMYKColorspace)
703           channel_features[BlackPixelChannel].entropy[i]-=
704             cooccurrence[x][y].direction[i].black*
705             MagickLog10(cooccurrence[x][y].direction[i].black);
706         if (image->alpha_trait == BlendPixelTrait)
707           channel_features[AlphaPixelChannel].entropy[i]-=
708             cooccurrence[x][y].direction[i].alpha*
709             MagickLog10(cooccurrence[x][y].direction[i].alpha);
710         /*
711           Information Measures of Correlation.
712         */
713         density_x[x].direction[i].red+=cooccurrence[x][y].direction[i].red;
714         density_x[x].direction[i].green+=cooccurrence[x][y].direction[i].green;
715         density_x[x].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
716         if (image->alpha_trait == BlendPixelTrait)
717           density_x[x].direction[i].alpha+=
718             cooccurrence[x][y].direction[i].alpha;
719         if (image->colorspace == CMYKColorspace)
720           density_x[x].direction[i].black+=
721             cooccurrence[x][y].direction[i].black;
722         density_y[y].direction[i].red+=cooccurrence[x][y].direction[i].red;
723         density_y[y].direction[i].green+=cooccurrence[x][y].direction[i].green;
724         density_y[y].direction[i].blue+=cooccurrence[x][y].direction[i].blue;
725         if (image->colorspace == CMYKColorspace)
726           density_y[y].direction[i].black+=
727             cooccurrence[x][y].direction[i].black;
728         if (image->alpha_trait == BlendPixelTrait)
729           density_y[y].direction[i].alpha+=
730             cooccurrence[x][y].direction[i].alpha;
731       }
732       mean.direction[i].red+=y*sum[y].direction[i].red;
733       sum_squares.direction[i].red+=y*y*sum[y].direction[i].red;
734       mean.direction[i].green+=y*sum[y].direction[i].green;
735       sum_squares.direction[i].green+=y*y*sum[y].direction[i].green;
736       mean.direction[i].blue+=y*sum[y].direction[i].blue;
737       sum_squares.direction[i].blue+=y*y*sum[y].direction[i].blue;
738       if (image->colorspace == CMYKColorspace)
739         {
740           mean.direction[i].black+=y*sum[y].direction[i].black;
741           sum_squares.direction[i].black+=y*y*sum[y].direction[i].black;
742         }
743       if (image->alpha_trait == BlendPixelTrait)
744         {
745           mean.direction[i].alpha+=y*sum[y].direction[i].alpha;
746           sum_squares.direction[i].alpha+=y*y*sum[y].direction[i].alpha;
747         }
748     }
749     /*
750       Correlation: measure of linear-dependencies in the image.
751     */
752     channel_features[RedPixelChannel].correlation[i]=
753       (correlation.direction[i].red-mean.direction[i].red*
754       mean.direction[i].red)/(sqrt(sum_squares.direction[i].red-
755       (mean.direction[i].red*mean.direction[i].red))*sqrt(
756       sum_squares.direction[i].red-(mean.direction[i].red*
757       mean.direction[i].red)));
758     channel_features[GreenPixelChannel].correlation[i]=
759       (correlation.direction[i].green-mean.direction[i].green*
760       mean.direction[i].green)/(sqrt(sum_squares.direction[i].green-
761       (mean.direction[i].green*mean.direction[i].green))*sqrt(
762       sum_squares.direction[i].green-(mean.direction[i].green*
763       mean.direction[i].green)));
764     channel_features[BluePixelChannel].correlation[i]=
765       (correlation.direction[i].blue-mean.direction[i].blue*
766       mean.direction[i].blue)/(sqrt(sum_squares.direction[i].blue-
767       (mean.direction[i].blue*mean.direction[i].blue))*sqrt(
768       sum_squares.direction[i].blue-(mean.direction[i].blue*
769       mean.direction[i].blue)));
770     if (image->colorspace == CMYKColorspace)
771       channel_features[BlackPixelChannel].correlation[i]=
772         (correlation.direction[i].black-mean.direction[i].black*
773         mean.direction[i].black)/(sqrt(sum_squares.direction[i].black-
774         (mean.direction[i].black*mean.direction[i].black))*sqrt(
775         sum_squares.direction[i].black-(mean.direction[i].black*
776         mean.direction[i].black)));
777     if (image->alpha_trait == BlendPixelTrait)
778       channel_features[AlphaPixelChannel].correlation[i]=
779         (correlation.direction[i].alpha-mean.direction[i].alpha*
780         mean.direction[i].alpha)/(sqrt(sum_squares.direction[i].alpha-
781         (mean.direction[i].alpha*mean.direction[i].alpha))*sqrt(
782         sum_squares.direction[i].alpha-(mean.direction[i].alpha*
783         mean.direction[i].alpha)));
784   }
785   /*
786     Compute more texture features.
787   */
788 #if defined(MAGICKCORE_OPENMP_SUPPORT)
789   #pragma omp parallel for schedule(static,4) shared(status) \
790     magick_threads(image,image,number_grays,1)
791 #endif
792   for (i=0; i < 4; i++)
793   {
794     register ssize_t
795       x;
796
797     for (x=2; x < (ssize_t) (2*number_grays); x++)
798     {
799       /*
800         Sum average.
801       */
802       channel_features[RedPixelChannel].sum_average[i]+=
803         x*density_xy[x].direction[i].red;
804       channel_features[GreenPixelChannel].sum_average[i]+=
805         x*density_xy[x].direction[i].green;
806       channel_features[BluePixelChannel].sum_average[i]+=
807         x*density_xy[x].direction[i].blue;
808       if (image->colorspace == CMYKColorspace)
809         channel_features[BlackPixelChannel].sum_average[i]+=
810           x*density_xy[x].direction[i].black;
811       if (image->alpha_trait == BlendPixelTrait)
812         channel_features[AlphaPixelChannel].sum_average[i]+=
813           x*density_xy[x].direction[i].alpha;
814       /*
815         Sum entropy.
816       */
817       channel_features[RedPixelChannel].sum_entropy[i]-=
818         density_xy[x].direction[i].red*
819         MagickLog10(density_xy[x].direction[i].red);
820       channel_features[GreenPixelChannel].sum_entropy[i]-=
821         density_xy[x].direction[i].green*
822         MagickLog10(density_xy[x].direction[i].green);
823       channel_features[BluePixelChannel].sum_entropy[i]-=
824         density_xy[x].direction[i].blue*
825         MagickLog10(density_xy[x].direction[i].blue);
826       if (image->colorspace == CMYKColorspace)
827         channel_features[BlackPixelChannel].sum_entropy[i]-=
828           density_xy[x].direction[i].black*
829           MagickLog10(density_xy[x].direction[i].black);
830       if (image->alpha_trait == BlendPixelTrait)
831         channel_features[AlphaPixelChannel].sum_entropy[i]-=
832           density_xy[x].direction[i].alpha*
833           MagickLog10(density_xy[x].direction[i].alpha);
834       /*
835         Sum variance.
836       */
837       channel_features[RedPixelChannel].sum_variance[i]+=
838         (x-channel_features[RedPixelChannel].sum_entropy[i])*
839         (x-channel_features[RedPixelChannel].sum_entropy[i])*
840         density_xy[x].direction[i].red;
841       channel_features[GreenPixelChannel].sum_variance[i]+=
842         (x-channel_features[GreenPixelChannel].sum_entropy[i])*
843         (x-channel_features[GreenPixelChannel].sum_entropy[i])*
844         density_xy[x].direction[i].green;
845       channel_features[BluePixelChannel].sum_variance[i]+=
846         (x-channel_features[BluePixelChannel].sum_entropy[i])*
847         (x-channel_features[BluePixelChannel].sum_entropy[i])*
848         density_xy[x].direction[i].blue;
849       if (image->colorspace == CMYKColorspace)
850         channel_features[BlackPixelChannel].sum_variance[i]+=
851           (x-channel_features[BlackPixelChannel].sum_entropy[i])*
852           (x-channel_features[BlackPixelChannel].sum_entropy[i])*
853           density_xy[x].direction[i].black;
854       if (image->alpha_trait == BlendPixelTrait)
855         channel_features[AlphaPixelChannel].sum_variance[i]+=
856           (x-channel_features[AlphaPixelChannel].sum_entropy[i])*
857           (x-channel_features[AlphaPixelChannel].sum_entropy[i])*
858           density_xy[x].direction[i].alpha;
859     }
860   }
861   /*
862     Compute more texture features.
863   */
864 #if defined(MAGICKCORE_OPENMP_SUPPORT)
865   #pragma omp parallel for schedule(static,4) shared(status) \
866     magick_threads(image,image,number_grays,1)
867 #endif
868   for (i=0; i < 4; i++)
869   {
870     register ssize_t
871       y;
872
873     for (y=0; y < (ssize_t) number_grays; y++)
874     {
875       register ssize_t
876         x;
877
878       for (x=0; x < (ssize_t) number_grays; x++)
879       {
880         /*
881           Sum of Squares: Variance
882         */
883         variance.direction[i].red+=(y-mean.direction[i].red+1)*
884           (y-mean.direction[i].red+1)*cooccurrence[x][y].direction[i].red;
885         variance.direction[i].green+=(y-mean.direction[i].green+1)*
886           (y-mean.direction[i].green+1)*cooccurrence[x][y].direction[i].green;
887         variance.direction[i].blue+=(y-mean.direction[i].blue+1)*
888           (y-mean.direction[i].blue+1)*cooccurrence[x][y].direction[i].blue;
889         if (image->colorspace == CMYKColorspace)
890           variance.direction[i].black+=(y-mean.direction[i].black+1)*
891             (y-mean.direction[i].black+1)*cooccurrence[x][y].direction[i].black;
892         if (image->alpha_trait == BlendPixelTrait)
893           variance.direction[i].alpha+=(y-mean.direction[i].alpha+1)*
894             (y-mean.direction[i].alpha+1)*
895             cooccurrence[x][y].direction[i].alpha;
896         /*
897           Sum average / Difference Variance.
898         */
899         density_xy[MagickAbsoluteValue(y-x)].direction[i].red+=
900           cooccurrence[x][y].direction[i].red;
901         density_xy[MagickAbsoluteValue(y-x)].direction[i].green+=
902           cooccurrence[x][y].direction[i].green;
903         density_xy[MagickAbsoluteValue(y-x)].direction[i].blue+=
904           cooccurrence[x][y].direction[i].blue;
905         if (image->colorspace == CMYKColorspace)
906           density_xy[MagickAbsoluteValue(y-x)].direction[i].black+=
907             cooccurrence[x][y].direction[i].black;
908         if (image->alpha_trait == BlendPixelTrait)
909           density_xy[MagickAbsoluteValue(y-x)].direction[i].alpha+=
910             cooccurrence[x][y].direction[i].alpha;
911         /*
912           Information Measures of Correlation.
913         */
914         entropy_xy.direction[i].red-=cooccurrence[x][y].direction[i].red*
915           MagickLog10(cooccurrence[x][y].direction[i].red);
916         entropy_xy.direction[i].green-=cooccurrence[x][y].direction[i].green*
917           MagickLog10(cooccurrence[x][y].direction[i].green);
918         entropy_xy.direction[i].blue-=cooccurrence[x][y].direction[i].blue*
919           MagickLog10(cooccurrence[x][y].direction[i].blue);
920         if (image->colorspace == CMYKColorspace)
921           entropy_xy.direction[i].black-=cooccurrence[x][y].direction[i].black*
922             MagickLog10(cooccurrence[x][y].direction[i].black);
923         if (image->alpha_trait == BlendPixelTrait)
924           entropy_xy.direction[i].alpha-=
925             cooccurrence[x][y].direction[i].alpha*MagickLog10(
926             cooccurrence[x][y].direction[i].alpha);
927         entropy_xy1.direction[i].red-=(cooccurrence[x][y].direction[i].red*
928           MagickLog10(density_x[x].direction[i].red*density_y[y].direction[i].red));
929         entropy_xy1.direction[i].green-=(cooccurrence[x][y].direction[i].green*
930           MagickLog10(density_x[x].direction[i].green*
931           density_y[y].direction[i].green));
932         entropy_xy1.direction[i].blue-=(cooccurrence[x][y].direction[i].blue*
933           MagickLog10(density_x[x].direction[i].blue*density_y[y].direction[i].blue));
934         if (image->colorspace == CMYKColorspace)
935           entropy_xy1.direction[i].black-=(
936             cooccurrence[x][y].direction[i].black*MagickLog10(
937             density_x[x].direction[i].black*density_y[y].direction[i].black));
938         if (image->alpha_trait == BlendPixelTrait)
939           entropy_xy1.direction[i].alpha-=(
940             cooccurrence[x][y].direction[i].alpha*MagickLog10(
941             density_x[x].direction[i].alpha*density_y[y].direction[i].alpha));
942         entropy_xy2.direction[i].red-=(density_x[x].direction[i].red*
943           density_y[y].direction[i].red*MagickLog10(density_x[x].direction[i].red*
944           density_y[y].direction[i].red));
945         entropy_xy2.direction[i].green-=(density_x[x].direction[i].green*
946           density_y[y].direction[i].green*MagickLog10(density_x[x].direction[i].green*
947           density_y[y].direction[i].green));
948         entropy_xy2.direction[i].blue-=(density_x[x].direction[i].blue*
949           density_y[y].direction[i].blue*MagickLog10(density_x[x].direction[i].blue*
950           density_y[y].direction[i].blue));
951         if (image->colorspace == CMYKColorspace)
952           entropy_xy2.direction[i].black-=(density_x[x].direction[i].black*
953             density_y[y].direction[i].black*MagickLog10(
954             density_x[x].direction[i].black*density_y[y].direction[i].black));
955         if (image->alpha_trait == BlendPixelTrait)
956           entropy_xy2.direction[i].alpha-=(density_x[x].direction[i].alpha*
957             density_y[y].direction[i].alpha*MagickLog10(
958             density_x[x].direction[i].alpha*density_y[y].direction[i].alpha));
959       }
960     }
961     channel_features[RedPixelChannel].variance_sum_of_squares[i]=
962       variance.direction[i].red;
963     channel_features[GreenPixelChannel].variance_sum_of_squares[i]=
964       variance.direction[i].green;
965     channel_features[BluePixelChannel].variance_sum_of_squares[i]=
966       variance.direction[i].blue;
967     if (image->colorspace == CMYKColorspace)
968       channel_features[BlackPixelChannel].variance_sum_of_squares[i]=
969         variance.direction[i].black;
970     if (image->alpha_trait == BlendPixelTrait)
971       channel_features[AlphaPixelChannel].variance_sum_of_squares[i]=
972         variance.direction[i].alpha;
973   }
974   /*
975     Compute more texture features.
976   */
977   (void) ResetMagickMemory(&variance,0,sizeof(variance));
978   (void) ResetMagickMemory(&sum_squares,0,sizeof(sum_squares));
979 #if defined(MAGICKCORE_OPENMP_SUPPORT)
980   #pragma omp parallel for schedule(static,4) shared(status) \
981     magick_threads(image,image,number_grays,1)
982 #endif
983   for (i=0; i < 4; i++)
984   {
985     register ssize_t
986       x;
987
988     for (x=0; x < (ssize_t) number_grays; x++)
989     {
990       /*
991         Difference variance.
992       */
993       variance.direction[i].red+=density_xy[x].direction[i].red;
994       variance.direction[i].green+=density_xy[x].direction[i].green;
995       variance.direction[i].blue+=density_xy[x].direction[i].blue;
996       if (image->colorspace == CMYKColorspace)
997         variance.direction[i].black+=density_xy[x].direction[i].black;
998       if (image->alpha_trait == BlendPixelTrait)
999         variance.direction[i].alpha+=density_xy[x].direction[i].alpha;
1000       sum_squares.direction[i].red+=density_xy[x].direction[i].red*
1001         density_xy[x].direction[i].red;
1002       sum_squares.direction[i].green+=density_xy[x].direction[i].green*
1003         density_xy[x].direction[i].green;
1004       sum_squares.direction[i].blue+=density_xy[x].direction[i].blue*
1005         density_xy[x].direction[i].blue;
1006       if (image->colorspace == CMYKColorspace)
1007         sum_squares.direction[i].black+=density_xy[x].direction[i].black*
1008           density_xy[x].direction[i].black;
1009       if (image->alpha_trait == BlendPixelTrait)
1010         sum_squares.direction[i].alpha+=density_xy[x].direction[i].alpha*
1011           density_xy[x].direction[i].alpha;
1012       /*
1013         Difference entropy.
1014       */
1015       channel_features[RedPixelChannel].difference_entropy[i]-=
1016         density_xy[x].direction[i].red*
1017         MagickLog10(density_xy[x].direction[i].red);
1018       channel_features[GreenPixelChannel].difference_entropy[i]-=
1019         density_xy[x].direction[i].green*
1020         MagickLog10(density_xy[x].direction[i].green);
1021       channel_features[BluePixelChannel].difference_entropy[i]-=
1022         density_xy[x].direction[i].blue*
1023         MagickLog10(density_xy[x].direction[i].blue);
1024       if (image->colorspace == CMYKColorspace)
1025         channel_features[BlackPixelChannel].difference_entropy[i]-=
1026           density_xy[x].direction[i].black*
1027           MagickLog10(density_xy[x].direction[i].black);
1028       if (image->alpha_trait == BlendPixelTrait)
1029         channel_features[AlphaPixelChannel].difference_entropy[i]-=
1030           density_xy[x].direction[i].alpha*
1031           MagickLog10(density_xy[x].direction[i].alpha);
1032       /*
1033         Information Measures of Correlation.
1034       */
1035       entropy_x.direction[i].red-=(density_x[x].direction[i].red*
1036         MagickLog10(density_x[x].direction[i].red));
1037       entropy_x.direction[i].green-=(density_x[x].direction[i].green*
1038         MagickLog10(density_x[x].direction[i].green));
1039       entropy_x.direction[i].blue-=(density_x[x].direction[i].blue*
1040         MagickLog10(density_x[x].direction[i].blue));
1041       if (image->colorspace == CMYKColorspace)
1042         entropy_x.direction[i].black-=(density_x[x].direction[i].black*
1043           MagickLog10(density_x[x].direction[i].black));
1044       if (image->alpha_trait == BlendPixelTrait)
1045         entropy_x.direction[i].alpha-=(density_x[x].direction[i].alpha*
1046           MagickLog10(density_x[x].direction[i].alpha));
1047       entropy_y.direction[i].red-=(density_y[x].direction[i].red*
1048         MagickLog10(density_y[x].direction[i].red));
1049       entropy_y.direction[i].green-=(density_y[x].direction[i].green*
1050         MagickLog10(density_y[x].direction[i].green));
1051       entropy_y.direction[i].blue-=(density_y[x].direction[i].blue*
1052         MagickLog10(density_y[x].direction[i].blue));
1053       if (image->colorspace == CMYKColorspace)
1054         entropy_y.direction[i].black-=(density_y[x].direction[i].black*
1055           MagickLog10(density_y[x].direction[i].black));
1056       if (image->alpha_trait == BlendPixelTrait)
1057         entropy_y.direction[i].alpha-=(density_y[x].direction[i].alpha*
1058           MagickLog10(density_y[x].direction[i].alpha));
1059     }
1060     /*
1061       Difference variance.
1062     */
1063     channel_features[RedPixelChannel].difference_variance[i]=
1064       (((double) number_grays*number_grays*sum_squares.direction[i].red)-
1065       (variance.direction[i].red*variance.direction[i].red))/
1066       ((double) number_grays*number_grays*number_grays*number_grays);
1067     channel_features[GreenPixelChannel].difference_variance[i]=
1068       (((double) number_grays*number_grays*sum_squares.direction[i].green)-
1069       (variance.direction[i].green*variance.direction[i].green))/
1070       ((double) number_grays*number_grays*number_grays*number_grays);
1071     channel_features[BluePixelChannel].difference_variance[i]=
1072       (((double) number_grays*number_grays*sum_squares.direction[i].blue)-
1073       (variance.direction[i].blue*variance.direction[i].blue))/
1074       ((double) number_grays*number_grays*number_grays*number_grays);
1075     if (image->colorspace == CMYKColorspace)
1076       channel_features[BlackPixelChannel].difference_variance[i]=
1077         (((double) number_grays*number_grays*sum_squares.direction[i].black)-
1078         (variance.direction[i].black*variance.direction[i].black))/
1079         ((double) number_grays*number_grays*number_grays*number_grays);
1080     if (image->alpha_trait == BlendPixelTrait)
1081       channel_features[AlphaPixelChannel].difference_variance[i]=
1082         (((double) number_grays*number_grays*sum_squares.direction[i].alpha)-
1083         (variance.direction[i].alpha*variance.direction[i].alpha))/
1084         ((double) number_grays*number_grays*number_grays*number_grays);
1085     /*
1086       Information Measures of Correlation.
1087     */
1088     channel_features[RedPixelChannel].measure_of_correlation_1[i]=
1089       (entropy_xy.direction[i].red-entropy_xy1.direction[i].red)/
1090       (entropy_x.direction[i].red > entropy_y.direction[i].red ?
1091        entropy_x.direction[i].red : entropy_y.direction[i].red);
1092     channel_features[GreenPixelChannel].measure_of_correlation_1[i]=
1093       (entropy_xy.direction[i].green-entropy_xy1.direction[i].green)/
1094       (entropy_x.direction[i].green > entropy_y.direction[i].green ?
1095        entropy_x.direction[i].green : entropy_y.direction[i].green);
1096     channel_features[BluePixelChannel].measure_of_correlation_1[i]=
1097       (entropy_xy.direction[i].blue-entropy_xy1.direction[i].blue)/
1098       (entropy_x.direction[i].blue > entropy_y.direction[i].blue ?
1099        entropy_x.direction[i].blue : entropy_y.direction[i].blue);
1100     if (image->colorspace == CMYKColorspace)
1101       channel_features[BlackPixelChannel].measure_of_correlation_1[i]=
1102         (entropy_xy.direction[i].black-entropy_xy1.direction[i].black)/
1103         (entropy_x.direction[i].black > entropy_y.direction[i].black ?
1104          entropy_x.direction[i].black : entropy_y.direction[i].black);
1105     if (image->alpha_trait == BlendPixelTrait)
1106       channel_features[AlphaPixelChannel].measure_of_correlation_1[i]=
1107         (entropy_xy.direction[i].alpha-entropy_xy1.direction[i].alpha)/
1108         (entropy_x.direction[i].alpha > entropy_y.direction[i].alpha ?
1109          entropy_x.direction[i].alpha : entropy_y.direction[i].alpha);
1110     channel_features[RedPixelChannel].measure_of_correlation_2[i]=
1111       (sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].red-
1112       entropy_xy.direction[i].red)))));
1113     channel_features[GreenPixelChannel].measure_of_correlation_2[i]=
1114       (sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].green-
1115       entropy_xy.direction[i].green)))));
1116     channel_features[BluePixelChannel].measure_of_correlation_2[i]=
1117       (sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].blue-
1118       entropy_xy.direction[i].blue)))));
1119     if (image->colorspace == CMYKColorspace)
1120       channel_features[BlackPixelChannel].measure_of_correlation_2[i]=
1121         (sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].black-
1122         entropy_xy.direction[i].black)))));
1123     if (image->alpha_trait == BlendPixelTrait)
1124       channel_features[AlphaPixelChannel].measure_of_correlation_2[i]=
1125         (sqrt(fabs(1.0-exp(-2.0*(entropy_xy2.direction[i].alpha-
1126         entropy_xy.direction[i].alpha)))));
1127   }
1128   /*
1129     Compute more texture features.
1130   */
1131 #if defined(MAGICKCORE_OPENMP_SUPPORT)
1132   #pragma omp parallel for schedule(static,4) shared(status) \
1133     magick_threads(image,image,number_grays,1)
1134 #endif
1135   for (i=0; i < 4; i++)
1136   {
1137     ssize_t
1138       z;
1139
1140     for (z=0; z < (ssize_t) number_grays; z++)
1141     {
1142       register ssize_t
1143         y;
1144
1145       ChannelStatistics
1146         pixel;
1147
1148       (void) ResetMagickMemory(&pixel,0,sizeof(pixel));
1149       for (y=0; y < (ssize_t) number_grays; y++)
1150       {
1151         register ssize_t
1152           x;
1153
1154         for (x=0; x < (ssize_t) number_grays; x++)
1155         {
1156           /*
1157             Contrast:  amount of local variations present in an image.
1158           */
1159           if (((y-x) == z) || ((x-y) == z))
1160             {
1161               pixel.direction[i].red+=cooccurrence[x][y].direction[i].red;
1162               pixel.direction[i].green+=cooccurrence[x][y].direction[i].green;
1163               pixel.direction[i].blue+=cooccurrence[x][y].direction[i].blue;
1164               if (image->colorspace == CMYKColorspace)
1165                 pixel.direction[i].black+=cooccurrence[x][y].direction[i].black;
1166               if (image->alpha_trait == BlendPixelTrait)
1167                 pixel.direction[i].alpha+=
1168                   cooccurrence[x][y].direction[i].alpha;
1169             }
1170           /*
1171             Maximum Correlation Coefficient.
1172           */
1173           Q[z][y].direction[i].red+=cooccurrence[z][x].direction[i].red*
1174             cooccurrence[y][x].direction[i].red/density_x[z].direction[i].red/
1175             density_y[x].direction[i].red;
1176           Q[z][y].direction[i].green+=cooccurrence[z][x].direction[i].green*
1177             cooccurrence[y][x].direction[i].green/
1178             density_x[z].direction[i].green/density_y[x].direction[i].red;
1179           Q[z][y].direction[i].blue+=cooccurrence[z][x].direction[i].blue*
1180             cooccurrence[y][x].direction[i].blue/density_x[z].direction[i].blue/
1181             density_y[x].direction[i].blue;
1182           if (image->colorspace == CMYKColorspace)
1183             Q[z][y].direction[i].black+=cooccurrence[z][x].direction[i].black*
1184               cooccurrence[y][x].direction[i].black/
1185               density_x[z].direction[i].black/density_y[x].direction[i].black;
1186           if (image->alpha_trait == BlendPixelTrait)
1187             Q[z][y].direction[i].alpha+=
1188               cooccurrence[z][x].direction[i].alpha*
1189               cooccurrence[y][x].direction[i].alpha/
1190               density_x[z].direction[i].alpha/
1191               density_y[x].direction[i].alpha;
1192         }
1193       }
1194       channel_features[RedPixelChannel].contrast[i]+=z*z*
1195         pixel.direction[i].red;
1196       channel_features[GreenPixelChannel].contrast[i]+=z*z*
1197         pixel.direction[i].green;
1198       channel_features[BluePixelChannel].contrast[i]+=z*z*
1199         pixel.direction[i].blue;
1200       if (image->colorspace == CMYKColorspace)
1201         channel_features[BlackPixelChannel].contrast[i]+=z*z*
1202           pixel.direction[i].black;
1203       if (image->alpha_trait == BlendPixelTrait)
1204         channel_features[AlphaPixelChannel].contrast[i]+=z*z*
1205           pixel.direction[i].alpha;
1206     }
1207     /*
1208       Maximum Correlation Coefficient.
1209       Future: return second largest eigenvalue of Q.
1210     */
1211     channel_features[RedPixelChannel].maximum_correlation_coefficient[i]=
1212       sqrt((double) -1.0);
1213     channel_features[GreenPixelChannel].maximum_correlation_coefficient[i]=
1214       sqrt((double) -1.0);
1215     channel_features[BluePixelChannel].maximum_correlation_coefficient[i]=
1216       sqrt((double) -1.0);
1217     if (image->colorspace == CMYKColorspace)
1218       channel_features[BlackPixelChannel].maximum_correlation_coefficient[i]=
1219         sqrt((double) -1.0);
1220     if (image->alpha_trait == BlendPixelTrait)
1221       channel_features[AlphaPixelChannel].maximum_correlation_coefficient[i]=
1222         sqrt((double) -1.0);
1223   }
1224   /*
1225     Relinquish resources.
1226   */
1227   sum=(ChannelStatistics *) RelinquishMagickMemory(sum);
1228   for (i=0; i < (ssize_t) number_grays; i++)
1229     Q[i]=(ChannelStatistics *) RelinquishMagickMemory(Q[i]);
1230   Q=(ChannelStatistics **) RelinquishMagickMemory(Q);
1231   density_y=(ChannelStatistics *) RelinquishMagickMemory(density_y);
1232   density_xy=(ChannelStatistics *) RelinquishMagickMemory(density_xy);
1233   density_x=(ChannelStatistics *) RelinquishMagickMemory(density_x);
1234   for (i=0; i < (ssize_t) number_grays; i++)
1235     cooccurrence[i]=(ChannelStatistics *)
1236       RelinquishMagickMemory(cooccurrence[i]);
1237   cooccurrence=(ChannelStatistics **) RelinquishMagickMemory(cooccurrence);
1238   return(channel_features);
1239 }